1 -----------------------------------------------------------------------------
3 -- Module : Data.FiniteMap
4 -- Copyright : (c) The University of Glasgow 2001
5 -- License : BSD-style (see the file libraries/core/LICENSE)
7 -- Maintainer : libraries@haskell.org
8 -- Stability : provisional
9 -- Portability : portable
11 -- $Id: FiniteMap.hs,v 1.2 2002/04/24 16:31:39 simonmar Exp $
13 -- A finite map implementation, derived from the paper:
14 -- S Adams, "Efficient sets: a balancing act"
15 -- Journal of functional programming 3(4) Oct 1993, pp553-562
17 -- ToDo: clean up, remove the COMPILING_GHC stuff.
19 -----------------------------------------------------------------------------
21 -- The code is SPECIALIZEd to various highly-desirable types (e.g., Id)
22 -- near the end (only \tr{#ifdef COMPILING_GHC}).
25 #include "HsVersions.h"
26 #define IF_NOT_GHC(a) {--}
28 #define ASSERT(e) {--}
29 #define IF_NOT_GHC(a) a
31 #define _tagCmp compare
37 #if defined(COMPILING_GHC) && defined(DEBUG_FINITEMAPS)/* NB NB NB */
38 #define OUTPUTABLE_key , Outputable key
40 #define OUTPUTABLE_key {--}
43 module Data.FiniteMap (
44 FiniteMap, -- abstract type
46 emptyFM, unitFM, listToFM,
52 IF_NOT_GHC(delFromFM COMMA)
60 IF_NOT_GHC(intersectFM COMMA)
61 IF_NOT_GHC(intersectFM_C COMMA)
62 IF_NOT_GHC(mapFM COMMA filterFM COMMA)
64 sizeFM, isEmptyFM, elemFM, lookupFM, lookupWithDefaultFM,
66 fmToList, keysFM, eltsFM
75 import Data.Maybe ( isJust )
76 #ifdef __GLASGOW_HASKELL__
85 import Bag ( foldBag )
87 # if ! OMIT_NATIVE_CODEGEN
90 # define IF_NCG(a) {--}
94 -- SIGH: but we use unboxed "sizes"...
95 #if __GLASGOW_HASKELL__
102 -- ---------------------------------------------------------------------------
103 -- The signature of the module
106 emptyFM :: FiniteMap key elt
107 unitFM :: key -> elt -> FiniteMap key elt
108 listToFM :: (Ord key OUTPUTABLE_key) => [(key,elt)] -> FiniteMap key elt
109 -- In the case of duplicates, the last is taken
111 bagToFM :: (Ord key OUTPUTABLE_key) => Bag (key,elt) -> FiniteMap key elt
112 -- In the case of duplicates, who knows which is taken
115 -- ADDING AND DELETING
116 -- Throws away any previous binding
117 -- In the list case, the items are added starting with the
118 -- first one in the list
119 addToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> elt -> FiniteMap key elt
120 addListToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [(key,elt)] -> FiniteMap key elt
122 -- Combines with previous binding
123 -- In the combining function, the first argument is the "old" element,
124 -- while the second is the "new" one.
