2 % (c) The University of Glasgow 2006
3 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
6 Utility functions on @Core@ syntax
10 -- The above warning supression flag is a temporary kludge.
11 -- While working on this module you are encouraged to remove it and fix
12 -- any warnings in the module. See
13 -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
18 mkInlineMe, mkSCC, mkCoerce, mkCoerceI,
19 bindNonRec, needsCaseBinding,
20 mkIfThenElse, mkAltExpr, mkPiType, mkPiTypes,
22 -- Taking expressions apart
23 findDefault, findAlt, isDefaultAlt, mergeAlts, trimConArgs,
25 -- Properties of expressions
26 exprType, coreAltType,
27 exprIsDupable, exprIsTrivial, exprIsCheap,
28 exprIsHNF,exprOkForSpeculation, exprIsBig,
29 exprIsConApp_maybe, exprIsBottom,
32 -- Arity and eta expansion
33 manifestArity, exprArity,
34 exprEtaExpandArity, etaExpand,
43 cheapEqExpr, tcEqExpr, tcEqExprX, applyTypeToArgs, applyTypeToArg,
45 dataConOrigInstPat, dataConRepInstPat, dataConRepFSInstPat
48 #include "HsVersions.h"
84 import GHC.Exts -- For `xori`
88 %************************************************************************
90 \subsection{Find the type of a Core atom/expression}
92 %************************************************************************
95 exprType :: CoreExpr -> Type
97 exprType (Var var) = idType var
98 exprType (Lit lit) = literalType lit
99 exprType (Let _ body) = exprType body
100 exprType (Case _ _ ty alts) = ty
101 exprType (Cast e co) = snd (coercionKind co)
102 exprType (Note other_note e) = exprType e
103 exprType (Lam binder expr) = mkPiType binder (exprType expr)
105 = case collectArgs e of
106 (fun, args) -> applyTypeToArgs e (exprType fun) args
108 exprType other = pprTrace "exprType" (pprCoreExpr other) alphaTy
110 coreAltType :: CoreAlt -> Type
111 coreAltType (_,_,rhs) = exprType rhs
114 @mkPiType@ makes a (->) type or a forall type, depending on whether
115 it is given a type variable or a term variable. We cleverly use the
116 lbvarinfo field to figure out the right annotation for the arrove in
117 case of a term variable.
120 mkPiType :: Var -> Type -> Type -- The more polymorphic version
121 mkPiTypes :: [Var] -> Type -> Type -- doesn't work...
123 mkPiTypes vs ty = foldr mkPiType ty vs
126 | isId v = mkFunTy (idType v) ty
127 | otherwise = mkForAllTy v ty
131 applyTypeToArg :: Type -> CoreExpr -> Type
132 applyTypeToArg fun_ty (Type arg_ty) = applyTy fun_ty arg_ty
133 applyTypeToArg fun_ty other_arg = funResultTy fun_ty
135 applyTypeToArgs :: CoreExpr -> Type -> [CoreExpr] -> Type
136 -- A more efficient version of applyTypeToArg
137 -- when we have several args
138 -- The first argument is just for debugging
139 applyTypeToArgs e op_ty [] = op_ty
141 applyTypeToArgs e op_ty (Type ty : args)
142 = -- Accumulate type arguments so we can instantiate all at once
145 go rev_tys (Type ty : args) = go (ty:rev_tys) args
146 go rev_tys rest_args = applyTypeToArgs e op_ty' rest_args
148 op_ty' = applyTys op_ty (reverse rev_tys)
150 applyTypeToArgs e op_ty (other_arg : args)
151 = case (splitFunTy_maybe op_ty) of
152 Just (_, res_ty) -> applyTypeToArgs e res_ty args
153 Nothing -> pprPanic "applyTypeToArgs" (pprCoreExpr e $$ ppr op_ty)
158 %************************************************************************
160 \subsection{Attaching notes}
162 %************************************************************************
164 mkNote removes redundant coercions, and SCCs where possible
168 mkNote :: Note -> CoreExpr -> CoreExpr
169 mkNote (SCC cc) expr = mkSCC cc expr
170 mkNote InlineMe expr = mkInlineMe expr
171 mkNote note expr = Note note expr
175 Drop trivial InlineMe's. This is somewhat important, because if we have an unfolding
176 that looks like (Note InlineMe (Var v)), the InlineMe doesn't go away because it may
177 not be *applied* to anything.
