2 % (c) The University of Glasgow 2006
3 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
6 Utility functions on @Core@ syntax
9 {-# OPTIONS -fno-warn-incomplete-patterns #-}
10 -- The above warning supression flag is a temporary kludge.
11 -- While working on this module you are encouraged to remove it and fix
12 -- any warnings in the module. See
13 -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
16 -- | Commonly useful utilites for manipulating the Core language
18 -- * Constructing expressions
19 mkSCC, mkCoerce, mkCoerceI,
20 bindNonRec, needsCaseBinding,
21 mkAltExpr, mkPiType, mkPiTypes,
23 -- * Taking expressions apart
24 findDefault, findAlt, isDefaultAlt, mergeAlts, trimConArgs,
26 -- * Properties of expressions
27 exprType, coreAltType, coreAltsType,
28 exprIsDupable, exprIsTrivial, exprIsBottom,
29 exprIsCheap, exprIsExpandable, exprIsCheap', CheapAppFun,
30 exprIsHNF, exprOkForSpeculation, exprIsBig, exprIsConLike,
31 rhsIsStatic, isCheapApp, isExpandableApp,
33 -- * Expression and bindings size
34 coreBindsSize, exprSize,
35 CoreStats(..), coreBindsStats,
41 cheapEqExpr, eqExpr, eqExprX,
46 -- * Manipulating data constructors and types
47 applyTypeToArgs, applyTypeToArg,
48 dataConOrigInstPat, dataConRepInstPat, dataConRepFSInstPat
51 #include "HsVersions.h"
65 import TcType ( isPredTy )
81 %************************************************************************
83 \subsection{Find the type of a Core atom/expression}
85 %************************************************************************
88 exprType :: CoreExpr -> Type
89 -- ^ Recover the type of a well-typed Core expression. Fails when
90 -- applied to the actual 'CoreSyn.Type' expression as it cannot
91 -- really be said to have a type
92 exprType (Var var) = idType var
93 exprType (Lit lit) = literalType lit
94 exprType (Let _ body) = exprType body
95 exprType (Case _ _ ty _) = ty
96 exprType (Cast _ co) = snd (coercionKind co)
97 exprType (Note _ e) = exprType e
98 exprType (Lam binder expr) = mkPiType binder (exprType expr)
100 = case collectArgs e of
101 (fun, args) -> applyTypeToArgs e (exprType fun) args
103 exprType other = pprTrace "exprType" (pprCoreExpr other) alphaTy
105 coreAltType :: CoreAlt -> Type
106 -- ^ Returns the type of the alternatives right hand side
107 coreAltType (_,bs,rhs)
108 | any bad_binder bs = expandTypeSynonyms ty
109 | otherwise = ty -- Note [Existential variables and silly type synonyms]
112 free_tvs = tyVarsOfType ty
113 bad_binder b = isTyCoVar b && b `elemVarSet` free_tvs
115 coreAltsType :: [CoreAlt] -> Type
116 -- ^ Returns the type of the first alternative, which should be the same as for all alternatives
117 coreAltsType (alt:_) = coreAltType alt
118 coreAltsType [] = panic "corAltsType"
121 Note [Existential variables and silly type synonyms]
122 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
124 data T = forall a. T (Funny a)
129 Now, the type of 'x' is (Funny a), where 'a' is existentially quantified.
130 That means that 'exprType' and 'coreAltsType' may give a result that *appears*
131 to mention an out-of-scope type variable. See Trac #3409 for a more real-world
134 Various possibilities suggest themselves:
136 - Ignore the problem, and make Lint not complain about such variables
138 - Expand all type synonyms (or at least all those that discard arguments)
139 This is tricky, because at least for top-level things we want to
140 retain the type the user originally specified.
142 - Expand synonyms on the fly, when the problem arises. That is what
143 we are doing here. It's not too expensive, I think.
146 mkPiType :: EvVar -> Type -> Type
147 -- ^ Makes a @(->)@ type or a forall type, depending
148 -- on whether it is given a type variable or a term variable.
149 mkPiTypes :: [EvVar] -> Type -> Type
150 -- ^ 'mkPiType' for multiple type or value arguments
153 | isId v = mkFunTy (idType v) ty
154 | otherwise = mkForAllTy v ty
156 mkPiTypes vs ty = foldr mkPiType ty vs
160 applyTypeToArg :: Type -> CoreExpr -> Type
161 -- ^ Determines the type resulting from applying an expression to a function with the given type
162 applyTypeToArg fun_ty (Type arg_ty) = applyTy fun_ty arg_ty
163 applyTypeToArg fun_ty _ = funResultTy fun_ty
165 applyTypeToArgs :: CoreExpr -> Type -> [CoreExpr] -> Type
166 -- ^ A more efficient version of 'applyTypeToArg' when we have several arguments.
167 -- The first argument is just for debugging, and gives some context
168 applyTypeToArgs _ op_ty [] = op_ty
170 applyTypeToArgs e op_ty (Type ty : args)
171 = -- Accumulate type arguments so we can instantiate all at once
174 go rev_tys (Type ty : args) = go (ty:rev_tys) args
175 go rev_tys rest_args = applyTypeToArgs e op_ty' rest_args
177 op_ty' = applyTysD msg op_ty (reverse rev_tys)
178 msg = ptext (sLit "applyTypeToArgs") <+>
181 applyTypeToArgs e op_ty (_ : args)
182 = case (splitFunTy_maybe op_ty) of
183 Just (_, res_ty) -> applyTypeToArgs e res_ty args
184 Nothing -> pprPanic "applyTypeToArgs" (panic_msg e op_ty)
186 panic_msg :: CoreExpr -> Type -> SDoc
187 panic_msg e op_ty = pprCoreExpr e $$ ppr op_ty
190 %************************************************************************
192 \subsection{Attaching notes}
194 %************************************************************************
197 -- | Wrap the given expression in the coercion, dropping identity coercions and coalescing nested coercions
198 mkCoerceI :: CoercionI -> CoreExpr -> CoreExpr
199 mkCoerceI (IdCo _) e = e
200 mkCoerceI (ACo co) e = mkCoerce co e
202 -- | Wrap the given expression in the coercion safely, coalescing nested coercions
203 mkCoerce :: Coercion -> CoreExpr -> CoreExpr
204 mkCoerce co (Cast expr co2)
205 = ASSERT(let { (from_ty, _to_ty) = coercionKind co;
206 (_from_ty2, to_ty2) = coercionKind co2} in
207 from_ty `coreEqType` to_ty2 )
208 mkCoerce (mkTransCoercion co2 co) expr
211 = let (from_ty, _to_ty) = coercionKind co in
212 -- if to_ty `coreEqType` from_ty
215 WARN(not (from_ty `coreEqType` exprType expr), text "Trying to coerce" <+> text "(" <> ppr expr $$ text "::" <+> ppr (exprType expr) <> text ")" $$ ppr co $$ pprEqPred (coercionKind co))
220 -- | Wraps the given expression in the cost centre unless
221 -- in a way that maximises their utility to the user
222 mkSCC :: CostCentre -> Expr b -> Expr b
223 -- Note: Nested SCC's *are* preserved for the benefit of
224 -- cost centre stack profiling
225 mkSCC _ (Lit lit) = Lit lit
226 mkSCC cc (Lam x e) = Lam x (mkSCC cc e) -- Move _scc_ inside lambda
227 mkSCC cc (Note (SCC cc') e) = Note (SCC cc) (Note (SCC cc') e)
228 mkSCC cc (Note n e) = Note n (mkSCC cc e) -- Move _scc_ inside notes
229 mkSCC cc (Cast e co) = Cast (mkSCC cc e) co -- Move _scc_ inside cast
230 mkSCC cc expr = Note (SCC cc) expr
234 %************************************************************************
236 \subsection{Other expression construction}
238 %************************************************************************
241 bindNonRec :: Id -> CoreExpr -> CoreExpr -> CoreExpr
242 -- ^ @bindNonRec x r b@ produces either:
248 -- > case r of x { _DEFAULT_ -> b }
250 -- depending on whether we have to use a @case@ or @let@
251 -- binding for the expression (see 'needsCaseBinding').