125 addToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt)
126 -> FiniteMap key elt -> key -> elt
128 addListToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt)
129 -> FiniteMap key elt -> [(key,elt)]
132 -- Deletion doesn't complain if you try to delete something
134 delFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt
135 delListFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [key] -> FiniteMap key elt
138 -- Bindings in right argument shadow those in the left
139 plusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt
142 -- Combines bindings for the same thing with the given function
143 plusFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt)
144 -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
146 minusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
147 -- (minusFM a1 a2) deletes from a1 any bindings which are bound in a2
149 intersectFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
150 intersectFM_C :: (Ord key OUTPUTABLE_key) => (elt1 -> elt2 -> elt3)
151 -> FiniteMap key elt1 -> FiniteMap key elt2 -> FiniteMap key elt3
153 -- MAPPING, FOLDING, FILTERING
154 foldFM :: (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a
155 mapFM :: (key -> elt1 -> elt2) -> FiniteMap key elt1 -> FiniteMap key elt2
156 filterFM :: (Ord key OUTPUTABLE_key) => (key -> elt -> Bool)
157 -> FiniteMap key elt -> FiniteMap key elt
160 sizeFM :: FiniteMap key elt -> Int
161 isEmptyFM :: FiniteMap key elt -> Bool
163 elemFM :: (Ord key OUTPUTABLE_key) => key -> FiniteMap key elt -> Bool
164 lookupFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> Maybe elt
166 :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> elt -> key -> elt
167 -- lookupWithDefaultFM supplies a "default" elt
168 -- to return for an unmapped key
171 fmToList :: FiniteMap key elt -> [(key,elt)]
172 keysFM :: FiniteMap key elt -> [key]
173 eltsFM :: FiniteMap key elt -> [elt]
175 -- ---------------------------------------------------------------------------
176 -- The @FiniteMap@ data type, and building of same
178 -- Invariants about @FiniteMap@:
180 -- * all keys in a FiniteMap are distinct
182 -- * all keys in left subtree are $<$ key in Branch and
183 -- all keys in right subtree are $>$ key in Branch
185 -- * size field of a Branch gives number of Branch nodes in the tree
187 -- * size of left subtree is differs from size of right subtree by a
188 -- factor of at most \tr{sIZE_RATIO}
190 data FiniteMap key elt
192 | Branch key elt -- Key and elt stored here
193 IF_GHC(Int#,Int{-STRICT-}) -- Size >= 1
194 (FiniteMap key elt) -- Children
201 = Branch bottom bottom IF_GHC(0#,0) bottom bottom
203 bottom = panic "emptyFM"
206 -- #define EmptyFM (Branch _ _ IF_GHC(0#,0) _ _)
208 unitFM key elt = Branch key elt IF_GHC(1#,1) emptyFM emptyFM
210 listToFM = addListToFM emptyFM
213 bagToFM = foldBag plusFM (\ (k,v) -> unitFM k v) emptyFM
217 -- ---------------------------------------------------------------------------
218 -- Adding to and deleting from @FiniteMaps@
220 addToFM fm key elt = addToFM_C (\ old new -> new) fm key elt
222 addToFM_C combiner EmptyFM key elt = unitFM key elt
223 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt
224 #ifdef __GLASGOW_HASKELL__
225 = case _tagCmp new_key key of
226 _LT -> mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r
227 _GT -> mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)
228 _EQ -> Branch new_key (combiner elt new_elt) size fm_l fm_r
230 | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r
231 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)
232 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r
235 addListToFM fm key_elt_pairs = addListToFM_C (\ old new -> new) fm key_elt_pairs
237 addListToFM_C combiner fm key_elt_pairs
238 = foldl add fm key_elt_pairs -- foldl adds from the left
240 add fmap (key,elt) = addToFM_C combiner fmap key elt
243 delFromFM EmptyFM del_key = emptyFM
244 delFromFM (Branch key elt size fm_l fm_r) del_key
245 #if __GLASGOW_HASKELL__
246 = case _tagCmp del_key key of
247 _GT -> mkBalBranch key elt fm_l (delFromFM fm_r del_key)
248 _LT -> mkBalBranch key elt (delFromFM fm_l del_key) fm_r
249 _EQ -> glueBal fm_l fm_r
252 = mkBalBranch key elt fm_l (delFromFM fm_r del_key)
255 = mkBalBranch key elt (delFromFM fm_l del_key) fm_r
261 delListFromFM fm keys = foldl delFromFM fm keys
263 -- ---------------------------------------------------------------------------
264 -- Combining @FiniteMaps@
266 plusFM_C combiner EmptyFM fm2 = fm2
267 plusFM_C combiner fm1 EmptyFM = fm1
268 plusFM_C combiner fm1 (Branch split_key elt2 _ left right)
269 = mkVBalBranch split_key new_elt
270 (plusFM_C combiner lts left)
271 (plusFM_C combiner gts right)
273 lts = splitLT fm1 split_key
274 gts = splitGT fm1 split_key
275 new_elt = case lookupFM fm1 split_key of
277 Just elt1 -> combiner elt1 elt2
279 -- It's worth doing plusFM specially, because we don't need
280 -- to do the lookup in fm1.
282 plusFM EmptyFM fm2 = fm2
283 plusFM fm1 EmptyFM = fm1
284 plusFM fm1 (Branch split_key elt1 _ left right)
285 = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right)
287 lts = splitLT fm1 split_key
288 gts = splitGT fm1 split_key
290 minusFM EmptyFM fm2 = emptyFM
291 minusFM fm1 EmptyFM = fm1
292 minusFM fm1 (Branch split_key elt _ left right)
293 = glueVBal (minusFM lts left) (minusFM gts right)
294 -- The two can be way different, so we need glueVBal
296 lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones
297 gts = splitGT fm1 split_key -- are not in either.