179 We don't use exprIsTrivial here, though, because we sometimes generate worker/wrapper
182 f = inline_me (coerce t fw)
183 As usual, the inline_me prevents the worker from getting inlined back into the wrapper.
184 We want the split, so that the coerces can cancel at the call site.
186 However, we can get left with tiresome type applications. Notably, consider
187 f = /\ a -> let t = e in (t, w)
188 Then lifting the let out of the big lambda gives
190 f = /\ a -> let t = inline_me (t' a) in (t, w)
191 The inline_me is to stop the simplifier inlining t' right back
192 into t's RHS. In the next phase we'll substitute for t (since
193 its rhs is trivial) and *then* we could get rid of the inline_me.
194 But it hardly seems worth it, so I don't bother.
197 mkInlineMe (Var v) = Var v
198 mkInlineMe e = Note InlineMe e
204 mkCoerceI :: CoercionI -> CoreExpr -> CoreExpr
206 mkCoerceI (ACo co) e = mkCoerce co e
208 mkCoerce :: Coercion -> CoreExpr -> CoreExpr
209 mkCoerce co (Cast expr co2)
210 = ASSERT(let { (from_ty, _to_ty) = coercionKind co;
211 (_from_ty2, to_ty2) = coercionKind co2} in
212 from_ty `coreEqType` to_ty2 )
213 mkCoerce (mkTransCoercion co2 co) expr
216 = let (from_ty, to_ty) = coercionKind co in
217 -- if to_ty `coreEqType` from_ty
220 ASSERT2(from_ty `coreEqType` (exprType expr), text "Trying to coerce" <+> text "(" <> ppr expr $$ text "::" <+> ppr (exprType expr) <> text ")" $$ ppr co $$ ppr (coercionKindPredTy co))
225 mkSCC :: CostCentre -> Expr b -> Expr b
226 -- Note: Nested SCC's *are* preserved for the benefit of
227 -- cost centre stack profiling
228 mkSCC cc (Lit lit) = Lit lit
229 mkSCC cc (Lam x e) = Lam x (mkSCC cc e) -- Move _scc_ inside lambda
230 mkSCC cc (Note (SCC cc') e) = Note (SCC cc) (Note (SCC cc') e)
231 mkSCC cc (Note n e) = Note n (mkSCC cc e) -- Move _scc_ inside notes
232 mkSCC cc (Cast e co) = Cast (mkSCC cc e) co -- Move _scc_ inside cast
233 mkSCC cc expr = Note (SCC cc) expr
237 %************************************************************************
239 \subsection{Other expression construction}
241 %************************************************************************
244 bindNonRec :: Id -> CoreExpr -> CoreExpr -> CoreExpr
245 -- (bindNonRec x r b) produces either
248 -- case r of x { _DEFAULT_ -> b }
250 -- depending on whether x is unlifted or not
251 -- It's used by the desugarer to avoid building bindings
252 -- that give Core Lint a heart attack. Actually the simplifier
253 -- deals with them perfectly well.
255 bindNonRec bndr rhs body
256 | needsCaseBinding (idType bndr) rhs = Case rhs bndr (exprType body) [(DEFAULT,[],body)]
257 | otherwise = Let (NonRec bndr rhs) body
259 needsCaseBinding ty rhs = isUnLiftedType ty && not (exprOkForSpeculation rhs)
260 -- Make a case expression instead of a let
261 -- These can arise either from the desugarer,
262 -- or from beta reductions: (\x.e) (x +# y)
266 mkAltExpr :: AltCon -> [CoreBndr] -> [Type] -> CoreExpr
267 -- This guy constructs the value that the scrutinee must have
268 -- when you are in one particular branch of a case
269 mkAltExpr (DataAlt con) args inst_tys
270 = mkConApp con (map Type inst_tys ++ varsToCoreExprs args)
271 mkAltExpr (LitAlt lit) [] []
273 mkAltExpr (LitAlt _) _ _ = panic "mkAltExpr LitAlt"
274 mkAltExpr DEFAULT _ _ = panic "mkAltExpr DEFAULT"
276 mkIfThenElse :: CoreExpr -> CoreExpr -> CoreExpr -> CoreExpr
277 mkIfThenElse guard then_expr else_expr
278 -- Not going to be refining, so okay to take the type of the "then" clause
279 = Case guard (mkWildId boolTy) (exprType then_expr)
280 [ (DataAlt falseDataCon, [], else_expr), -- Increasing order of tag!
