1 -----------------------------------------------------------------------------
3 -- Module : Data.FiniteMap
4 -- Copyright : (c) The University of Glasgow 2001
5 -- License : BSD-style (see the file libraries/base/LICENSE)
7 -- Maintainer : libraries@haskell.org
8 -- Stability : provisional
9 -- Portability : portable
11 -- A finite map implementation, derived from the paper:
12 -- /Efficient sets: a balancing act/, S. Adams,
13 -- Journal of functional programming 3(4) Oct 1993, pp553-562
15 -----------------------------------------------------------------------------
17 -- ToDo: clean up, remove the COMPILING_GHC stuff.
19 -- The code is SPECIALIZEd to various highly-desirable types (e.g., Id)
20 -- near the end (only \tr{#ifdef COMPILING_GHC}).
23 #include "HsVersions.h"
24 #define IF_NOT_GHC(a) {--}
26 #define ASSERT(e) {--}
27 #define IF_NOT_GHC(a) a
29 #define _tagCmp compare
35 #if defined(COMPILING_GHC) && defined(DEBUG_FINITEMAPS)/* NB NB NB */
36 #define OUTPUTABLE_key , Outputable key
38 #define OUTPUTABLE_key {--}
41 module Data.FiniteMap (
42 -- * The @FiniteMap@ type
43 FiniteMap, -- abstract type
46 emptyFM, unitFM, listToFM,
48 -- * Lookup operations
49 lookupFM, lookupWithDefaultFM,
58 -- * Deleting elements
59 IF_NOT_GHC(delFromFM COMMA)
66 -- * Extracting information
67 fmToList, keysFM, eltsFM,
73 IF_NOT_GHC(intersectFM COMMA)
74 IF_NOT_GHC(intersectFM_C COMMA)
75 IF_NOT_GHC(mapFM COMMA filterFM COMMA)
82 import Data.Maybe ( isJust )
83 #ifdef __GLASGOW_HASKELL__
92 import Bag ( foldBag )
94 # if ! OMIT_NATIVE_CODEGEN
97 # define IF_NCG(a) {--}
101 -- SIGH: but we use unboxed "sizes"...
102 #if __GLASGOW_HASKELL__
103 #define IF_GHC(a,b) a
105 #define IF_GHC(a,b) b
109 -- ---------------------------------------------------------------------------
110 -- The signature of the module
112 -- | An empty 'FiniteMap'.
113 emptyFM :: FiniteMap key elt
115 -- | A 'FiniteMap' containing a single mapping
116 unitFM :: key -> elt -> FiniteMap key elt
118 -- | Makes a 'FiniteMap' from a list of @(key,value)@ pairs. In the
119 -- case of duplicates, the last is taken
120 listToFM :: (Ord key OUTPUTABLE_key) => [(key,elt)] -> FiniteMap key elt
123 bagToFM :: (Ord key OUTPUTABLE_key) => Bag (key,elt) -> FiniteMap key elt
124 -- In the case of duplicates, who knows which is taken
127 -- ADDING AND DELETING
129 -- | Adds an element to a 'FiniteMap'. Any previous mapping with the same
130 -- key is overwritten.
131 addToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> elt -> FiniteMap key elt
133 -- | Adds a list of elements to a 'FiniteMap', in the order given in
134 -- the list. Overwrites previous mappings.
135 addListToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [(key,elt)] -> FiniteMap key elt
137 -- Combines with previous binding
138 -- In the combining function, the first argument is the "old" element,
139 -- while the second is the "new" one.
141 -- | Adds an element to a 'FiniteMap'. If there is already an element
142 -- with the same key, then the specified combination function is used
143 -- to calculate the new value. The already present element is passed as
144 -- the first argument and the new element to add as second.
145 addToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt)
146 -> FiniteMap key elt -> key -> elt
149 -- | A list version of 'addToFM_C'. The elements are added in the
150 -- order given in the list.
