2 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
7 buildSynTyCon, buildAlgTyCon, buildDataCon,
9 mkAbstractTyConRhs, mkOpenDataTyConRhs, mkOpenNewTyConRhs,
10 mkNewTyConRhs, mkDataTyConRhs
13 #include "HsVersions.h"
15 import IfaceEnv ( newImplicitBinder )
18 import DataCon ( DataCon, isNullarySrcDataCon, dataConUnivTyVars,
19 mkDataCon, dataConFieldLabels, dataConInstOrigArgTys,
21 import Var ( tyVarKind, TyVar, Id )
22 import VarSet ( isEmptyVarSet, intersectVarSet, elemVarSet )
23 import TysWiredIn ( unitTy )
24 import BasicTypes ( RecFlag, StrictnessMark(..) )
26 import OccName ( mkDataConWrapperOcc, mkDataConWorkerOcc,
27 mkClassTyConOcc, mkClassDataConOcc,
28 mkSuperDictSelOcc, mkNewTyCoOcc, mkInstTyTcOcc,
30 import MkId ( mkDataConIds, mkRecordSelId, mkDictSelId )
31 import Class ( mkClass, Class( classTyCon), FunDep, DefMeth(..) )
32 import TyCon ( mkSynTyCon, mkAlgTyCon, visibleDataCons,
33 tyConStupidTheta, tyConDataCons, isNewTyCon,
34 mkClassTyCon, TyCon( tyConTyVars ),
35 isRecursiveTyCon, tyConArity, AlgTyConRhs(..),
36 SynTyConRhs(..), newTyConRhs, AlgTyConParent(..) )
37 import Type ( mkArrowKinds, liftedTypeKind, typeKind,
38 tyVarsOfType, tyVarsOfTypes, tyVarsOfPred,
39 splitTyConApp_maybe, splitAppTy_maybe,
41 mkPredTys, mkTyVarTys, ThetaType, Type, Kind,
43 substTyWith, zipTopTvSubst, substTheta, mkForAllTys,
44 mkTyConApp, mkTyVarTy )
45 import Coercion ( mkNewTypeCoercion, mkDataInstCoercion )
53 ------------------------------------------------------
54 buildSynTyCon :: Name -> [TyVar] -> SynTyConRhs -> TyCon
55 buildSynTyCon name tvs rhs@(OpenSynTyCon rhs_ki)
56 = mkSynTyCon name kind tvs rhs
58 kind = mkArrowKinds (map tyVarKind tvs) rhs_ki
59 buildSynTyCon name tvs rhs@(SynonymTyCon rhs_ty)
60 = mkSynTyCon name kind tvs rhs
62 kind = mkArrowKinds (map tyVarKind tvs) (typeKind rhs_ty)
65 ------------------------------------------------------
66 buildAlgTyCon :: Name -> [TyVar]
67 -> ThetaType -- Stupid theta
70 -> Bool -- True <=> want generics functions
71 -> Bool -- True <=> was declared in GADT syntax
72 -> Maybe (TyCon, [Type]) -- family instance if applicable
75 buildAlgTyCon tc_name tvs stupid_theta rhs is_rec want_generics gadt_syn
77 = do { -- We need to tie a knot as the coercion of a data instance depends
78 -- on the instance representation tycon and vice versa.
79 ; tycon <- fixM (\ tycon_rec -> do
80 { parent <- parentInfo mb_family tycon_rec
81 ; let { tycon = mkAlgTyCon tc_name kind tvs stupid_theta rhs
82 fields parent is_rec want_generics gadt_syn
83 ; kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind
84 ; fields = mkTyConSelIds tycon rhs
91 -- If a family tycon with instance types is given, the current tycon is an
92 -- instance of that family and we need to
94 -- (1) create a coercion that identifies the family instance type and the
95 -- representation type from Step (1); ie, it is of the form
96 -- `Co tvs :: F ts :=: R tvs', where `Co' is the name of the coercion,
97 -- `F' the family tycon and `R' the (derived) representation tycon,
99 -- (2) produce a `AlgTyConParent' value containing the parent and coercion
102 parentInfo Nothing rep_tycon =
104 parentInfo (Just (family, instTys)) rep_tycon =
105 do { -- Create the coercion
106 ; co_tycon_name <- newImplicitBinder tc_name mkInstTyCoOcc
107 ; let co_tycon = mkDataInstCoercion co_tycon_name tvs
108 family instTys rep_tycon
109 ; return $ FamilyTyCon family instTys co_tycon
113 ------------------------------------------------------
114 mkAbstractTyConRhs :: AlgTyConRhs
115 mkAbstractTyConRhs = AbstractTyCon
117 mkOpenDataTyConRhs :: AlgTyConRhs
118 mkOpenDataTyConRhs = OpenDataTyCon
120 mkOpenNewTyConRhs :: AlgTyConRhs
121 mkOpenNewTyConRhs = OpenNewTyCon
123 mkDataTyConRhs :: [DataCon] -> AlgTyConRhs
125 = DataTyCon { data_cons = cons, is_enum = all isNullarySrcDataCon cons }
127 mkNewTyConRhs :: Name -> TyCon -> DataCon -> TcRnIf m n AlgTyConRhs
128 -- Monadic because it makes a Name for the coercion TyCon
129 -- We pass the Name of the parent TyCon, as well as the TyCon itself,
130 -- because the latter is part of a knot, whereas the former is not.