281 (DataAlt trueDataCon, [], then_expr) ]
285 %************************************************************************
287 \subsection{Taking expressions apart}
289 %************************************************************************
291 The default alternative must be first, if it exists at all.
292 This makes it easy to find, though it makes matching marginally harder.
295 findDefault :: [CoreAlt] -> ([CoreAlt], Maybe CoreExpr)
296 findDefault ((DEFAULT,args,rhs) : alts) = ASSERT( null args ) (alts, Just rhs)
297 findDefault alts = (alts, Nothing)
299 findAlt :: AltCon -> [CoreAlt] -> CoreAlt
302 (deflt@(DEFAULT,_,_):alts) -> go alts deflt
303 other -> go alts panic_deflt
305 panic_deflt = pprPanic "Missing alternative" (ppr con $$ vcat (map ppr alts))
308 go (alt@(con1,_,_) : alts) deflt
309 = case con `cmpAltCon` con1 of
310 LT -> deflt -- Missed it already; the alts are in increasing order
312 GT -> ASSERT( not (con1 == DEFAULT) ) go alts deflt
314 isDefaultAlt :: CoreAlt -> Bool
315 isDefaultAlt (DEFAULT, _, _) = True
316 isDefaultAlt other = False
318 ---------------------------------
319 mergeAlts :: [CoreAlt] -> [CoreAlt] -> [CoreAlt]
320 -- Merge preserving order; alternatives in the first arg
321 -- shadow ones in the second
322 mergeAlts [] as2 = as2
323 mergeAlts as1 [] = as1
324 mergeAlts (a1:as1) (a2:as2)
325 = case a1 `cmpAlt` a2 of
326 LT -> a1 : mergeAlts as1 (a2:as2)
327 EQ -> a1 : mergeAlts as1 as2 -- Discard a2
328 GT -> a2 : mergeAlts (a1:as1) as2
331 ---------------------------------
332 trimConArgs :: AltCon -> [CoreArg] -> [CoreArg]
333 -- Given case (C a b x y) of
335 -- we want to drop the leading type argument of the scrutinee
336 -- leaving the arguments to match agains the pattern
338 trimConArgs DEFAULT args = ASSERT( null args ) []
339 trimConArgs (LitAlt lit) args = ASSERT( null args ) []
340 trimConArgs (DataAlt dc) args = dropList (dataConUnivTyVars dc) args
344 %************************************************************************
346 \subsection{Figuring out things about expressions}
348 %************************************************************************
350 @exprIsTrivial@ is true of expressions we are unconditionally happy to
351 duplicate; simple variables and constants, and type
352 applications. Note that primop Ids aren't considered
355 @exprIsBottom@ is true of expressions that are guaranteed to diverge
358 There used to be a gruesome test for (hasNoBinding v) in the
360 exprIsTrivial (Var v) | hasNoBinding v = idArity v == 0
361 The idea here is that a constructor worker, like $wJust, is
362 really short for (\x -> $wJust x), becuase $wJust has no binding.
363 So it should be treated like a lambda. Ditto unsaturated primops.
364 But now constructor workers are not "have-no-binding" Ids. And
365 completely un-applied primops and foreign-call Ids are sufficiently
366 rare that I plan to allow them to be duplicated and put up with
369 SCC notes. We do not treat (_scc_ "foo" x) as trivial, because
370 a) it really generates code, (and a heap object when it's
371 a function arg) to capture the cost centre
372 b) see the note [SCC-and-exprIsTrivial] in Simplify.simplLazyBind
375 exprIsTrivial (Var v) = True -- See notes above
376 exprIsTrivial (Type _) = True
377 exprIsTrivial (Lit lit) = litIsTrivial lit
378 exprIsTrivial (App e arg) = not (isRuntimeArg arg) && exprIsTrivial e
379 exprIsTrivial (Note (SCC _) e) = False -- See notes above
380 exprIsTrivial (Note _ e) = exprIsTrivial e
381 exprIsTrivial (Cast e co) = exprIsTrivial e
382 exprIsTrivial (Lam b body) = not (isRuntimeVar b) && exprIsTrivial body
383 exprIsTrivial other = False
387 @exprIsDupable@ is true of expressions that can be duplicated at a modest
388 cost in code size. This will only happen in different case
389 branches, so there's no issue about duplicating work.