151 addListToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt)
152 -> FiniteMap key elt -> [(key,elt)]
155 -- | Deletes an element from a 'FiniteMap'. If there is no element with
156 -- the specified key, then the original 'FiniteMap' is returned.
157 delFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt
159 -- | List version of 'delFromFM'.
160 delListFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [key] -> FiniteMap key elt
162 -- | Combine two 'FiniteMaps'. Mappings in the second argument shadow
163 -- those in the first.
164 plusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt
167 -- | Combine two 'FiniteMaps'. The specified combination function is
168 -- used to calculate the new value when there are two elements with
170 plusFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt)
171 -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
173 -- | @(minusFM a1 a2)@ deletes from @a1@ any mappings which are bound in @a2@
174 minusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
176 -- | @(intersectFM a1 a2)@ returns a new 'FiniteMap' containing
177 -- mappings from @a1@ for which @a2@ also has a mapping with the same
179 intersectFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
181 -- | Returns the interesction of two mappings, using the specified
182 -- combination function to combine values.
183 intersectFM_C :: (Ord key OUTPUTABLE_key) => (elt1 -> elt2 -> elt3)
184 -> FiniteMap key elt1 -> FiniteMap key elt2 -> FiniteMap key elt3
186 -- MAPPING, FOLDING, FILTERING
187 foldFM :: (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a
188 mapFM :: (key -> elt1 -> elt2) -> FiniteMap key elt1 -> FiniteMap key elt2
189 filterFM :: (Ord key OUTPUTABLE_key) => (key -> elt -> Bool)
190 -> FiniteMap key elt -> FiniteMap key elt
193 sizeFM :: FiniteMap key elt -> Int
194 isEmptyFM :: FiniteMap key elt -> Bool
196 -- | Returns 'True' if the specified @key@ has a mapping in this
197 -- 'FiniteMap', or 'False' otherwise.
198 elemFM :: (Ord key OUTPUTABLE_key) => key -> FiniteMap key elt -> Bool
200 -- | Looks up a key in a 'FiniteMap', returning @'Just' v@ if the key
201 -- was found with value @v@, or 'Nothing' otherwise.
202 lookupFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> Maybe elt
204 -- | Looks up a key in a 'FiniteMap', returning @elt@ if the specified
205 -- @key@ was not found.
207 :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> elt -> key -> elt
208 -- lookupWithDefaultFM supplies a "default" elt
209 -- to return for an unmapped key
213 -- | Convert a 'FiniteMap' to a @[(key, elt)]@ sorted by 'Ord' key
215 fmToList :: FiniteMap key elt -> [(key,elt)]
217 -- | Extract the keys from a 'FiniteMap', in the order of the keys, so
219 -- > keysFM == map fst . fmToList
221 keysFM :: FiniteMap key elt -> [key]
223 -- | Extract the elements from a 'FiniteMap', in the order of the keys, so
225 -- > eltsFM == map snd . fmToList
227 eltsFM :: FiniteMap key elt -> [elt]
229 -- ---------------------------------------------------------------------------
230 -- The @FiniteMap@ data type, and building of same
232 -- Invariants about @FiniteMap@:
234 -- * all keys in a FiniteMap are distinct
236 -- * all keys in left subtree are $<$ key in Branch and
237 -- all keys in right subtree are $>$ key in Branch
239 -- * size field of a Branch gives number of Branch nodes in the tree
241 -- * size of left subtree is differs from size of right subtree by a
242 -- factor of at most \tr{sIZE_RATIO}
244 -- | A mapping from @key@s to @elt@s.