252 -- It's used by the desugarer to avoid building bindings
253 -- that give Core Lint a heart attack, although actually
254 -- the simplifier deals with them perfectly well. See
255 -- also 'MkCore.mkCoreLet'
256 bindNonRec bndr rhs body
257 | needsCaseBinding (idType bndr) rhs = Case rhs bndr (exprType body) [(DEFAULT, [], body)]
258 | otherwise = Let (NonRec bndr rhs) body
260 -- | Tests whether we have to use a @case@ rather than @let@ binding for this expression
261 -- as per the invariants of 'CoreExpr': see "CoreSyn#let_app_invariant"
262 needsCaseBinding :: Type -> CoreExpr -> Bool
263 needsCaseBinding ty rhs = isUnLiftedType ty && not (exprOkForSpeculation rhs)
264 -- Make a case expression instead of a let
265 -- These can arise either from the desugarer,
266 -- or from beta reductions: (\x.e) (x +# y)
270 mkAltExpr :: AltCon -- ^ Case alternative constructor
271 -> [CoreBndr] -- ^ Things bound by the pattern match
272 -> [Type] -- ^ The type arguments to the case alternative
274 -- ^ This guy constructs the value that the scrutinee must have
275 -- given that you are in one particular branch of a case
276 mkAltExpr (DataAlt con) args inst_tys
277 = mkConApp con (map Type inst_tys ++ varsToCoreExprs args)
278 mkAltExpr (LitAlt lit) [] []
280 mkAltExpr (LitAlt _) _ _ = panic "mkAltExpr LitAlt"
281 mkAltExpr DEFAULT _ _ = panic "mkAltExpr DEFAULT"
285 %************************************************************************
287 \subsection{Taking expressions apart}
289 %************************************************************************
291 The default alternative must be first, if it exists at all.
292 This makes it easy to find, though it makes matching marginally harder.
295 -- | Extract the default case alternative
296 findDefault :: [CoreAlt] -> ([CoreAlt], Maybe CoreExpr)
297 findDefault ((DEFAULT,args,rhs) : alts) = ASSERT( null args ) (alts, Just rhs)
298 findDefault alts = (alts, Nothing)
300 isDefaultAlt :: CoreAlt -> Bool
301 isDefaultAlt (DEFAULT, _, _) = True
302 isDefaultAlt _ = False
305 -- | Find the case alternative corresponding to a particular
306 -- constructor: panics if no such constructor exists
307 findAlt :: AltCon -> [CoreAlt] -> Maybe CoreAlt
308 -- A "Nothing" result *is* legitmiate
309 -- See Note [Unreachable code]
312 (deflt@(DEFAULT,_,_):alts) -> go alts (Just deflt)
316 go (alt@(con1,_,_) : alts) deflt
317 = case con `cmpAltCon` con1 of
318 LT -> deflt -- Missed it already; the alts are in increasing order
320 GT -> ASSERT( not (con1 == DEFAULT) ) go alts deflt
322 ---------------------------------
323 mergeAlts :: [CoreAlt] -> [CoreAlt] -> [CoreAlt]
324 -- ^ Merge alternatives preserving order; alternatives in
325 -- the first argument shadow ones in the second
326 mergeAlts [] as2 = as2
327 mergeAlts as1 [] = as1
328 mergeAlts (a1:as1) (a2:as2)
329 = case a1 `cmpAlt` a2 of
330 LT -> a1 : mergeAlts as1 (a2:as2)
331 EQ -> a1 : mergeAlts as1 as2 -- Discard a2
332 GT -> a2 : mergeAlts (a1:as1) as2
335 ---------------------------------
336 trimConArgs :: AltCon -> [CoreArg] -> [CoreArg]
339 -- > case (C a b x y) of
342 -- We want to drop the leading type argument of the scrutinee
343 -- leaving the arguments to match agains the pattern
345 trimConArgs DEFAULT args = ASSERT( null args ) []
346 trimConArgs (LitAlt _) args = ASSERT( null args ) []
347 trimConArgs (DataAlt dc) args = dropList (dataConUnivTyVars dc) args
350 Note [Unreachable code]
351 ~~~~~~~~~~~~~~~~~~~~~~~
352 It is possible (although unusual) for GHC to find a case expression
353 that cannot match. For example:
355 data Col = Red | Green | Blue
359 _ -> ...(case x of { Green -> e1; Blue -> e2 })...
361 Suppose that for some silly reason, x isn't substituted in the case
362 expression. (Perhaps there's a NOINLINE on it, or profiling SCC stuff
363 gets in the way; cf Trac #3118.) Then the full-lazines pass might produce
367 lvl = case x of { Green -> e1; Blue -> e2 })
372 Now if x gets inlined, we won't be able to find a matching alternative
373 for 'Red'. That's because 'lvl' is unreachable. So rather than crashing
374 we generate (error "Inaccessible alternative").
376 Similar things can happen (augmented by GADTs) when the Simplifier
377 filters down the matching alternatives in Simplify.rebuildCase.
380 %************************************************************************
384 %************************************************************************
388 @exprIsTrivial@ is true of expressions we are unconditionally happy to
389 duplicate; simple variables and constants, and type
390 applications. Note that primop Ids aren't considered
393 Note [Variable are trivial]
394 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
395 There used to be a gruesome test for (hasNoBinding v) in the
397 exprIsTrivial (Var v) | hasNoBinding v = idArity v == 0
398 The idea here is that a constructor worker, like \$wJust, is
399 really short for (\x -> \$wJust x), becuase \$wJust has no binding.
400 So it should be treated like a lambda. Ditto unsaturated primops.
401 But now constructor workers are not "have-no-binding" Ids. And
402 completely un-applied primops and foreign-call Ids are sufficiently
403 rare that I plan to allow them to be duplicated and put up with
406 Note [SCCs are trivial]
407 ~~~~~~~~~~~~~~~~~~~~~~~
408 We used not to treat (_scc_ "foo" x) as trivial, because it really
409 generates code, (and a heap object when it's a function arg) to
410 capture the cost centre. However, the profiling system discounts the
411 allocation costs for such "boxing thunks" whereas the extra costs of
412 *not* inlining otherwise-trivial bindings can be high, and are hard to
416 exprIsTrivial :: CoreExpr -> Bool
417 exprIsTrivial (Var _) = True -- See Note [Variables are trivial]
418 exprIsTrivial (Type _) = True
419 exprIsTrivial (Lit lit) = litIsTrivial lit
420 exprIsTrivial (App e arg) = not (isRuntimeArg arg) && exprIsTrivial e
421 exprIsTrivial (Note _ e) = exprIsTrivial e -- See Note [SCCs are trivial]
422 exprIsTrivial (Cast e _) = exprIsTrivial e
423 exprIsTrivial (Lam b body) = not (isRuntimeVar b) && exprIsTrivial body
424 exprIsTrivial _ = False
427 exprIsBottom is a very cheap and cheerful function; it may return
428 False for bottoming expressions, but it never costs much to ask.
429 See also CoreArity.exprBotStrictness_maybe, but that's a bit more
433 exprIsBottom :: CoreExpr -> Bool
437 go n (Var v) = isBottomingId v && n >= idArity v
438 go n (App e a) | isTypeArg a = go n e
439 | otherwise = go (n+1) e
440 go n (Note _ e) = go n e
441 go n (Cast e _) = go n e
442 go n (Let _ e) = go n e
447 %************************************************************************
451 %************************************************************************
455 @exprIsDupable@ is true of expressions that can be duplicated at a modest
456 cost in code size. This will only happen in different case
457 branches, so there's no issue about duplicating work.