391 That is, exprIsDupable returns True of (f x) even if
392 f is very very expensive to call.
394 Its only purpose is to avoid fruitless let-binding
395 and then inlining of case join points
399 exprIsDupable (Type _) = True
400 exprIsDupable (Var v) = True
401 exprIsDupable (Lit lit) = litIsDupable lit
402 exprIsDupable (Note InlineMe e) = True
403 exprIsDupable (Note _ e) = exprIsDupable e
404 exprIsDupable (Cast e co) = exprIsDupable e
408 go (Var v) n_args = True
409 go (App f a) n_args = n_args < dupAppSize
412 go other n_args = False
415 dupAppSize = 4 -- Size of application we are prepared to duplicate
418 @exprIsCheap@ looks at a Core expression and returns \tr{True} if
419 it is obviously in weak head normal form, or is cheap to get to WHNF.
420 [Note that that's not the same as exprIsDupable; an expression might be
421 big, and hence not dupable, but still cheap.]
423 By ``cheap'' we mean a computation we're willing to:
424 push inside a lambda, or
425 inline at more than one place
426 That might mean it gets evaluated more than once, instead of being
427 shared. The main examples of things which aren't WHNF but are
432 (where e, and all the ei are cheap)
435 (where e and b are cheap)
438 (where op is a cheap primitive operator)
441 (because we are happy to substitute it inside a lambda)
443 Notice that a variable is considered 'cheap': we can push it inside a lambda,
444 because sharing will make sure it is only evaluated once.
447 exprIsCheap :: CoreExpr -> Bool
448 exprIsCheap (Lit lit) = True
449 exprIsCheap (Type _) = True
450 exprIsCheap (Var _) = True
451 exprIsCheap (Note InlineMe e) = True
452 exprIsCheap (Note _ e) = exprIsCheap e
453 exprIsCheap (Cast e co) = exprIsCheap e
454 exprIsCheap (Lam x e) = isRuntimeVar x || exprIsCheap e
455 exprIsCheap (Case e _ _ alts) = exprIsCheap e &&
456 and [exprIsCheap rhs | (_,_,rhs) <- alts]
457 -- Experimentally, treat (case x of ...) as cheap
458 -- (and case __coerce x etc.)
459 -- This improves arities of overloaded functions where
460 -- there is only dictionary selection (no construction) involved
461 exprIsCheap (Let (NonRec x _) e)
462 | isUnLiftedType (idType x) = exprIsCheap e
464 -- strict lets always have cheap right hand sides,
465 -- and do no allocation.
467 exprIsCheap other_expr -- Applications and variables
470 -- Accumulate value arguments, then decide
471 go (App f a) val_args | isRuntimeArg a = go f (a:val_args)
472 | otherwise = go f val_args
474 go (Var f) [] = True -- Just a type application of a variable
475 -- (f t1 t2 t3) counts as WHNF
477 = case globalIdDetails f of
478 RecordSelId {} -> go_sel args
479 ClassOpId _ -> go_sel args
480 PrimOpId op -> go_primop op args
482 DataConWorkId _ -> go_pap args
483 other | length args < idArity f -> go_pap args
485 other -> isBottomingId f
486 -- Application of a function which
487 -- always gives bottom; we treat this as cheap
488 -- because it certainly doesn't need to be shared!
490 go other args = False
493 go_pap args = all exprIsTrivial args
494 -- For constructor applications and primops, check that all
495 -- the args are trivial. We don't want to treat as cheap, say,
497 -- We'll put up with one constructor application, but not dozens
500 go_primop op args = primOpIsCheap op && all exprIsCheap args
501 -- In principle we should worry about primops
502 -- that return a type variable, since the result
503 -- might be applied to something, but I'm not going
504 -- to bother to check the number of args
507 go_sel [arg] = exprIsCheap arg -- I'm experimenting with making record selection
508 go_sel other = False -- look cheap, so we will substitute it inside a
509 -- lambda. Particularly for dictionary field selection.
510 -- BUT: Take care with (sel d x)! The (sel d) might be cheap, but
511 -- there's no guarantee that (sel d x) will be too. Hence (n_val_args == 1)
514 exprOkForSpeculation returns True of an expression that it is
516 * safe to evaluate even if normal order eval might not
517 evaluate the expression at all, or
519 * safe *not* to evaluate even if normal order would do so
523 the expression guarantees to terminate,
525 without raising an exception,
526 without causing a side effect (e.g. writing a mutable variable)
528 NB: if exprIsHNF e, then exprOkForSpecuation e
531 let x = case y# +# 1# of { r# -> I# r# }
534 case y# +# 1# of { r# ->
539 We can only do this if the (y+1) is ok for speculation: it has no
540 side effects, and can't diverge or raise an exception.