245 data FiniteMap key elt
247 | Branch key elt -- Key and elt stored here
248 IF_GHC(Int#,Int{-STRICT-}) -- Size >= 1
249 (FiniteMap key elt) -- Children
256 = Branch bottom bottom IF_GHC(0#,0) bottom bottom
258 bottom = panic "emptyFM"
261 -- #define EmptyFM (Branch _ _ IF_GHC(0#,0) _ _)
263 unitFM key elt = Branch key elt IF_GHC(1#,1) emptyFM emptyFM
265 listToFM = addListToFM emptyFM
268 bagToFM = foldBag plusFM (\ (k,v) -> unitFM k v) emptyFM
272 -- ---------------------------------------------------------------------------
273 -- Adding to and deleting from @FiniteMaps@
275 addToFM fm key elt = addToFM_C (\ old new -> new) fm key elt
277 addToFM_C combiner EmptyFM key elt = unitFM key elt
278 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt
279 #ifdef __GLASGOW_HASKELL__
280 = case _tagCmp new_key key of
281 _LT -> mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r
282 _GT -> mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)
283 _EQ -> Branch new_key (combiner elt new_elt) size fm_l fm_r
285 | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r
286 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)
287 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r
290 addListToFM fm key_elt_pairs = addListToFM_C (\ old new -> new) fm key_elt_pairs
292 addListToFM_C combiner fm key_elt_pairs
293 = foldl add fm key_elt_pairs -- foldl adds from the left
295 add fmap (key,elt) = addToFM_C combiner fmap key elt
298 delFromFM EmptyFM del_key = emptyFM
299 delFromFM (Branch key elt size fm_l fm_r) del_key
300 #if __GLASGOW_HASKELL__
301 = case _tagCmp del_key key of
302 _GT -> mkBalBranch key elt fm_l (delFromFM fm_r del_key)
303 _LT -> mkBalBranch key elt (delFromFM fm_l del_key) fm_r
304 _EQ -> glueBal fm_l fm_r
307 = mkBalBranch key elt fm_l (delFromFM fm_r del_key)
310 = mkBalBranch key elt (delFromFM fm_l del_key) fm_r
316 delListFromFM fm keys = foldl delFromFM fm keys
318 -- ---------------------------------------------------------------------------
319 -- Combining @FiniteMaps@
321 plusFM_C combiner EmptyFM fm2 = fm2
322 plusFM_C combiner fm1 EmptyFM = fm1
323 plusFM_C combiner fm1 (Branch split_key elt2 _ left right)
324 = mkVBalBranch split_key new_elt
325 (plusFM_C combiner lts left)
326 (plusFM_C combiner gts right)
328 lts = splitLT fm1 split_key
329 gts = splitGT fm1 split_key
330 new_elt = case lookupFM fm1 split_key of
332 Just elt1 -> combiner elt1 elt2
334 -- It's worth doing plusFM specially, because we don't need
335 -- to do the lookup in fm1.
337 plusFM EmptyFM fm2 = fm2
338 plusFM fm1 EmptyFM = fm1
339 plusFM fm1 (Branch split_key elt1 _ left right)
340 = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right)
342 lts = splitLT fm1 split_key
343 gts = splitGT fm1 split_key
345 minusFM EmptyFM fm2 = emptyFM
346 minusFM fm1 EmptyFM = fm1
347 minusFM fm1 (Branch split_key elt _ left right)
348 = glueVBal (minusFM lts left) (minusFM gts right)
349 -- The two can be way different, so we need glueVBal
351 lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones
352 gts = splitGT fm1 split_key -- are not in either.
354 intersectFM fm1 fm2 = intersectFM_C (\ left right -> right) fm1 fm2
356 intersectFM_C combiner fm1 EmptyFM = emptyFM
357 intersectFM_C combiner EmptyFM fm2 = emptyFM
358 intersectFM_C combiner fm1 (Branch split_key elt2 _ left right)
360 | isJust maybe_elt1 -- split_elt *is* in intersection
361 = mkVBalBranch split_key (combiner elt1 elt2) (intersectFM_C combiner lts left)
362 (intersectFM_C combiner gts right)
364 | otherwise -- split_elt is *not* in intersection
365 = glueVBal (intersectFM_C combiner lts left) (intersectFM_C combiner gts right)
368 lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones
369 gts = splitGT fm1 split_key -- are not in either.