459 That is, exprIsDupable returns True of (f x) even if
460 f is very very expensive to call.
462 Its only purpose is to avoid fruitless let-binding
463 and then inlining of case join points
467 exprIsDupable :: CoreExpr -> Bool
469 = isJust (go dupAppSize e)
471 go :: Int -> CoreExpr -> Maybe Int
472 go n (Type {}) = Just n
473 go n (Var {}) = decrement n
474 go n (Note _ e) = go n e
475 go n (Cast e _) = go n e
476 go n (App f a) | Just n' <- go n a = go n' f
477 go n (Lit lit) | litIsDupable lit = decrement n
480 decrement :: Int -> Maybe Int
481 decrement 0 = Nothing
482 decrement n = Just (n-1)
485 dupAppSize = 8 -- Size of term we are prepared to duplicate
486 -- This is *just* big enough to make test MethSharing
487 -- inline enough join points. Really it should be
488 -- smaller, and could be if we fixed Trac #4960.
491 %************************************************************************
493 exprIsCheap, exprIsExpandable
495 %************************************************************************
497 Note [exprIsCheap] See also Note [Interaction of exprIsCheap and lone variables]
498 ~~~~~~~~~~~~~~~~~~ in CoreUnfold.lhs
499 @exprIsCheap@ looks at a Core expression and returns \tr{True} if
500 it is obviously in weak head normal form, or is cheap to get to WHNF.
501 [Note that that's not the same as exprIsDupable; an expression might be
502 big, and hence not dupable, but still cheap.]
504 By ``cheap'' we mean a computation we're willing to:
505 push inside a lambda, or
506 inline at more than one place
507 That might mean it gets evaluated more than once, instead of being
508 shared. The main examples of things which aren't WHNF but are
513 (where e, and all the ei are cheap)
516 (where e and b are cheap)
519 (where op is a cheap primitive operator)
522 (because we are happy to substitute it inside a lambda)
524 Notice that a variable is considered 'cheap': we can push it inside a lambda,
525 because sharing will make sure it is only evaluated once.
527 Note [exprIsCheap and exprIsHNF]
528 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
529 Note that exprIsHNF does not imply exprIsCheap. Eg
530 let x = fac 20 in Just x
531 This responds True to exprIsHNF (you can discard a seq), but
532 False to exprIsCheap.
535 exprIsCheap :: CoreExpr -> Bool
536 exprIsCheap = exprIsCheap' isCheapApp
538 exprIsExpandable :: CoreExpr -> Bool
539 exprIsExpandable = exprIsCheap' isExpandableApp -- See Note [CONLIKE pragma] in BasicTypes
541 type CheapAppFun = Id -> Int -> Bool
542 exprIsCheap' :: CheapAppFun -> CoreExpr -> Bool
543 exprIsCheap' _ (Lit _) = True
544 exprIsCheap' _ (Type _) = True
545 exprIsCheap' _ (Var _) = True
546 exprIsCheap' good_app (Note _ e) = exprIsCheap' good_app e
547 exprIsCheap' good_app (Cast e _) = exprIsCheap' good_app e
548 exprIsCheap' good_app (Lam x e) = isRuntimeVar x
549 || exprIsCheap' good_app e
551 exprIsCheap' good_app (Case e _ _ alts) = exprIsCheap' good_app e &&
552 and [exprIsCheap' good_app rhs | (_,_,rhs) <- alts]
553 -- Experimentally, treat (case x of ...) as cheap
554 -- (and case __coerce x etc.)
555 -- This improves arities of overloaded functions where
556 -- there is only dictionary selection (no construction) involved
558 exprIsCheap' good_app (Let (NonRec x _) e)
559 | isUnLiftedType (idType x) = exprIsCheap' good_app e
561 -- Strict lets always have cheap right hand sides,
562 -- and do no allocation, so just look at the body
563 -- Non-strict lets do allocation so we don't treat them as cheap
566 exprIsCheap' good_app other_expr -- Applications and variables
569 -- Accumulate value arguments, then decide
570 go (Cast e _) val_args = go e val_args
571 go (App f a) val_args | isRuntimeArg a = go f (a:val_args)
572 | otherwise = go f val_args
574 go (Var _) [] = True -- Just a type application of a variable
575 -- (f t1 t2 t3) counts as WHNF
577 = case idDetails f of
578 RecSelId {} -> go_sel args
579 ClassOpId {} -> go_sel args
580 PrimOpId op -> go_primop op args
581 _ | good_app f (length args) -> go_pap args
582 | isBottomingId f -> True
584 -- Application of a function which
585 -- always gives bottom; we treat this as cheap
586 -- because it certainly doesn't need to be shared!
591 go_pap args = all exprIsTrivial args
592 -- For constructor applications and primops, check that all
593 -- the args are trivial. We don't want to treat as cheap, say,
595 -- We'll put up with one constructor application, but not dozens
598 go_primop op args = primOpIsCheap op && all (exprIsCheap' good_app) args
599 -- In principle we should worry about primops
600 -- that return a type variable, since the result
601 -- might be applied to something, but I'm not going
602 -- to bother to check the number of args
605 go_sel [arg] = exprIsCheap' good_app arg -- I'm experimenting with making record selection
606 go_sel _ = False -- look cheap, so we will substitute it inside a
607 -- lambda. Particularly for dictionary field selection.
608 -- BUT: Take care with (sel d x)! The (sel d) might be cheap, but
609 -- there's no guarantee that (sel d x) will be too. Hence (n_val_args == 1)
611 isCheapApp :: CheapAppFun
612 isCheapApp fn n_val_args
614 || n_val_args < idArity fn
616 isExpandableApp :: CheapAppFun
617 isExpandableApp fn n_val_args
619 || n_val_args < idArity fn
620 || go n_val_args (idType fn)
622 -- See if all the arguments are PredTys (implicit params or classes)
623 -- If so we'll regard it as expandable; see Note [Expandable overloadings]
626 | Just (_, ty) <- splitForAllTy_maybe ty = go n_val_args ty
627 | Just (arg, ty) <- splitFunTy_maybe ty
628 , isPredTy arg = go (n_val_args-1) ty
632 Note [Expandable overloadings]
633 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
634 Suppose the user wrote this
635 {-# RULE forall x. foo (negate x) = h x #-}
636 f x = ....(foo (negate x))....
637 He'd expect the rule to fire. But since negate is overloaded, we might
639 f = \d -> let n = negate d in \x -> ...foo (n x)...
640 So we treat the application of a function (negate in this case) to a
641 *dictionary* as expandable. In effect, every function is CONLIKE when
642 it's applied only to dictionaries.