543 exprOkForSpeculation :: CoreExpr -> Bool
544 exprOkForSpeculation (Lit _) = True
545 exprOkForSpeculation (Type _) = True
546 -- Tick boxes are *not* suitable for speculation
547 exprOkForSpeculation (Var v) = isUnLiftedType (idType v)
548 && not (isTickBoxOp v)
549 exprOkForSpeculation (Note _ e) = exprOkForSpeculation e
550 exprOkForSpeculation (Cast e co) = exprOkForSpeculation e
551 exprOkForSpeculation other_expr
552 = case collectArgs other_expr of
553 (Var f, args) -> spec_ok (globalIdDetails f) args
557 spec_ok (DataConWorkId _) args
558 = True -- The strictness of the constructor has already
559 -- been expressed by its "wrapper", so we don't need
560 -- to take the arguments into account
562 spec_ok (PrimOpId op) args
563 | isDivOp op, -- Special case for dividing operations that fail
564 [arg1, Lit lit] <- args -- only if the divisor is zero
565 = not (isZeroLit lit) && exprOkForSpeculation arg1
566 -- Often there is a literal divisor, and this
567 -- can get rid of a thunk in an inner looop
570 = primOpOkForSpeculation op &&
571 all exprOkForSpeculation args
572 -- A bit conservative: we don't really need
573 -- to care about lazy arguments, but this is easy
575 spec_ok other args = False
577 isDivOp :: PrimOp -> Bool
578 -- True of dyadic operators that can fail
579 -- only if the second arg is zero
580 -- This function probably belongs in PrimOp, or even in
581 -- an automagically generated file.. but it's such a
582 -- special case I thought I'd leave it here for now.
583 isDivOp IntQuotOp = True
584 isDivOp IntRemOp = True
585 isDivOp WordQuotOp = True
586 isDivOp WordRemOp = True
587 isDivOp IntegerQuotRemOp = True
588 isDivOp IntegerDivModOp = True
589 isDivOp FloatDivOp = True
590 isDivOp DoubleDivOp = True
591 isDivOp other = False
596 exprIsBottom :: CoreExpr -> Bool -- True => definitely bottom
597 exprIsBottom e = go 0 e
599 -- n is the number of args
600 go n (Note _ e) = go n e
601 go n (Cast e co) = go n e
602 go n (Let _ e) = go n e
603 go n (Case e _ _ _) = go 0 e -- Just check the scrut
604 go n (App e _) = go (n+1) e
605 go n (Var v) = idAppIsBottom v n
607 go n (Lam _ _) = False
608 go n (Type _) = False
610 idAppIsBottom :: Id -> Int -> Bool
611 idAppIsBottom id n_val_args = appIsBottom (idNewStrictness id) n_val_args
614 @exprIsHNF@ returns true for expressions that are certainly *already*
615 evaluated to *head* normal form. This is used to decide whether it's ok
618 case x of _ -> e ===> e
620 and to decide whether it's safe to discard a `seq`
622 So, it does *not* treat variables as evaluated, unless they say they are.
624 But it *does* treat partial applications and constructor applications
625 as values, even if their arguments are non-trivial, provided the argument
627 e.g. (:) (f x) (map f xs) is a value
628 map (...redex...) is a value
629 Because `seq` on such things completes immediately
631 For unlifted argument types, we have to be careful:
633 Suppose (f x) diverges; then C (f x) is not a value. However this can't
634 happen: see CoreSyn Note [CoreSyn let/app invariant]. Args of unboxed
635 type must be ok-for-speculation (or trivial).
638 exprIsHNF :: CoreExpr -> Bool -- True => Value-lambda, constructor, PAP
639 exprIsHNF (Var v) -- NB: There are no value args at this point
640 = isDataConWorkId v -- Catches nullary constructors,
641 -- so that [] and () are values, for example
642 || idArity v > 0 -- Catches (e.g.) primops that don't have unfoldings
643 || isEvaldUnfolding (idUnfolding v)
644 -- Check the thing's unfolding; it might be bound to a value
645 -- A worry: what if an Id's unfolding is just itself:
646 -- then we could get an infinite loop...