299 intersectFM fm1 fm2 = intersectFM_C (\ left right -> right) fm1 fm2
301 intersectFM_C combiner fm1 EmptyFM = emptyFM
302 intersectFM_C combiner EmptyFM fm2 = emptyFM
303 intersectFM_C combiner fm1 (Branch split_key elt2 _ left right)
305 | isJust maybe_elt1 -- split_elt *is* in intersection
306 = mkVBalBranch split_key (combiner elt1 elt2) (intersectFM_C combiner lts left)
307 (intersectFM_C combiner gts right)
309 | otherwise -- split_elt is *not* in intersection
310 = glueVBal (intersectFM_C combiner lts left) (intersectFM_C combiner gts right)
313 lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones
314 gts = splitGT fm1 split_key -- are not in either.
316 maybe_elt1 = lookupFM fm1 split_key
317 Just elt1 = maybe_elt1
320 -- ---------------------------------------------------------------------------
321 -- Mapping, folding, and filtering with @FiniteMaps@
323 foldFM k z EmptyFM = z
324 foldFM k z (Branch key elt _ fm_l fm_r)
325 = foldFM k (k key elt (foldFM k z fm_r)) fm_l
327 mapFM f EmptyFM = emptyFM
328 mapFM f (Branch key elt size fm_l fm_r)
329 = Branch key (f key elt) size (mapFM f fm_l) (mapFM f fm_r)
331 filterFM p EmptyFM = emptyFM
332 filterFM p (Branch key elt _ fm_l fm_r)
333 | p key elt -- Keep the item
334 = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r)
336 | otherwise -- Drop the item
337 = glueVBal (filterFM p fm_l) (filterFM p fm_r)
340 -- ---------------------------------------------------------------------------
341 -- Interrogating @FiniteMaps@
343 --{-# INLINE sizeFM #-}
345 sizeFM (Branch _ _ size _ _) = IF_GHC(I# size, size)
347 isEmptyFM fm = sizeFM fm == 0
349 lookupFM EmptyFM key = Nothing
350 lookupFM (Branch key elt _ fm_l fm_r) key_to_find
351 #if __GLASGOW_HASKELL__
352 = case _tagCmp key_to_find key of
353 _LT -> lookupFM fm_l key_to_find
354 _GT -> lookupFM fm_r key_to_find
357 | key_to_find < key = lookupFM fm_l key_to_find
358 | key_to_find > key = lookupFM fm_r key_to_find
359 | otherwise = Just elt
363 = case (lookupFM fm key) of { Nothing -> False; Just elt -> True }
365 lookupWithDefaultFM fm deflt key
366 = case (lookupFM fm key) of { Nothing -> deflt; Just elt -> elt }
369 -- ---------------------------------------------------------------------------
370 -- Listifying @FiniteMaps@
372 fmToList fm = foldFM (\ key elt rest -> (key,elt) : rest) [] fm
373 keysFM fm = foldFM (\ key elt rest -> key : rest) [] fm
374 eltsFM fm = foldFM (\ key elt rest -> elt : rest) [] fm
377 -- ---------------------------------------------------------------------------
378 -- The implementation of balancing
380 -- Basic construction of a @FiniteMap@:
382 -- @mkBranch@ simply gets the size component right. This is the ONLY
383 -- (non-trivial) place the Branch object is built, so the ASSERTion
384 -- recursively checks consistency. (The trivial use of Branch is in
390 mkBranch :: (Ord key OUTPUTABLE_key) -- Used for the assertion checking only
393 -> FiniteMap key elt -> FiniteMap key elt
396 mkBranch which key elt fm_l fm_r
397 = --ASSERT( left_ok && right_ok && balance_ok )
398 #if defined(COMPILING_GHC) && defined(DEBUG_FINITEMAPS)
399 if not ( left_ok && right_ok && balance_ok ) then
400 pprPanic ("mkBranch:"++show which) (ppAboves [ppr PprDebug [left_ok, right_ok, balance_ok],
407 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r
409 -- if sizeFM result <= 8 then
412 -- pprTrace ("mkBranch:"++(show which)) (ppr PprDebug result) (
416 left_ok = case fm_l of
418 Branch left_key _ _ _ _ -> let
419 biggest_left_key = fst (findMax fm_l)
421 biggest_left_key < key
422 right_ok = case fm_r of
424 Branch right_key _ _ _ _ -> let
425 smallest_right_key = fst (findMin fm_r)
427 key < smallest_right_key
428 balance_ok = True -- sigh
431 = -- Both subtrees have one or no elements...