645 %************************************************************************
649 %************************************************************************
652 -- | 'exprOkForSpeculation' returns True of an expression that is:
654 -- * Safe to evaluate even if normal order eval might not
655 -- evaluate the expression at all, or
657 -- * Safe /not/ to evaluate even if normal order would do so
659 -- It is usually called on arguments of unlifted type, but not always
660 -- In particular, Simplify.rebuildCase calls it on lifted types
661 -- when a 'case' is a plain 'seq'. See the example in
662 -- Note [exprOkForSpeculation: case expressions] below
664 -- Precisely, it returns @True@ iff:
666 -- * The expression guarantees to terminate,
668 -- * without raising an exception,
669 -- * without causing a side effect (e.g. writing a mutable variable)
671 -- Note that if @exprIsHNF e@, then @exprOkForSpecuation e@.
672 -- As an example of the considerations in this test, consider:
674 -- > let x = case y# +# 1# of { r# -> I# r# }
677 -- being translated to:
679 -- > case y# +# 1# of { r# ->
684 -- We can only do this if the @y + 1@ is ok for speculation: it has no
685 -- side effects, and can't diverge or raise an exception.
686 exprOkForSpeculation :: CoreExpr -> Bool
687 exprOkForSpeculation (Lit _) = True
688 exprOkForSpeculation (Type _) = True
690 exprOkForSpeculation (Var v)
691 | isTickBoxOp v = False -- Tick boxes are *not* suitable for speculation
692 | otherwise = isUnLiftedType (idType v) -- c.f. the Var case of exprIsHNF
693 || isDataConWorkId v -- Nullary constructors
694 || idArity v > 0 -- Functions
695 || isEvaldUnfolding (idUnfolding v) -- Let-bound values
697 exprOkForSpeculation (Note _ e) = exprOkForSpeculation e
698 exprOkForSpeculation (Cast e _) = exprOkForSpeculation e
700 exprOkForSpeculation (Case e _ _ alts)
701 = exprOkForSpeculation e -- Note [exprOkForSpeculation: case expressions]
702 && all (\(_,_,rhs) -> exprOkForSpeculation rhs) alts
704 exprOkForSpeculation other_expr
705 = case collectArgs other_expr of
706 (Var f, args) -> spec_ok (idDetails f) args
710 spec_ok (DataConWorkId _) _
711 = True -- The strictness of the constructor has already
712 -- been expressed by its "wrapper", so we don't need
713 -- to take the arguments into account
715 spec_ok (PrimOpId op) args
716 | isDivOp op, -- Special case for dividing operations that fail
717 [arg1, Lit lit] <- args -- only if the divisor is zero
718 = not (isZeroLit lit) && exprOkForSpeculation arg1
719 -- Often there is a literal divisor, and this
720 -- can get rid of a thunk in an inner looop
722 | DataToTagOp <- op -- See Note [dataToTag speculation]
726 = primOpOkForSpeculation op &&
727 all exprOkForSpeculation args
728 -- A bit conservative: we don't really need
729 -- to care about lazy arguments, but this is easy
731 spec_ok (DFunId _ new_type) _ = not new_type
732 -- DFuns terminate, unless the dict is implemented with a newtype
733 -- in which case they may not
737 -- | True of dyadic operators that can fail only if the second arg is zero!
738 isDivOp :: PrimOp -> Bool
739 -- This function probably belongs in PrimOp, or even in
740 -- an automagically generated file.. but it's such a
741 -- special case I thought I'd leave it here for now.
742 isDivOp IntQuotOp = True
743 isDivOp IntRemOp = True
744 isDivOp WordQuotOp = True
745 isDivOp WordRemOp = True
746 isDivOp FloatDivOp = True
747 isDivOp DoubleDivOp = True
751 Note [exprOkForSpeculation: case expressions]
752 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
753 It's always sound for exprOkForSpeculation to return False, and we
754 don't want it to take too long, so it bales out on complicated-looking
755 terms. Notably lets, which can be stacked very deeply; and in any
756 case the argument of exprOkForSpeculation is usually in a strict context,
757 so any lets will have been floated away.
759 However, we keep going on case-expressions. An example like this one
760 showed up in DPH code (Trac #3717):
763 foo n = (if n < 5 then 1 else 2) `seq` foo (n-1)
765 If exprOkForSpeculation doesn't look through case expressions, you get this:
767 \ (ww :: GHC.Prim.Int#) ->
769 __DEFAULT -> case (case <# ds 5 of _ {
770 GHC.Types.False -> lvl1;
771 GHC.Types.True -> lvl})
773 T.$wfoo (GHC.Prim.-# ds_XkE 1) };
777 The inner case is redundant, and should be nuked.
779 Note [dataToTag speculation]
780 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
782 f x = let v::Int# = dataToTag# x
784 We say "yes", even though 'x' may not be evaluated. Reasons
786 * dataToTag#'s strictness means that its argument often will be
787 evaluated, but FloatOut makes that temporarily untrue
788 case x of y -> let v = dataToTag# y in ...
790 case x of y -> let v = dataToTag# x in ...
791 Note that we look at 'x' instead of 'y' (this is to improve
792 floating in FloatOut). So Lint complains.
794 Moreover, it really *might* improve floating to let the
797 * CorePrep makes sure dataToTag#'s argument is evaluated, just
798 before code gen. Until then, it's not guaranteed
801 %************************************************************************
803 exprIsHNF, exprIsConLike
805 %************************************************************************
808 -- Note [exprIsHNF] See also Note [exprIsCheap and exprIsHNF]
810 -- | exprIsHNF returns true for expressions that are certainly /already/
811 -- evaluated to /head/ normal form. This is used to decide whether it's ok
814 -- > case x of _ -> e
820 -- and to decide whether it's safe to discard a 'seq'.
822 -- So, it does /not/ treat variables as evaluated, unless they say they are.
823 -- However, it /does/ treat partial applications and constructor applications
824 -- as values, even if their arguments are non-trivial, provided the argument
825 -- type is lifted. For example, both of these are values:
827 -- > (:) (f x) (map f xs)
828 -- > map (...redex...)
830 -- because 'seq' on such things completes immediately.
832 -- For unlifted argument types, we have to be careful:
836 -- Suppose @f x@ diverges; then @C (f x)@ is not a value. However this can't
837 -- happen: see "CoreSyn#let_app_invariant". This invariant states that arguments of
838 -- unboxed type must be ok-for-speculation (or trivial).