648 exprIsHNF (Lit l) = True
649 exprIsHNF (Type ty) = True -- Types are honorary Values;
650 -- we don't mind copying them
651 exprIsHNF (Lam b e) = isRuntimeVar b || exprIsHNF e
652 exprIsHNF (Note _ e) = exprIsHNF e
653 exprIsHNF (Cast e co) = exprIsHNF e
654 exprIsHNF (App e (Type _)) = exprIsHNF e
655 exprIsHNF (App e a) = app_is_value e [a]
656 exprIsHNF other = False
658 -- There is at least one value argument
659 app_is_value (Var fun) args
660 = idArity fun > valArgCount args -- Under-applied function
661 || isDataConWorkId fun -- or data constructor
662 app_is_value (Note n f) as = app_is_value f as
663 app_is_value (Cast f _) as = app_is_value f as
664 app_is_value (App f a) as = app_is_value f (a:as)
665 app_is_value other as = False
669 -- These InstPat functions go here to avoid circularity between DataCon and Id
670 dataConRepInstPat = dataConInstPat dataConRepArgTys (repeat (FSLIT("ipv")))
671 dataConRepFSInstPat = dataConInstPat dataConRepArgTys
672 dataConOrigInstPat = dataConInstPat dc_arg_tys (repeat (FSLIT("ipv")))
674 dc_arg_tys dc = map mkPredTy (dataConEqTheta dc) ++ map mkPredTy (dataConDictTheta dc) ++ dataConOrigArgTys dc
675 -- Remember to include the existential dictionaries
677 dataConInstPat :: (DataCon -> [Type]) -- function used to find arg tys
678 -> [FastString] -- A long enough list of FSs to use for names
679 -> [Unique] -- An equally long list of uniques, at least one for each binder
681 -> [Type] -- Types to instantiate the universally quantified tyvars
682 -> ([TyVar], [CoVar], [Id]) -- Return instantiated variables
683 -- dataConInstPat arg_fun fss us con inst_tys returns a triple
684 -- (ex_tvs, co_tvs, arg_ids),
686 -- ex_tvs are intended to be used as binders for existential type args
688 -- co_tvs are intended to be used as binders for coercion args and the kinds
689 -- of these vars have been instantiated by the inst_tys and the ex_tys
690 -- The co_tvs include both GADT equalities (dcEqSpec) and
691 -- programmer-specified equalities (dcEqTheta)
693 -- arg_ids are indended to be used as binders for value arguments,
694 -- and their types have been instantiated with inst_tys and ex_tys
695 -- The arg_ids include both dicts (dcDictTheta) and
696 -- programmer-specified arguments (after rep-ing) (deRepArgTys)
699 -- The following constructor T1
702 -- T1 :: forall b. Int -> b -> T(a,b)
705 -- has representation type
706 -- forall a. forall a1. forall b. (a :=: (a1,b)) =>
709 -- dataConInstPat fss us T1 (a1',b') will return
711 -- ([a1'', b''], [c :: (a1', b'):=:(a1'', b'')], [x :: Int, y :: b''])
713 -- where the double-primed variables are created with the FastStrings and
714 -- Uniques given as fss and us
715 dataConInstPat arg_fun fss uniqs con inst_tys
716 = (ex_bndrs, co_bndrs, arg_ids)
718 univ_tvs = dataConUnivTyVars con
719 ex_tvs = dataConExTyVars con
720 arg_tys = arg_fun con
721 eq_spec = dataConEqSpec con
722 eq_theta = dataConEqTheta con
723 eq_preds = eqSpecPreds eq_spec ++ eq_theta
726 n_co = length eq_preds
728 -- split the Uniques and FastStrings
729 (ex_uniqs, uniqs') = splitAt n_ex uniqs
730 (co_uniqs, id_uniqs) = splitAt n_co uniqs'
732 (ex_fss, fss') = splitAt n_ex fss
733 (co_fss, id_fss) = splitAt n_co fss'
735 -- Make existential type variables
736 ex_bndrs = zipWith3 mk_ex_var ex_uniqs ex_fss ex_tvs
737 mk_ex_var uniq fs var = mkTyVar new_name kind
739 new_name = mkSysTvName uniq fs
742 -- Make the instantiating substitution
743 subst = zipOpenTvSubst (univ_tvs ++ ex_tvs) (inst_tys ++ map mkTyVarTy ex_bndrs)
745 -- Make new coercion vars, instantiating kind
746 co_bndrs = zipWith3 mk_co_var co_uniqs co_fss eq_preds
747 mk_co_var uniq fs eq_pred = mkCoVar new_name co_kind
749 new_name = mkSysTvName uniq fs
750 co_kind = substTy subst (mkPredTy eq_pred)
752 -- make value vars, instantiating types