371 maybe_elt1 = lookupFM fm1 split_key
372 Just elt1 = maybe_elt1
375 -- ---------------------------------------------------------------------------
376 -- Mapping, folding, and filtering with @FiniteMaps@
378 foldFM k z EmptyFM = z
379 foldFM k z (Branch key elt _ fm_l fm_r)
380 = foldFM k (k key elt (foldFM k z fm_r)) fm_l
382 mapFM f EmptyFM = emptyFM
383 mapFM f (Branch key elt size fm_l fm_r)
384 = Branch key (f key elt) size (mapFM f fm_l) (mapFM f fm_r)
386 filterFM p EmptyFM = emptyFM
387 filterFM p (Branch key elt _ fm_l fm_r)
388 | p key elt -- Keep the item
389 = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r)
391 | otherwise -- Drop the item
392 = glueVBal (filterFM p fm_l) (filterFM p fm_r)
395 -- ---------------------------------------------------------------------------
396 -- Interrogating @FiniteMaps@
398 --{-# INLINE sizeFM #-}
400 sizeFM (Branch _ _ size _ _) = IF_GHC(I# size, size)
402 isEmptyFM fm = sizeFM fm == 0
404 lookupFM EmptyFM key = Nothing
405 lookupFM (Branch key elt _ fm_l fm_r) key_to_find
406 #if __GLASGOW_HASKELL__
407 = case _tagCmp key_to_find key of
408 _LT -> lookupFM fm_l key_to_find
409 _GT -> lookupFM fm_r key_to_find
412 | key_to_find < key = lookupFM fm_l key_to_find
413 | key_to_find > key = lookupFM fm_r key_to_find
414 | otherwise = Just elt
418 = case (lookupFM fm key) of { Nothing -> False; Just elt -> True }
420 lookupWithDefaultFM fm deflt key
421 = case (lookupFM fm key) of { Nothing -> deflt; Just elt -> elt }
424 -- ---------------------------------------------------------------------------
425 -- Listifying @FiniteMaps@
427 fmToList fm = foldFM (\ key elt rest -> (key,elt) : rest) [] fm
428 keysFM fm = foldFM (\ key elt rest -> key : rest) [] fm
429 eltsFM fm = foldFM (\ key elt rest -> elt : rest) [] fm
432 -- ---------------------------------------------------------------------------
433 -- The implementation of balancing
435 -- Basic construction of a @FiniteMap@:
437 -- @mkBranch@ simply gets the size component right. This is the ONLY
438 -- (non-trivial) place the Branch object is built, so the ASSERTion
439 -- recursively checks consistency. (The trivial use of Branch is in
445 mkBranch :: (Ord key OUTPUTABLE_key) -- Used for the assertion checking only
448 -> FiniteMap key elt -> FiniteMap key elt
451 mkBranch which key elt fm_l fm_r
452 = --ASSERT( left_ok && right_ok && balance_ok )
453 #if defined(COMPILING_GHC) && defined(DEBUG_FINITEMAPS)
454 if not ( left_ok && right_ok && balance_ok ) then
455 pprPanic ("mkBranch:"++show which) (ppAboves [ppr PprDebug [left_ok, right_ok, balance_ok],
462 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r
464 -- if sizeFM result <= 8 then
467 -- pprTrace ("mkBranch:"++(show which)) (ppr PprDebug result) (
471 left_ok = case fm_l of
473 Branch left_key _ _ _ _ -> let
474 biggest_left_key = fst (findMax fm_l)
476 biggest_left_key < key
477 right_ok = case fm_r of
479 Branch right_key _ _ _ _ -> let
480 smallest_right_key = fst (findMin fm_r)
482 key < smallest_right_key
483 balance_ok = True -- sigh
486 = -- Both subtrees have one or no elements...
487 (left_size + right_size <= 1)
488 -- NO || left_size == 0 -- ???
489 -- NO || right_size == 0 -- ???