839 exprIsHNF :: CoreExpr -> Bool -- True => Value-lambda, constructor, PAP
840 exprIsHNF = exprIsHNFlike isDataConWorkId isEvaldUnfolding
844 -- | Similar to 'exprIsHNF' but includes CONLIKE functions as well as
845 -- data constructors. Conlike arguments are considered interesting by the
847 exprIsConLike :: CoreExpr -> Bool -- True => lambda, conlike, PAP
848 exprIsConLike = exprIsHNFlike isConLikeId isConLikeUnfolding
850 -- | Returns true for values or value-like expressions. These are lambdas,
851 -- constructors / CONLIKE functions (as determined by the function argument)
854 exprIsHNFlike :: (Var -> Bool) -> (Unfolding -> Bool) -> CoreExpr -> Bool
855 exprIsHNFlike is_con is_con_unf = is_hnf_like
857 is_hnf_like (Var v) -- NB: There are no value args at this point
858 = is_con v -- Catches nullary constructors,
859 -- so that [] and () are values, for example
860 || idArity v > 0 -- Catches (e.g.) primops that don't have unfoldings
861 || is_con_unf (idUnfolding v)
862 -- Check the thing's unfolding; it might be bound to a value
863 -- We don't look through loop breakers here, which is a bit conservative
864 -- but otherwise I worry that if an Id's unfolding is just itself,
865 -- we could get an infinite loop
867 is_hnf_like (Lit _) = True
868 is_hnf_like (Type _) = True -- Types are honorary Values;
869 -- we don't mind copying them
870 is_hnf_like (Lam b e) = isRuntimeVar b || is_hnf_like e
871 is_hnf_like (Note _ e) = is_hnf_like e
872 is_hnf_like (Cast e _) = is_hnf_like e
873 is_hnf_like (App e (Type _)) = is_hnf_like e
874 is_hnf_like (App e a) = app_is_value e [a]
875 is_hnf_like (Let _ e) = is_hnf_like e -- Lazy let(rec)s don't affect us
876 is_hnf_like _ = False
878 -- There is at least one value argument
879 app_is_value :: CoreExpr -> [CoreArg] -> Bool
880 app_is_value (Var fun) args
881 = idArity fun > valArgCount args -- Under-applied function
882 || is_con fun -- or constructor-like
883 app_is_value (Note _ f) as = app_is_value f as
884 app_is_value (Cast f _) as = app_is_value f as
885 app_is_value (App f a) as = app_is_value f (a:as)
886 app_is_value _ _ = False
890 %************************************************************************
892 Instantiating data constructors
894 %************************************************************************
896 These InstPat functions go here to avoid circularity between DataCon and Id
899 dataConRepInstPat, dataConOrigInstPat :: [Unique] -> DataCon -> [Type] -> ([TyVar], [CoVar], [Id])
900 dataConRepFSInstPat :: [FastString] -> [Unique] -> DataCon -> [Type] -> ([TyVar], [CoVar], [Id])
902 dataConRepInstPat = dataConInstPat dataConRepArgTys (repeat ((fsLit "ipv")))
903 dataConRepFSInstPat = dataConInstPat dataConRepArgTys
904 dataConOrigInstPat = dataConInstPat dc_arg_tys (repeat ((fsLit "ipv")))
906 dc_arg_tys dc = map mkPredTy (dataConEqTheta dc) ++ map mkPredTy (dataConDictTheta dc) ++ dataConOrigArgTys dc
907 -- Remember to include the existential dictionaries
909 dataConInstPat :: (DataCon -> [Type]) -- function used to find arg tys
910 -> [FastString] -- A long enough list of FSs to use for names
911 -> [Unique] -- An equally long list of uniques, at least one for each binder
913 -> [Type] -- Types to instantiate the universally quantified tyvars
914 -> ([TyVar], [CoVar], [Id]) -- Return instantiated variables
915 -- dataConInstPat arg_fun fss us con inst_tys returns a triple
916 -- (ex_tvs, co_tvs, arg_ids),
918 -- ex_tvs are intended to be used as binders for existential type args
920 -- co_tvs are intended to be used as binders for coercion args and the kinds
921 -- of these vars have been instantiated by the inst_tys and the ex_tys
922 -- The co_tvs include both GADT equalities (dcEqSpec) and
923 -- programmer-specified equalities (dcEqTheta)
925 -- arg_ids are indended to be used as binders for value arguments,
926 -- and their types have been instantiated with inst_tys and ex_tys
927 -- The arg_ids include both dicts (dcDictTheta) and
928 -- programmer-specified arguments (after rep-ing) (deRepArgTys)
931 -- The following constructor T1
934 -- T1 :: forall b. Int -> b -> T(a,b)
937 -- has representation type
938 -- forall a. forall a1. forall b. (a ~ (a1,b)) =>
941 -- dataConInstPat fss us T1 (a1',b') will return
943 -- ([a1'', b''], [c :: (a1', b')~(a1'', b'')], [x :: Int, y :: b''])
945 -- where the double-primed variables are created with the FastStrings and
946 -- Uniques given as fss and us
947 dataConInstPat arg_fun fss uniqs con inst_tys
948 = (ex_bndrs, co_bndrs, arg_ids)
950 univ_tvs = dataConUnivTyVars con
951 ex_tvs = dataConExTyVars con
952 arg_tys = arg_fun con
953 eq_spec = dataConEqSpec con
954 eq_theta = dataConEqTheta con
955 eq_preds = eqSpecPreds eq_spec ++ eq_theta
958 n_co = length eq_preds
960 -- split the Uniques and FastStrings
961 (ex_uniqs, uniqs') = splitAt n_ex uniqs
962 (co_uniqs, id_uniqs) = splitAt n_co uniqs'
964 (ex_fss, fss') = splitAt n_ex fss
965 (co_fss, id_fss) = splitAt n_co fss'
967 -- Make existential type variables
968 ex_bndrs = zipWith3 mk_ex_var ex_uniqs ex_fss ex_tvs
969 mk_ex_var uniq fs var = mkTyVar new_name kind
971 new_name = mkSysTvName uniq fs
974 -- Make the instantiating substitution
975 subst = zipOpenTvSubst (univ_tvs ++ ex_tvs) (inst_tys ++ map mkTyVarTy ex_bndrs)
977 -- Make new coercion vars, instantiating kind
978 co_bndrs = zipWith3 mk_co_var co_uniqs co_fss eq_preds
979 mk_co_var uniq fs eq_pred = mkCoVar new_name co_kind
981 new_name = mkSysTvName uniq fs
982 co_kind = substTy subst (mkPredTy eq_pred)
984 -- make value vars, instantiating types
985 mk_id_var uniq fs ty = mkUserLocal (mkVarOccFS fs) uniq (substTy subst ty) noSrcSpan
986 arg_ids = zipWith3 mk_id_var id_uniqs id_fss arg_tys
990 %************************************************************************
994 %************************************************************************
997 -- | A cheap equality test which bales out fast!
998 -- If it returns @True@ the arguments are definitely equal,
999 -- otherwise, they may or may not be equal.
1001 -- See also 'exprIsBig'
1002 cheapEqExpr :: Expr b -> Expr b -> Bool
1004 cheapEqExpr (Var v1) (Var v2) = v1==v2
1005 cheapEqExpr (Lit lit1) (Lit lit2) = lit1 == lit2
1006 cheapEqExpr (Type t1) (Type t2) = t1 `coreEqType` t2
1008 cheapEqExpr (App f1 a1) (App f2 a2)
1009 = f1 `cheapEqExpr` f2 && a1 `cheapEqExpr` a2
1011 cheapEqExpr (Cast e1 t1) (Cast e2 t2)
1012 = e1 `cheapEqExpr` e2 && t1 `coreEqCoercion` t2
1014 cheapEqExpr _ _ = False
1018 exprIsBig :: Expr b -> Bool
1019 -- ^ Returns @True@ of expressions that are too big to be compared by 'cheapEqExpr'
1020 exprIsBig (Lit _) = False
1021 exprIsBig (Var _) = False
1022 exprIsBig (Type _) = False
1023 exprIsBig (Lam _ e) = exprIsBig e
1024 exprIsBig (App f a) = exprIsBig f || exprIsBig a
1025 exprIsBig (Cast e _) = exprIsBig e -- Hopefully coercions are not too big!