753 mk_id_var uniq fs ty = mkUserLocal (mkVarOccFS fs) uniq (substTy subst ty) noSrcSpan
754 arg_ids = zipWith3 mk_id_var id_uniqs id_fss arg_tys
756 exprIsConApp_maybe :: CoreExpr -> Maybe (DataCon, [CoreExpr])
757 -- Returns (Just (dc, [x1..xn])) if the argument expression is
758 -- a constructor application of the form (dc x1 .. xn)
759 exprIsConApp_maybe (Cast expr co)
760 = -- Here we do the KPush reduction rule as described in the FC paper
761 case exprIsConApp_maybe expr of {
763 Just (dc, dc_args) ->
765 -- The transformation applies iff we have
766 -- (C e1 ... en) `cast` co
767 -- where co :: (T t1 .. tn) :=: (T s1 ..sn)
768 -- That is, with a T at the top of both sides
769 -- The left-hand one must be a T, because exprIsConApp returned True
770 -- but the right-hand one might not be. (Though it usually will.)
772 let (from_ty, to_ty) = coercionKind co
773 (from_tc, from_tc_arg_tys) = splitTyConApp from_ty
774 -- The inner one must be a TyConApp
776 case splitTyConApp_maybe to_ty of {
778 Just (to_tc, to_tc_arg_tys)
779 | from_tc /= to_tc -> Nothing
780 -- These two Nothing cases are possible; we might see
781 -- (C x y) `cast` (g :: T a ~ S [a]),
782 -- where S is a type function. In fact, exprIsConApp
783 -- will probably not be called in such circumstances,
784 -- but there't nothing wrong with it
788 tc_arity = tyConArity from_tc
790 (univ_args, rest1) = splitAt tc_arity dc_args
791 (ex_args, rest2) = splitAt n_ex_tvs rest1
792 (co_args_spec, rest3) = splitAt n_cos_spec rest2
793 (co_args_theta, val_args) = splitAt n_cos_theta rest3
795 arg_tys = dataConRepArgTys dc
796 dc_univ_tyvars = dataConUnivTyVars dc
797 dc_ex_tyvars = dataConExTyVars dc
798 dc_eq_spec = dataConEqSpec dc
799 dc_eq_theta = dataConEqTheta dc
800 dc_tyvars = dc_univ_tyvars ++ dc_ex_tyvars
801 n_ex_tvs = length dc_ex_tyvars
802 n_cos_spec = length dc_eq_spec
803 n_cos_theta = length dc_eq_theta
805 -- Make the "theta" from Fig 3 of the paper
806 gammas = decomposeCo tc_arity co
807 new_tys = gammas ++ map (\ (Type t) -> t) ex_args
808 theta = zipOpenTvSubst dc_tyvars new_tys
810 -- First we cast the existential coercion arguments
811 cast_co_spec (tv, ty) co
812 = cast_co_theta (mkEqPred (mkTyVarTy tv, ty)) co
813 cast_co_theta eqPred (Type co)
814 | (ty1, ty2) <- getEqPredTys eqPred
815 = Type $ mkSymCoercion (substTy theta ty1)
817 `mkTransCoercion` (substTy theta ty2)
818 new_co_args = zipWith cast_co_spec dc_eq_spec co_args_spec ++
819 zipWith cast_co_theta dc_eq_theta co_args_theta
821 -- ...and now value arguments
822 new_val_args = zipWith cast_arg arg_tys val_args
823 cast_arg arg_ty arg = mkCoerce (substTy theta arg_ty) arg
826 ASSERT( length univ_args == tc_arity )
827 ASSERT( from_tc == dataConTyCon dc )
828 ASSERT( and (zipWith coreEqType [t | Type t <- univ_args] from_tc_arg_tys) )
829 ASSERT( all isTypeArg (univ_args ++ ex_args) )
830 ASSERT2( equalLength val_args arg_tys, ppr dc $$ ppr dc_tyvars $$ ppr dc_ex_tyvars $$ ppr arg_tys $$ ppr dc_args $$ ppr univ_args $$ ppr ex_args $$ ppr val_args $$ ppr arg_tys )
832 Just (dc, map Type to_tc_arg_tys ++ ex_args ++ new_co_args ++ new_val_args)
836 -- We do not want to tell the world that we have a
837 -- Cons, to *stop* Case of Known Cons, which removes
839 exprIsConApp_maybe (Note (TickBox {}) expr)
841 exprIsConApp_maybe (Note (BinaryTickBox {}) expr)
845 exprIsConApp_maybe (Note _ expr)
846 = exprIsConApp_maybe expr
847 -- We ignore InlineMe notes in case we have
848 -- x = __inline_me__ (a,b)
849 -- All part of making sure that INLINE pragmas never hurt
850 -- Marcin tripped on this one when making dictionaries more inlinable
852 -- In fact, we ignore all notes. For example,
853 -- case _scc_ "foo" (C a b) of
855 -- should be optimised away, but it will be only if we look
856 -- through the SCC note.