131 mkNewTyConRhs tycon_name tycon con
132 = do { co_tycon_name <- newImplicitBinder tycon_name mkNewTyCoOcc
133 ; let co_tycon = mkNewTypeCoercion co_tycon_name tycon etad_rhs
134 cocon_maybe | all_coercions || isRecursiveTyCon tycon
138 ; return (NewTyCon { data_con = con,
140 nt_etad_rhs = etad_rhs,
142 -- Coreview looks through newtypes with a Nothing
143 -- for nt_co, or uses explicit coercions otherwise
144 nt_rep = mkNewTyConRep tycon rhs_ty }) }
146 -- If all_coercions is True then we use coercions for all newtypes
147 -- otherwise we use coercions for recursive newtypes and look through
148 -- non-recursive newtypes
150 tvs = tyConTyVars tycon
151 rhs_ty = head (dataConInstOrigArgTys con (mkTyVarTys tvs))
152 -- Instantiate the data con with the
153 -- type variables from the tycon
155 etad_rhs :: ([TyVar], Type)
156 etad_rhs = eta_reduce (reverse tvs) rhs_ty
158 eta_reduce :: [TyVar] -- Reversed
160 -> ([TyVar], Type) -- Eta-reduced version (tyvars in normal order)
161 eta_reduce (a:as) ty | Just (fun, arg) <- splitAppTy_maybe ty,
162 Just tv <- getTyVar_maybe arg,
164 not (a `elemVarSet` tyVarsOfType fun)
166 eta_reduce tvs ty = (reverse tvs, ty)
169 mkNewTyConRep :: TyCon -- The original type constructor
170 -> Type -- The arg type of its constructor
171 -> Type -- Chosen representation type
172 -- The "representation type" is guaranteed not to be another newtype
173 -- at the outermost level; but it might have newtypes in type arguments
175 -- Find the representation type for this newtype TyCon
176 -- Remember that the representation type is the *ultimate* representation
177 -- type, looking through other newtypes.
179 -- splitTyConApp_maybe no longer looks through newtypes, so we must
180 -- deal explicitly with this case
182 -- The trick is to to deal correctly with recursive newtypes
183 -- such as newtype T = MkT T
185 mkNewTyConRep tc rhs_ty
186 | null (tyConDataCons tc) = unitTy
187 -- External Core programs can have newtypes with no data constructors
188 | otherwise = go [tc] rhs_ty
190 -- Invariant: tcs have been seen before
192 = case splitTyConApp_maybe rep_ty of
194 | tc `elem` tcs -> unitTy -- Recursive loop
196 if isRecursiveTyCon tc then
197 go (tc:tcs) (substTyWith tvs tys rhs_ty)
199 substTyWith tvs tys rhs_ty
201 (tvs, rhs_ty) = newTyConRhs tc
205 ------------------------------------------------------
206 buildDataCon :: Name -> Bool
208 -> [Name] -- Field labels
209 -> [TyVar] -> [TyVar] -- Univ and ext
210 -> [(TyVar,Type)] -- Equality spec
211 -> ThetaType -- Does not include the "stupid theta"
212 -- or the GADT equalities
214 -> TcRnIf m n DataCon
215 -- A wrapper for DataCon.mkDataCon that
216 -- a) makes the worker Id
217 -- b) makes the wrapper Id if necessary, including
218 -- allocating its unique (hence monadic)
219 buildDataCon src_name declared_infix arg_stricts field_lbls
220 univ_tvs ex_tvs eq_spec ctxt arg_tys tycon
221 = do { wrap_name <- newImplicitBinder src_name mkDataConWrapperOcc
222 ; work_name <- newImplicitBinder src_name mkDataConWorkerOcc
223 -- This last one takes the name of the data constructor in the source
224 -- code, which (for Haskell source anyway) will be in the DataName name
225 -- space, and puts it into the VarName name space
228 stupid_ctxt = mkDataConStupidTheta tycon arg_tys univ_tvs
229 data_con = mkDataCon src_name declared_infix
230 arg_stricts field_lbls
231 univ_tvs ex_tvs eq_spec ctxt
234 dc_ids = mkDataConIds wrap_name work_name data_con
239 -- The stupid context for a data constructor should be limited to
240 -- the type variables mentioned in the arg_tys
241 -- ToDo: Or functionally dependent on?