1030 eqExpr :: InScopeSet -> CoreExpr -> CoreExpr -> Bool
1031 -- Compares for equality, modulo alpha
1032 eqExpr in_scope e1 e2
1033 = eqExprX id_unf (mkRnEnv2 in_scope) e1 e2
1035 id_unf _ = noUnfolding -- Don't expand
1039 eqExprX :: IdUnfoldingFun -> RnEnv2 -> CoreExpr -> CoreExpr -> Bool
1040 -- ^ Compares expressions for equality, modulo alpha.
1041 -- Does /not/ look through newtypes or predicate types
1042 -- Used in rule matching, and also CSE
1044 eqExprX id_unfolding_fun env e1 e2
1047 go env (Var v1) (Var v2)
1048 | rnOccL env v1 == rnOccR env v2
1051 -- The next two rules expand non-local variables
1052 -- C.f. Note [Expanding variables] in Rules.lhs
1053 -- and Note [Do not expand locally-bound variables] in Rules.lhs
1055 | not (locallyBoundL env v1)
1056 , Just e1' <- expandUnfolding_maybe (id_unfolding_fun (lookupRnInScope env v1))
1057 = go (nukeRnEnvL env) e1' e2
1060 | not (locallyBoundR env v2)
1061 , Just e2' <- expandUnfolding_maybe (id_unfolding_fun (lookupRnInScope env v2))
1062 = go (nukeRnEnvR env) e1 e2'
1064 go _ (Lit lit1) (Lit lit2) = lit1 == lit2
1065 go env (Type t1) (Type t2) = tcEqTypeX env t1 t2
1066 go env (Cast e1 co1) (Cast e2 co2) = tcEqTypeX env co1 co2 && go env e1 e2
1067 go env (App f1 a1) (App f2 a2) = go env f1 f2 && go env a1 a2
1068 go env (Note n1 e1) (Note n2 e2) = go_note n1 n2 && go env e1 e2
1070 go env (Lam b1 e1) (Lam b2 e2)
1071 = tcEqTypeX env (varType b1) (varType b2) -- False for Id/TyVar combination
1072 && go (rnBndr2 env b1 b2) e1 e2
1074 go env (Let (NonRec v1 r1) e1) (Let (NonRec v2 r2) e2)
1075 = go env r1 r2 -- No need to check binder types, since RHSs match
1076 && go (rnBndr2 env v1 v2) e1 e2
1078 go env (Let (Rec ps1) e1) (Let (Rec ps2) e2)
1079 = all2 (go env') rs1 rs2 && go env' e1 e2
1081 (bs1,rs1) = unzip ps1
1082 (bs2,rs2) = unzip ps2
1083 env' = rnBndrs2 env bs1 bs2
1085 go env (Case e1 b1 _ a1) (Case e2 b2 _ a2)
1087 && tcEqTypeX env (idType b1) (idType b2)
1088 && all2 (go_alt (rnBndr2 env b1 b2)) a1 a2
1093 go_alt env (c1, bs1, e1) (c2, bs2, e2)
1094 = c1 == c2 && go (rnBndrs2 env bs1 bs2) e1 e2
1097 go_note (SCC cc1) (SCC cc2) = cc1 == cc2
1098 go_note (CoreNote s1) (CoreNote s2) = s1 == s2
1105 locallyBoundL, locallyBoundR :: RnEnv2 -> Var -> Bool
1106 locallyBoundL rn_env v = inRnEnvL rn_env v
1107 locallyBoundR rn_env v = inRnEnvR rn_env v
1111 %************************************************************************
1113 \subsection{The size of an expression}
1115 %************************************************************************
1118 coreBindsSize :: [CoreBind] -> Int
1119 coreBindsSize bs = foldr ((+) . bindSize) 0 bs
1121 exprSize :: CoreExpr -> Int
1122 -- ^ A measure of the size of the expressions, strictly greater than 0
1123 -- It also forces the expression pretty drastically as a side effect
1124 -- Counts *leaves*, not internal nodes. Types and coercions are not counted.
1125 exprSize (Var v) = v `seq` 1
1126 exprSize (Lit lit) = lit `seq` 1
1127 exprSize (App f a) = exprSize f + exprSize a
1128 exprSize (Lam b e) = varSize b + exprSize e
1129 exprSize (Let b e) = bindSize b + exprSize e
1130 exprSize (Case e b t as) = seqType t `seq` exprSize e + varSize b + 1 + foldr ((+) . altSize) 0 as
1131 exprSize (Cast e co) = (seqType co `seq` 1) + exprSize e
1132 exprSize (Note n e) = noteSize n + exprSize e
1133 exprSize (Type t) = seqType t `seq` 1
1135 noteSize :: Note -> Int
1136 noteSize (SCC cc) = cc `seq` 1
1137 noteSize (CoreNote s) = s `seq` 1 -- hdaume: core annotations
1139 varSize :: Var -> Int
1140 varSize b | isTyCoVar b = 1
1141 | otherwise = seqType (idType b) `seq`
1142 megaSeqIdInfo (idInfo b) `seq`
1145 varsSize :: [Var] -> Int
1146 varsSize = sum . map varSize
1148 bindSize :: CoreBind -> Int
1149 bindSize (NonRec b e) = varSize b + exprSize e
1150 bindSize (Rec prs) = foldr ((+) . pairSize) 0 prs
1152 pairSize :: (Var, CoreExpr) -> Int
1153 pairSize (b,e) = varSize b + exprSize e
1155 altSize :: CoreAlt -> Int
1156 altSize (c,bs,e) = c `seq` varsSize bs + exprSize e
1160 data CoreStats = CS { cs_tm, cs_ty, cs_co :: Int }
1162 plusCS :: CoreStats -> CoreStats -> CoreStats
1163 plusCS (CS { cs_tm = p1, cs_ty = q1, cs_co = r1 })
1164 (CS { cs_tm = p2, cs_ty = q2, cs_co = r2 })
1165 = CS { cs_tm = p1+p2, cs_ty = q1+q2, cs_co = r1+r2 }
1167 zeroCS, oneTM :: CoreStats
1168 zeroCS = CS { cs_tm = 0, cs_ty = 0, cs_co = 0 }
1169 oneTM = zeroCS { cs_tm = 1 }
1171 sumCS :: (a -> CoreStats) -> [a] -> CoreStats
1172 sumCS f = foldr (plusCS . f) zeroCS
1174 coreBindsStats :: [CoreBind] -> CoreStats
1175 coreBindsStats = sumCS bindStats
1177 bindStats :: CoreBind -> CoreStats
1178 bindStats (NonRec v r) = bindingStats v r
1179 bindStats (Rec prs) = sumCS (\(v,r) -> bindingStats v r) prs
1181 bindingStats :: Var -> CoreExpr -> CoreStats
1182 bindingStats v r = bndrStats v `plusCS` exprStats r
1184 bndrStats :: Var -> CoreStats
1185 bndrStats v = oneTM `plusCS` tyStats (varType v)
1187 exprStats :: CoreExpr -> CoreStats
1188 exprStats (Var {}) = oneTM
1189 exprStats (Lit {}) = oneTM
1190 exprStats (App f (Type t))= tyCoStats (exprType f) t
1191 exprStats (App f a) = exprStats f `plusCS` exprStats a
1192 exprStats (Lam b e) = bndrStats b `plusCS` exprStats e
1193 exprStats (Let b e) = bindStats b `plusCS` exprStats e
1194 exprStats (Case e b _ as) = exprStats e `plusCS` bndrStats b `plusCS` sumCS altStats as
1195 exprStats (Cast e co) = coStats co `plusCS` exprStats e
1196 exprStats (Note _ e) = exprStats e
1197 exprStats (Type ty) = zeroCS { cs_ty = typeSize ty }
1198 -- Ugh (might be a co)
1200 altStats :: CoreAlt -> CoreStats
1201 altStats (_, bs, r) = sumCS bndrStats bs `plusCS` exprStats r
1203 tyCoStats :: Type -> Type -> CoreStats
1204 tyCoStats fun_ty arg
1205 = case splitForAllTy_maybe fun_ty of
1206 Just (tv,_) | isCoVar tv -> coStats arg
1209 tyStats :: Type -> CoreStats
1210 tyStats ty = zeroCS { cs_ty = typeSize ty }
1212 coStats :: Coercion -> CoreStats
1213 coStats co = zeroCS { cs_co = typeSize co }
1216 %************************************************************************
1218 \subsection{Hashing}
1220 %************************************************************************
1223 hashExpr :: CoreExpr -> Int
1224 -- ^ Two expressions that hash to the same @Int@ may be equal (but may not be)
1225 -- Two expressions that hash to the different Ints are definitely unequal.