490 -- ... or the number of elements in a subtree does not exceed
491 -- sIZE_RATIO times the number of elements in the other subtree
492 || (left_size * sIZE_RATIO >= right_size &&
493 right_size * sIZE_RATIO >= left_size)
496 left_size = sizeFM fm_l
497 right_size = sizeFM fm_r
499 #if __GLASGOW_HASKELL__
501 unbox (I# size) = size
508 -- ---------------------------------------------------------------------------
509 -- {\em Balanced} construction of a @FiniteMap@
511 -- @mkBalBranch@ rebalances, assuming that the subtrees aren't too far
514 mkBalBranch :: (Ord key OUTPUTABLE_key)
516 -> FiniteMap key elt -> FiniteMap key elt
519 mkBalBranch key elt fm_L fm_R
521 | size_l + size_r < 2
522 = mkBranch 1{-which-} key elt fm_L fm_R
524 | size_r > sIZE_RATIO * size_l -- Right tree too big
526 Branch _ _ _ fm_rl fm_rr
527 | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R
528 | otherwise -> double_L fm_L fm_R
529 -- Other case impossible
531 | size_l > sIZE_RATIO * size_r -- Left tree too big
533 Branch _ _ _ fm_ll fm_lr
534 | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R
535 | otherwise -> double_R fm_L fm_R
536 -- Other case impossible
538 | otherwise -- No imbalance
539 = mkBranch 2{-which-} key elt fm_L fm_R
545 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr)
546 = mkBranch 3{-which-} key_r elt_r (mkBranch 4{-which-} key elt fm_l fm_rl) fm_rr
548 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr)
549 = mkBranch 5{-which-} key_rl elt_rl (mkBranch 6{-which-} key elt fm_l fm_rll)
550 (mkBranch 7{-which-} key_r elt_r fm_rlr fm_rr)
552 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r
553 = mkBranch 8{-which-} key_l elt_l fm_ll (mkBranch 9{-which-} key elt fm_lr fm_r)
555 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r
556 = mkBranch 10{-which-} key_lr elt_lr (mkBranch 11{-which-} key_l elt_l fm_ll fm_lrl)
557 (mkBranch 12{-which-} key elt fm_lrr fm_r)
560 mkVBalBranch :: (Ord key OUTPUTABLE_key)
562 -> FiniteMap key elt -> FiniteMap key elt
565 -- Assert: in any call to (mkVBalBranch_C comb key elt l r),
566 -- (a) all keys in l are < all keys in r
567 -- (b) all keys in l are < key
568 -- (c) all keys in r are > key
570 mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt
571 mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt
573 mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr)
574 fm_r@(Branch key_r elt_r _ fm_rl fm_rr)
575 | sIZE_RATIO * size_l < size_r
576 = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr
578 | sIZE_RATIO * size_r < size_l
579 = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r)
582 = mkBranch 13{-which-} key elt fm_l fm_r
588 -- ---------------------------------------------------------------------------
589 -- Gluing two trees together
591 -- @glueBal@ assumes its two arguments aren't too far out of whack, just
592 -- like @mkBalBranch@. But: all keys in first arg are $<$ all keys in
595 glueBal :: (Ord key OUTPUTABLE_key)
596 => FiniteMap key elt -> FiniteMap key elt
599 glueBal EmptyFM fm2 = fm2
600 glueBal fm1 EmptyFM = fm1
602 -- The case analysis here (absent in Adams' program) is really to deal
603 -- with the case where fm2 is a singleton. Then deleting the minimum means
604 -- we pass an empty tree to mkBalBranch, which breaks its invariant.
605 | sizeFM fm2 > sizeFM fm1
606 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2)
609 = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2
611 (mid_key1, mid_elt1) = findMax fm1
612 (mid_key2, mid_elt2) = findMin fm2
614 -- @glueVBal@ copes with arguments which can be of any size.
615 -- But: all keys in first arg are $<$ all keys in second.
617 glueVBal :: (Ord key OUTPUTABLE_key)
618 => FiniteMap key elt -> FiniteMap key elt
621 glueVBal EmptyFM fm2 = fm2
622 glueVBal fm1 EmptyFM = fm1
623 glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr)
624 fm_r@(Branch key_r elt_r _ fm_rl fm_rr)
625 | sIZE_RATIO * size_l < size_r
626 = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr
628 | sIZE_RATIO * size_r < size_l
629 = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r)
631 | otherwise -- We now need the same two cases as in glueBal above.