432 (left_size + right_size <= 1)
433 -- NO || left_size == 0 -- ???
434 -- NO || right_size == 0 -- ???
435 -- ... or the number of elements in a subtree does not exceed
436 -- sIZE_RATIO times the number of elements in the other subtree
437 || (left_size * sIZE_RATIO >= right_size &&
438 right_size * sIZE_RATIO >= left_size)
441 left_size = sizeFM fm_l
442 right_size = sizeFM fm_r
444 #if __GLASGOW_HASKELL__
446 unbox (I# size) = size
453 -- ---------------------------------------------------------------------------
454 -- {\em Balanced} construction of a @FiniteMap@
456 -- @mkBalBranch@ rebalances, assuming that the subtrees aren't too far
459 mkBalBranch :: (Ord key OUTPUTABLE_key)
461 -> FiniteMap key elt -> FiniteMap key elt
464 mkBalBranch key elt fm_L fm_R
466 | size_l + size_r < 2
467 = mkBranch 1{-which-} key elt fm_L fm_R
469 | size_r > sIZE_RATIO * size_l -- Right tree too big
471 Branch _ _ _ fm_rl fm_rr
472 | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R
473 | otherwise -> double_L fm_L fm_R
474 -- Other case impossible
476 | size_l > sIZE_RATIO * size_r -- Left tree too big
478 Branch _ _ _ fm_ll fm_lr
479 | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R
480 | otherwise -> double_R fm_L fm_R
481 -- Other case impossible
483 | otherwise -- No imbalance
484 = mkBranch 2{-which-} key elt fm_L fm_R
490 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr)
491 = mkBranch 3{-which-} key_r elt_r (mkBranch 4{-which-} key elt fm_l fm_rl) fm_rr
493 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr)
494 = mkBranch 5{-which-} key_rl elt_rl (mkBranch 6{-which-} key elt fm_l fm_rll)
495 (mkBranch 7{-which-} key_r elt_r fm_rlr fm_rr)
497 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r
498 = mkBranch 8{-which-} key_l elt_l fm_ll (mkBranch 9{-which-} key elt fm_lr fm_r)
500 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r
501 = mkBranch 10{-which-} key_lr elt_lr (mkBranch 11{-which-} key_l elt_l fm_ll fm_lrl)
502 (mkBranch 12{-which-} key elt fm_lrr fm_r)
505 mkVBalBranch :: (Ord key OUTPUTABLE_key)
507 -> FiniteMap key elt -> FiniteMap key elt
510 -- Assert: in any call to (mkVBalBranch_C comb key elt l r),
511 -- (a) all keys in l are < all keys in r
512 -- (b) all keys in l are < key
513 -- (c) all keys in r are > key
515 mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt
516 mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt
518 mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr)
519 fm_r@(Branch key_r elt_r _ fm_rl fm_rr)
520 | sIZE_RATIO * size_l < size_r
521 = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr
523 | sIZE_RATIO * size_r < size_l
524 = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r)
527 = mkBranch 13{-which-} key elt fm_l fm_r
533 -- ---------------------------------------------------------------------------
534 -- Gluing two trees together
536 -- @glueBal@ assumes its two arguments aren't too far out of whack, just
537 -- like @mkBalBranch@. But: all keys in first arg are $<$ all keys in
540 glueBal :: (Ord key OUTPUTABLE_key)
541 => FiniteMap key elt -> FiniteMap key elt
544 glueBal EmptyFM fm2 = fm2
545 glueBal fm1 EmptyFM = fm1
547 -- The case analysis here (absent in Adams' program) is really to deal
548 -- with the case where fm2 is a singleton. Then deleting the minimum means
549 -- we pass an empty tree to mkBalBranch, which breaks its invariant.