242 -- This whole stupid theta thing is, well, stupid.
243 mkDataConStupidTheta tycon arg_tys univ_tvs
244 | null stupid_theta = [] -- The common case
245 | otherwise = filter in_arg_tys stupid_theta
247 tc_subst = zipTopTvSubst (tyConTyVars tycon) (mkTyVarTys univ_tvs)
248 stupid_theta = substTheta tc_subst (tyConStupidTheta tycon)
249 -- Start by instantiating the master copy of the
250 -- stupid theta, taken from the TyCon
252 arg_tyvars = tyVarsOfTypes arg_tys
253 in_arg_tys pred = not $ isEmptyVarSet $
254 tyVarsOfPred pred `intersectVarSet` arg_tyvars
256 ------------------------------------------------------
257 mkTyConSelIds :: TyCon -> AlgTyConRhs -> [Id]
258 mkTyConSelIds tycon rhs
259 = [ mkRecordSelId tycon fld
260 | fld <- nub (concatMap dataConFieldLabels (visibleDataCons rhs)) ]
261 -- We'll check later that fields with the same name
262 -- from different constructors have the same type.
266 ------------------------------------------------------
268 buildClass :: Name -> [TyVar] -> ThetaType
269 -> [FunDep TyVar] -- Functional dependencies
270 -> [TyThing] -- Associated types
271 -> [(Name, DefMeth, Type)] -- Method info
272 -> RecFlag -- Info for type constructor
275 buildClass class_name tvs sc_theta fds ats sig_stuff tc_isrec
276 = do { tycon_name <- newImplicitBinder class_name mkClassTyConOcc
277 ; datacon_name <- newImplicitBinder class_name mkClassDataConOcc
278 -- The class name is the 'parent' for this datacon, not its tycon,
279 -- because one should import the class to get the binding for
281 ; sc_sel_names <- mapM (newImplicitBinder class_name . mkSuperDictSelOcc)
283 -- We number off the superclass selectors, 1, 2, 3 etc so that we
284 -- can construct names for the selectors. Thus
285 -- class (C a, C b) => D a b where ...
286 -- gives superclass selectors
288 -- (We used to call them D_C, but now we can have two different
289 -- superclasses both called C!)
291 ; fixM (\ rec_clas -> do { -- Only name generation inside loop
293 let { rec_tycon = classTyCon rec_clas
294 ; op_tys = [ty | (_,_,ty) <- sig_stuff]
295 ; sc_tys = mkPredTys sc_theta
296 ; dict_component_tys = sc_tys ++ op_tys
297 ; sc_sel_ids = [mkDictSelId sc_name rec_clas | sc_name <- sc_sel_names]
298 ; op_items = [ (mkDictSelId op_name rec_clas, dm_info)
299 | (op_name, dm_info, _) <- sig_stuff ] }
300 -- Build the selector id and default method id
302 ; dict_con <- buildDataCon datacon_name
303 False -- Not declared infix
304 (map (const NotMarkedStrict) dict_component_tys)
305 [{- No labelled fields -}]
306 tvs [{- no existentials -}]
307 [{- No equalities -}] [{-No context-}]
311 ; rhs <- case dict_component_tys of
312 [rep_ty] -> mkNewTyConRhs tycon_name rec_tycon dict_con
313 other -> return (mkDataTyConRhs [dict_con])
315 ; let { clas_kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind
317 ; tycon = mkClassTyCon tycon_name clas_kind tvs
318 rhs rec_clas tc_isrec
319 -- A class can be recursive, and in the case of newtypes
320 -- this matters. For example
321 -- class C a where { op :: C b => a -> b -> Int }
322 -- Because C has only one operation, it is represented by
323 -- a newtype, and it should be a *recursive* newtype.
324 -- [If we don't make it a recursive newtype, we'll expand the
325 -- newtype like a synonym, but that will lead to an infinite
327 ; atTyCons = [tycon | ATyCon tycon <- ats]
329 ; return (mkClass class_name tvs fds
330 sc_theta sc_sel_ids atTyCons op_items