638 -- ---------------------------------------------------------------------------
641 splitLT, splitGT :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt
643 -- splitLT fm split_key = fm restricted to keys < split_key
644 -- splitGT fm split_key = fm restricted to keys > split_key
646 splitLT EmptyFM split_key = emptyFM
647 splitLT (Branch key elt _ fm_l fm_r) split_key
648 #if __GLASGOW_HASKELL__
649 = case _tagCmp split_key key of
650 _LT -> splitLT fm_l split_key
651 _GT -> mkVBalBranch key elt fm_l (splitLT fm_r split_key)
654 | split_key < key = splitLT fm_l split_key
655 | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key)
659 splitGT EmptyFM split_key = emptyFM
660 splitGT (Branch key elt _ fm_l fm_r) split_key
661 #if __GLASGOW_HASKELL__
662 = case _tagCmp split_key key of
663 _GT -> splitGT fm_r split_key
664 _LT -> mkVBalBranch key elt (splitGT fm_l split_key) fm_r
667 | split_key > key = splitGT fm_r split_key
668 | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r
672 findMin :: FiniteMap key elt -> (key,elt)
673 findMin (Branch key elt _ EmptyFM _) = (key,elt)
674 findMin (Branch key elt _ fm_l _) = findMin fm_l
676 deleteMin :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt
677 deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r
678 deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r
680 findMax :: FiniteMap key elt -> (key,elt)
681 findMax (Branch key elt _ _ EmptyFM) = (key,elt)
682 findMax (Branch key elt _ _ fm_r) = findMax fm_r
684 deleteMax :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt
685 deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l
686 deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r)
689 -- ---------------------------------------------------------------------------
692 #if defined(COMPILING_GHC) && defined(DEBUG_FINITEMAPS)
694 instance (Outputable key) => Outputable (FiniteMap key elt) where
695 ppr sty fm = pprX sty fm
697 pprX sty EmptyFM = ppChar '!'
698 pprX sty (Branch key elt sz fm_l fm_r)
699 = ppBesides [ppLparen, pprX sty fm_l, ppSP,
700 ppr sty key, ppSP, ppInt (IF_GHC(I# sz, sz)), ppSP,
701 pprX sty fm_r, ppRparen]
704 #ifndef COMPILING_GHC
705 instance (Eq key, Eq elt) => Eq (FiniteMap key elt) where
706 fm_1 == fm_2 = (sizeFM fm_1 == sizeFM fm_2) && -- quick test
707 (fmToList fm_1 == fmToList fm_2)
709 {- NO: not clear what The Right Thing to do is:
710 instance (Ord key, Ord elt) => Ord (FiniteMap key elt) where
711 fm_1 <= fm_2 = (sizeFM fm_1 <= sizeFM fm_2) && -- quick test
712 (fmToList fm_1 <= fmToList fm_2)
716 -- ---------------------------------------------------------------------------
717 -- Efficiency pragmas for GHC
719 -- When the FiniteMap module is used in GHC, we specialise it for
720 -- \tr{Uniques}, for dastardly efficiency reasons.