1227 -- The emphasis is on a crude, fast hash, rather than on high precision.
1229 -- But unequal here means \"not identical\"; two alpha-equivalent
1230 -- expressions may hash to the different Ints.
1232 -- We must be careful that @\\x.x@ and @\\y.y@ map to the same hash code,
1233 -- (at least if we want the above invariant to be true).
1235 hashExpr e = fromIntegral (hash_expr (1,emptyVarEnv) e .&. 0x7fffffff)
1236 -- UniqFM doesn't like negative Ints
1238 type HashEnv = (Int, VarEnv Int) -- Hash code for bound variables
1240 hash_expr :: HashEnv -> CoreExpr -> Word32
1241 -- Word32, because we're expecting overflows here, and overflowing
1242 -- signed types just isn't cool. In C it's even undefined.
1243 hash_expr env (Note _ e) = hash_expr env e
1244 hash_expr env (Cast e _) = hash_expr env e
1245 hash_expr env (Var v) = hashVar env v
1246 hash_expr _ (Lit lit) = fromIntegral (hashLiteral lit)
1247 hash_expr env (App f e) = hash_expr env f * fast_hash_expr env e
1248 hash_expr env (Let (NonRec b r) e) = hash_expr (extend_env env b) e * fast_hash_expr env r
1249 hash_expr env (Let (Rec ((b,_):_)) e) = hash_expr (extend_env env b) e
1250 hash_expr env (Case e _ _ _) = hash_expr env e
1251 hash_expr env (Lam b e) = hash_expr (extend_env env b) e
1252 hash_expr _ (Type _) = WARN(True, text "hash_expr: type") 1
1253 -- Shouldn't happen. Better to use WARN than trace, because trace
1254 -- prevents the CPR optimisation kicking in for hash_expr.
1256 fast_hash_expr :: HashEnv -> CoreExpr -> Word32
1257 fast_hash_expr env (Var v) = hashVar env v
1258 fast_hash_expr env (Type t) = fast_hash_type env t
1259 fast_hash_expr _ (Lit lit) = fromIntegral (hashLiteral lit)
1260 fast_hash_expr env (Cast e _) = fast_hash_expr env e
1261 fast_hash_expr env (Note _ e) = fast_hash_expr env e
1262 fast_hash_expr env (App _ a) = fast_hash_expr env a -- A bit idiosyncratic ('a' not 'f')!
1263 fast_hash_expr _ _ = 1
1265 fast_hash_type :: HashEnv -> Type -> Word32
1266 fast_hash_type env ty
1267 | Just tv <- getTyVar_maybe ty = hashVar env tv
1268 | Just (tc,tys) <- splitTyConApp_maybe ty = let hash_tc = fromIntegral (hashName (tyConName tc))
1269 in foldr (\t n -> fast_hash_type env t + n) hash_tc tys
1272 extend_env :: HashEnv -> Var -> (Int, VarEnv Int)
1273 extend_env (n,env) b = (n+1, extendVarEnv env b n)
1275 hashVar :: HashEnv -> Var -> Word32
1277 = fromIntegral (lookupVarEnv env v `orElse` hashName (idName v))
1281 %************************************************************************
1285 %************************************************************************
1287 Note [Eta reduction conditions]
1288 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1289 We try for eta reduction here, but *only* if we get all the way to an
1290 trivial expression. We don't want to remove extra lambdas unless we
1291 are going to avoid allocating this thing altogether.
1293 There are some particularly delicate points here:
1295 * Eta reduction is not valid in general:
1297 This matters, partly for old-fashioned correctness reasons but,
1298 worse, getting it wrong can yield a seg fault. Consider
1300 h y = case (case y of { True -> f `seq` True; False -> False }) of
1301 True -> ...; False -> ...
1303 If we (unsoundly) eta-reduce f to get f=f, the strictness analyser
1304 says f=bottom, and replaces the (f `seq` True) with just
1305 (f `cast` unsafe-co). BUT, as thing stand, 'f' got arity 1, and it
1306 *keeps* arity 1 (perhaps also wrongly). So CorePrep eta-expands
1307 the definition again, so that it does not termninate after all.
1308 Result: seg-fault because the boolean case actually gets a function value.
1311 So it's important to to the right thing.
1313 * Note [Arity care]: we need to be careful if we just look at f's
1314 arity. Currently (Dec07), f's arity is visible in its own RHS (see
1315 Note [Arity robustness] in SimplEnv) so we must *not* trust the
1316 arity when checking that 'f' is a value. Otherwise we will
1321 Which might change a terminiating program (think (f `seq` e)) to a
1322 non-terminating one. So we check for being a loop breaker first.
1324 However for GlobalIds we can look at the arity; and for primops we
1325 must, since they have no unfolding.
1327 * Regardless of whether 'f' is a value, we always want to
1328 reduce (/\a -> f a) to f
1329 This came up in a RULE: foldr (build (/\a -> g a))
1330 did not match foldr (build (/\b -> ...something complex...))
1331 The type checker can insert these eta-expanded versions,
1332 with both type and dictionary lambdas; hence the slightly
1335 * Never *reduce* arity. For example
1337 Then if h has arity 1 we don't want to eta-reduce because then
1338 f's arity would decrease, and that is bad
1340 These delicacies are why we don't use exprIsTrivial and exprIsHNF here.
1343 Note [Eta reduction with casted arguments]
1344 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1346 (\(x:t3). f (x |> g)) :: t3 -> t2
1350 This should be eta-reduced to
1354 So we need to accumulate a coercion, pushing it inward (past
1355 variable arguments only) thus:
1356 f (x |> co_arg) |> co --> (f |> (sym co_arg -> co)) x
1357 f (x:t) |> co --> (f |> (t -> co)) x
1358 f @ a |> co --> (f |> (forall a.co)) @ a
1359 f @ (g:t1~t2) |> co --> (f |> (t1~t2 => co)) @ (g:t1~t2)
1360 These are the equations for ok_arg.
1362 It's true that we could also hope to eta reduce these:
1365 But the simplifier pushes those casts outwards, so we don't
1366 need to address that here.