550 | sizeFM fm2 > sizeFM fm1
551 = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2)
554 = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2
556 (mid_key1, mid_elt1) = findMax fm1
557 (mid_key2, mid_elt2) = findMin fm2
559 -- @glueVBal@ copes with arguments which can be of any size.
560 -- But: all keys in first arg are $<$ all keys in second.
562 glueVBal :: (Ord key OUTPUTABLE_key)
563 => FiniteMap key elt -> FiniteMap key elt
566 glueVBal EmptyFM fm2 = fm2
567 glueVBal fm1 EmptyFM = fm1
568 glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr)
569 fm_r@(Branch key_r elt_r _ fm_rl fm_rr)
570 | sIZE_RATIO * size_l < size_r
571 = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr
573 | sIZE_RATIO * size_r < size_l
574 = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r)
576 | otherwise -- We now need the same two cases as in glueBal above.
583 -- ---------------------------------------------------------------------------
586 splitLT, splitGT :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt
588 -- splitLT fm split_key = fm restricted to keys < split_key
589 -- splitGT fm split_key = fm restricted to keys > split_key
591 splitLT EmptyFM split_key = emptyFM
592 splitLT (Branch key elt _ fm_l fm_r) split_key
593 #if __GLASGOW_HASKELL__
594 = case _tagCmp split_key key of
595 _LT -> splitLT fm_l split_key
596 _GT -> mkVBalBranch key elt fm_l (splitLT fm_r split_key)
599 | split_key < key = splitLT fm_l split_key
600 | split_key > key = mkVBalBranch key elt fm_l (splitLT fm_r split_key)
604 splitGT EmptyFM split_key = emptyFM
605 splitGT (Branch key elt _ fm_l fm_r) split_key
606 #if __GLASGOW_HASKELL__
607 = case _tagCmp split_key key of
608 _GT -> splitGT fm_r split_key
609 _LT -> mkVBalBranch key elt (splitGT fm_l split_key) fm_r
612 | split_key > key = splitGT fm_r split_key
613 | split_key < key = mkVBalBranch key elt (splitGT fm_l split_key) fm_r
617 findMin :: FiniteMap key elt -> (key,elt)
618 findMin (Branch key elt _ EmptyFM _) = (key,elt)
619 findMin (Branch key elt _ fm_l _) = findMin fm_l
621 deleteMin :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt
622 deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r
623 deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r
625 findMax :: FiniteMap key elt -> (key,elt)
626 findMax (Branch key elt _ _ EmptyFM) = (key,elt)
627 findMax (Branch key elt _ _ fm_r) = findMax fm_r
629 deleteMax :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt
630 deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l
631 deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r)
634 -- ---------------------------------------------------------------------------
637 #if defined(COMPILING_GHC) && defined(DEBUG_FINITEMAPS)
639 instance (Outputable key) => Outputable (FiniteMap key elt) where
640 ppr sty fm = pprX sty fm
642 pprX sty EmptyFM = ppChar '!'
643 pprX sty (Branch key elt sz fm_l fm_r)
644 = ppBesides [ppLparen, pprX sty fm_l, ppSP,
645 ppr sty key, ppSP, ppInt (IF_GHC(I# sz, sz)), ppSP,
646 pprX sty fm_r, ppRparen]
649 #ifndef COMPILING_GHC
650 instance (Eq key, Eq elt) => Eq (FiniteMap key elt) where
651 fm_1 == fm_2 = (sizeFM fm_1 == sizeFM fm_2) && -- quick test
652 (fmToList fm_1 == fmToList fm_2)
654 {- NO: not clear what The Right Thing to do is:
655 instance (Ord key, Ord elt) => Ord (FiniteMap key elt) where
656 fm_1 <= fm_2 = (sizeFM fm_1 <= sizeFM fm_2) && -- quick test
657 (fmToList fm_1 <= fmToList fm_2)
661 -- ---------------------------------------------------------------------------
662 -- Efficiency pragmas for GHC
664 -- When the FiniteMap module is used in GHC, we specialise it for
665 -- \tr{Uniques}, for dastardly efficiency reasons.