722 #if defined(COMPILING_GHC) && __GLASGOW_HASKELL__ && !defined(REALLY_HASKELL_1_3)
724 {-# SPECIALIZE addListToFM
725 :: FiniteMap (FAST_STRING, FAST_STRING) elt -> [((FAST_STRING, FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt
726 , FiniteMap RdrName elt -> [(RdrName,elt)] -> FiniteMap RdrName elt
727 IF_NCG(COMMA FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt)
729 {-# SPECIALIZE addListToFM_C
730 :: (elt -> elt -> elt) -> FiniteMap TyCon elt -> [(TyCon,elt)] -> FiniteMap TyCon elt
731 , (elt -> elt -> elt) -> FiniteMap FAST_STRING elt -> [(FAST_STRING,elt)] -> FiniteMap FAST_STRING elt
732 IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt)
734 {-# SPECIALIZE addToFM
735 :: FiniteMap CLabel elt -> CLabel -> elt -> FiniteMap CLabel elt
736 , FiniteMap FAST_STRING elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt
737 , FiniteMap (FAST_STRING, FAST_STRING) elt -> (FAST_STRING, FAST_STRING) -> elt -> FiniteMap (FAST_STRING, FAST_STRING) elt
738 , FiniteMap RdrName elt -> RdrName -> elt -> FiniteMap RdrName elt
739 , FiniteMap OrigName elt -> OrigName -> elt -> FiniteMap OrigName elt
740 IF_NCG(COMMA FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt)
742 {-# SPECIALIZE addToFM_C
743 :: (elt -> elt -> elt) -> FiniteMap (RdrName, RdrName) elt -> (RdrName, RdrName) -> elt -> FiniteMap (RdrName, RdrName) elt
744 , (elt -> elt -> elt) -> FiniteMap (OrigName, OrigName) elt -> (OrigName, OrigName) -> elt -> FiniteMap (OrigName, OrigName) elt
745 , (elt -> elt -> elt) -> FiniteMap FAST_STRING elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt
746 IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt)
748 {-# SPECIALIZE bagToFM
749 :: Bag (FAST_STRING,elt) -> FiniteMap FAST_STRING elt
751 {-# SPECIALIZE delListFromFM
752 :: FiniteMap RdrName elt -> [RdrName] -> FiniteMap RdrName elt
753 , FiniteMap OrigName elt -> [OrigName] -> FiniteMap OrigName elt
754 , FiniteMap FAST_STRING elt -> [FAST_STRING] -> FiniteMap FAST_STRING elt
755 IF_NCG(COMMA FiniteMap Reg elt -> [Reg] -> FiniteMap Reg elt)
757 {-# SPECIALIZE listToFM
758 :: [([Char],elt)] -> FiniteMap [Char] elt
759 , [(FAST_STRING,elt)] -> FiniteMap FAST_STRING elt
760 , [((FAST_STRING,FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt
761 , [(OrigName,elt)] -> FiniteMap OrigName elt
762 IF_NCG(COMMA [(Reg COMMA elt)] -> FiniteMap Reg elt)
764 {-# SPECIALIZE lookupFM
765 :: FiniteMap CLabel elt -> CLabel -> Maybe elt
766 , FiniteMap [Char] elt -> [Char] -> Maybe elt
767 , FiniteMap FAST_STRING elt -> FAST_STRING -> Maybe elt
768 , FiniteMap (FAST_STRING,FAST_STRING) elt -> (FAST_STRING,FAST_STRING) -> Maybe elt
769 , FiniteMap OrigName elt -> OrigName -> Maybe elt
770 , FiniteMap (OrigName,OrigName) elt -> (OrigName,OrigName) -> Maybe elt
771 , FiniteMap RdrName elt -> RdrName -> Maybe elt
772 , FiniteMap (RdrName,RdrName) elt -> (RdrName,RdrName) -> Maybe elt
773 IF_NCG(COMMA FiniteMap Reg elt -> Reg -> Maybe elt)
775 {-# SPECIALIZE lookupWithDefaultFM
776 :: FiniteMap FAST_STRING elt -> elt -> FAST_STRING -> elt
777 IF_NCG(COMMA FiniteMap Reg elt -> elt -> Reg -> elt)
779 {-# SPECIALIZE plusFM
780 :: FiniteMap RdrName elt -> FiniteMap RdrName elt -> FiniteMap RdrName elt
781 , FiniteMap OrigName elt -> FiniteMap OrigName elt -> FiniteMap OrigName elt
782 , FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt
783 IF_NCG(COMMA FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt)
785 {-# SPECIALIZE plusFM_C
786 :: (elt -> elt -> elt) -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt
787 IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt)
790 #endif /* compiling for GHC */