1369 tryEtaReduce :: [Var] -> CoreExpr -> Maybe CoreExpr
1370 tryEtaReduce bndrs body
1371 = go (reverse bndrs) body (IdCo (exprType body))
1373 incoming_arity = count isId bndrs
1375 go :: [Var] -- Binders, innermost first, types [a3,a2,a1]
1376 -> CoreExpr -- Of type tr
1377 -> CoercionI -- Of type tr ~ ts
1378 -> Maybe CoreExpr -- Of type a1 -> a2 -> a3 -> ts
1379 -- See Note [Eta reduction with casted arguments]
1380 -- for why we have an accumulating coercion
1382 | ok_fun fun = Just (mkCoerceI co fun)
1384 go (b : bs) (App fun arg) co
1385 | Just co' <- ok_arg b arg co
1388 go _ _ _ = Nothing -- Failure!
1391 -- Note [Eta reduction conditions]
1392 ok_fun (App fun (Type ty))
1393 | not (any (`elemVarSet` tyVarsOfType ty) bndrs)
1396 = not (fun_id `elem` bndrs)
1397 && (ok_fun_id fun_id || all ok_lam bndrs)
1401 ok_fun_id fun = fun_arity fun >= incoming_arity
1404 fun_arity fun -- See Note [Arity care]
1405 | isLocalId fun && isLoopBreaker (idOccInfo fun) = 0
1406 | otherwise = idArity fun
1409 ok_lam v = isTyCoVar v || isDictId v
1412 ok_arg :: Var -- Of type bndr_t
1413 -> CoreExpr -- Of type arg_t
1414 -> CoercionI -- Of kind (t1~t2)
1415 -> Maybe CoercionI -- Of type (arg_t -> t1 ~ bndr_t -> t2)
1416 -- (and similarly for tyvars, coercion args)
1417 -- See Note [Eta reduction with casted arguments]
1418 ok_arg bndr (Type ty) co
1419 | Just tv <- getTyVar_maybe ty
1420 , bndr == tv = Just (mkForAllTyCoI tv co)
1421 ok_arg bndr (Var v) co
1422 | bndr == v = Just (mkFunTyCoI (IdCo (idType bndr)) co)
1423 ok_arg bndr (Cast (Var v) co_arg) co
1424 | bndr == v = Just (mkFunTyCoI (ACo (mkSymCoercion co_arg)) co)
1425 -- The simplifier combines multiple casts into one,
1426 -- so we can have a simple-minded pattern match here
1427 ok_arg _ _ _ = Nothing
1431 %************************************************************************
1433 \subsection{Determining non-updatable right-hand-sides}
1435 %************************************************************************
1437 Top-level constructor applications can usually be allocated
1438 statically, but they can't if the constructor, or any of the
1439 arguments, come from another DLL (because we can't refer to static
1440 labels in other DLLs).
1442 If this happens we simply make the RHS into an updatable thunk,
1443 and 'execute' it rather than allocating it statically.
1446 -- | This function is called only on *top-level* right-hand sides.
1447 -- Returns @True@ if the RHS can be allocated statically in the output,
1448 -- with no thunks involved at all.
1449 rhsIsStatic :: (Name -> Bool) -> CoreExpr -> Bool
1450 -- It's called (i) in TidyPgm.hasCafRefs to decide if the rhs is, or
1451 -- refers to, CAFs; (ii) in CoreToStg to decide whether to put an
1452 -- update flag on it and (iii) in DsExpr to decide how to expand
1455 -- The basic idea is that rhsIsStatic returns True only if the RHS is
1456 -- (a) a value lambda
1457 -- (b) a saturated constructor application with static args
1459 -- BUT watch out for
1460 -- (i) Any cross-DLL references kill static-ness completely
1461 -- because they must be 'executed' not statically allocated
1462 -- ("DLL" here really only refers to Windows DLLs, on other platforms,
1463 -- this is not necessary)
1465 -- (ii) We treat partial applications as redexes, because in fact we
1466 -- make a thunk for them that runs and builds a PAP
1467 -- at run-time. The only appliations that are treated as
1468 -- static are *saturated* applications of constructors.
1470 -- We used to try to be clever with nested structures like this:
1471 -- ys = (:) w ((:) w [])
1472 -- on the grounds that CorePrep will flatten ANF-ise it later.
1473 -- But supporting this special case made the function much more
1474 -- complicated, because the special case only applies if there are no
1475 -- enclosing type lambdas:
1476 -- ys = /\ a -> Foo (Baz ([] a))
1477 -- Here the nested (Baz []) won't float out to top level in CorePrep.
1479 -- But in fact, even without -O, nested structures at top level are
1480 -- flattened by the simplifier, so we don't need to be super-clever here.
1484 -- f = \x::Int. x+7 TRUE
1485 -- p = (True,False) TRUE
1487 -- d = (fst p, False) FALSE because there's a redex inside
1488 -- (this particular one doesn't happen but...)
1490 -- h = D# (1.0## /## 2.0##) FALSE (redex again)
1491 -- n = /\a. Nil a TRUE
1493 -- t = /\a. (:) (case w a of ...) (Nil a) FALSE (redex)
1496 -- This is a bit like CoreUtils.exprIsHNF, with the following differences:
1497 -- a) scc "foo" (\x -> ...) is updatable (so we catch the right SCC)
1499 -- b) (C x xs), where C is a contructor is updatable if the application is
1502 -- c) don't look through unfolding of f in (f x).
1504 rhsIsStatic _is_dynamic_name rhs = is_static False rhs
1506 is_static :: Bool -- True <=> in a constructor argument; must be atomic
1509 is_static False (Lam b e) = isRuntimeVar b || is_static False e
1510 is_static in_arg (Note n e) = notSccNote n && is_static in_arg e
1511 is_static in_arg (Cast e _) = is_static in_arg e
1513 is_static _ (Lit lit)
1515 MachLabel _ _ _ -> False
1517 -- A MachLabel (foreign import "&foo") in an argument
1518 -- prevents a constructor application from being static. The
1519 -- reason is that it might give rise to unresolvable symbols
1520 -- in the object file: under Linux, references to "weak"
1521 -- symbols from the data segment give rise to "unresolvable
1522 -- relocation" errors at link time This might be due to a bug
1523 -- in the linker, but we'll work around it here anyway.
1526 is_static in_arg other_expr = go other_expr 0
1528 go (Var f) n_val_args
1529 #if mingw32_TARGET_OS
1530 | not (_is_dynamic_name (idName f))
1532 = saturated_data_con f n_val_args
1533 || (in_arg && n_val_args == 0)
1534 -- A naked un-applied variable is *not* deemed a static RHS
1536 -- Reason: better to update so that the indirection gets shorted
1537 -- out, and the true value will be seen
1538 -- NB: if you change this, you'll break the invariant that THUNK_STATICs
1539 -- are always updatable. If you do so, make sure that non-updatable
1540 -- ones have enough space for their static link field!
1542 go (App f a) n_val_args
1543 | isTypeArg a = go f n_val_args
1544 | not in_arg && is_static True a = go f (n_val_args + 1)
1545 -- The (not in_arg) checks that we aren't in a constructor argument;
1546 -- if we are, we don't allow (value) applications of any sort
1548 -- NB. In case you wonder, args are sometimes not atomic. eg.
1549 -- x = D# (1.0## /## 2.0##)
1550 -- can't float because /## can fail.
1552 go (Note n f) n_val_args = notSccNote n && go f n_val_args
1553 go (Cast e _) n_val_args = go e n_val_args
1556 saturated_data_con f n_val_args
1557 = case isDataConWorkId_maybe f of
1558 Just dc -> n_val_args == dataConRepArity dc