667 #if defined(COMPILING_GHC) && __GLASGOW_HASKELL__ && !defined(REALLY_HASKELL_1_3)
669 {-# SPECIALIZE addListToFM
670 :: FiniteMap (FAST_STRING, FAST_STRING) elt -> [((FAST_STRING, FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt
671 , FiniteMap RdrName elt -> [(RdrName,elt)] -> FiniteMap RdrName elt
672 IF_NCG(COMMA FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt)
674 {-# SPECIALIZE addListToFM_C
675 :: (elt -> elt -> elt) -> FiniteMap TyCon elt -> [(TyCon,elt)] -> FiniteMap TyCon elt
676 , (elt -> elt -> elt) -> FiniteMap FAST_STRING elt -> [(FAST_STRING,elt)] -> FiniteMap FAST_STRING elt
677 IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt)
679 {-# SPECIALIZE addToFM
680 :: FiniteMap CLabel elt -> CLabel -> elt -> FiniteMap CLabel elt
681 , FiniteMap FAST_STRING elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt
682 , FiniteMap (FAST_STRING, FAST_STRING) elt -> (FAST_STRING, FAST_STRING) -> elt -> FiniteMap (FAST_STRING, FAST_STRING) elt
683 , FiniteMap RdrName elt -> RdrName -> elt -> FiniteMap RdrName elt
684 , FiniteMap OrigName elt -> OrigName -> elt -> FiniteMap OrigName elt
685 IF_NCG(COMMA FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt)
687 {-# SPECIALIZE addToFM_C
688 :: (elt -> elt -> elt) -> FiniteMap (RdrName, RdrName) elt -> (RdrName, RdrName) -> elt -> FiniteMap (RdrName, RdrName) elt
689 , (elt -> elt -> elt) -> FiniteMap (OrigName, OrigName) elt -> (OrigName, OrigName) -> elt -> FiniteMap (OrigName, OrigName) elt
690 , (elt -> elt -> elt) -> FiniteMap FAST_STRING elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt
691 IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt)
693 {-# SPECIALIZE bagToFM
694 :: Bag (FAST_STRING,elt) -> FiniteMap FAST_STRING elt
696 {-# SPECIALIZE delListFromFM
697 :: FiniteMap RdrName elt -> [RdrName] -> FiniteMap RdrName elt
698 , FiniteMap OrigName elt -> [OrigName] -> FiniteMap OrigName elt
699 , FiniteMap FAST_STRING elt -> [FAST_STRING] -> FiniteMap FAST_STRING elt
700 IF_NCG(COMMA FiniteMap Reg elt -> [Reg] -> FiniteMap Reg elt)
702 {-# SPECIALIZE listToFM
703 :: [([Char],elt)] -> FiniteMap [Char] elt
704 , [(FAST_STRING,elt)] -> FiniteMap FAST_STRING elt
705 , [((FAST_STRING,FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt
706 , [(OrigName,elt)] -> FiniteMap OrigName elt
707 IF_NCG(COMMA [(Reg COMMA elt)] -> FiniteMap Reg elt)
709 {-# SPECIALIZE lookupFM
710 :: FiniteMap CLabel elt -> CLabel -> Maybe elt
711 , FiniteMap [Char] elt -> [Char] -> Maybe elt
712 , FiniteMap FAST_STRING elt -> FAST_STRING -> Maybe elt
713 , FiniteMap (FAST_STRING,FAST_STRING) elt -> (FAST_STRING,FAST_STRING) -> Maybe elt
714 , FiniteMap OrigName elt -> OrigName -> Maybe elt
715 , FiniteMap (OrigName,OrigName) elt -> (OrigName,OrigName) -> Maybe elt
716 , FiniteMap RdrName elt -> RdrName -> Maybe elt
717 , FiniteMap (RdrName,RdrName) elt -> (RdrName,RdrName) -> Maybe elt
718 IF_NCG(COMMA FiniteMap Reg elt -> Reg -> Maybe elt)
720 {-# SPECIALIZE lookupWithDefaultFM
721 :: FiniteMap FAST_STRING elt -> elt -> FAST_STRING -> elt
722 IF_NCG(COMMA FiniteMap Reg elt -> elt -> Reg -> elt)
724 {-# SPECIALIZE plusFM
725 :: FiniteMap RdrName elt -> FiniteMap RdrName elt -> FiniteMap RdrName elt
726 , FiniteMap OrigName elt -> FiniteMap OrigName elt -> FiniteMap OrigName elt
727 , FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt
728 IF_NCG(COMMA FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt)
730 {-# SPECIALIZE plusFM_C
731 :: (elt -> elt -> elt) -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt
732 IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt)
735 #endif {- compiling for GHC -}