858 exprIsConApp_maybe expr = analyse (collectArgs expr)
860 analyse (Var fun, args)
861 | Just con <- isDataConWorkId_maybe fun,
862 args `lengthAtLeast` dataConRepArity con
863 -- Might be > because the arity excludes type args
866 -- Look through unfoldings, but only cheap ones, because
867 -- we are effectively duplicating the unfolding
868 analyse (Var fun, [])
869 | let unf = idUnfolding fun,
871 = exprIsConApp_maybe (unfoldingTemplate unf)
873 analyse other = Nothing
878 %************************************************************************
880 \subsection{Eta reduction and expansion}
882 %************************************************************************
885 exprEtaExpandArity :: DynFlags -> CoreExpr -> Arity
886 {- The Arity returned is the number of value args the
887 thing can be applied to without doing much work
889 exprEtaExpandArity is used when eta expanding
892 It returns 1 (or more) to:
893 case x of p -> \s -> ...
894 because for I/O ish things we really want to get that \s to the top.
895 We are prepared to evaluate x each time round the loop in order to get that
897 It's all a bit more subtle than it looks:
901 Consider one-shot lambdas
902 let x = expensive in \y z -> E
903 We want this to have arity 2 if the \y-abstraction is a 1-shot lambda
904 Hence the ArityType returned by arityType
906 2. The state-transformer hack
908 The one-shot lambda special cause is particularly important/useful for
909 IO state transformers, where we often get
910 let x = E in \ s -> ...
912 and the \s is a real-world state token abstraction. Such abstractions
913 are almost invariably 1-shot, so we want to pull the \s out, past the
914 let x=E, even if E is expensive. So we treat state-token lambdas as
915 one-shot even if they aren't really. The hack is in Id.isOneShotBndr.
917 3. Dealing with bottom
920 f = \x -> error "foo"
921 Here, arity 1 is fine. But if it is
925 then we want to get arity 2. Tecnically, this isn't quite right, because
927 should diverge, but it'll converge if we eta-expand f. Nevertheless, we
928 do so; it improves some programs significantly, and increasing convergence
929 isn't a bad thing. Hence the ABot/ATop in ArityType.
931 Actually, the situation is worse. Consider
935 Can we eta-expand here? At first the answer looks like "yes of course", but
938 This should diverge! But if we eta-expand, it won't. Again, we ignore this
939 "problem", because being scrupulous would lose an important transformation for
945 Non-recursive newtypes are transparent, and should not get in the way.
946 We do (currently) eta-expand recursive newtypes too. So if we have, say
948 newtype T = MkT ([T] -> Int)
952 where f has arity 1. Then: etaExpandArity e = 1;
953 that is, etaExpandArity looks through the coerce.
955 When we eta-expand e to arity 1: eta_expand 1 e T
956 we want to get: coerce T (\x::[T] -> (coerce ([T]->Int) e) x)
958 HOWEVER, note that if you use coerce bogusly you can ge
960 And since negate has arity 2, you might try to eta expand. But you can't
961 decopose Int to a function type. Hence the final case in eta_expand.
965 exprEtaExpandArity dflags e = arityDepth (arityType dflags e)
967 -- A limited sort of function type
968 data ArityType = AFun Bool ArityType -- True <=> one-shot
969 | ATop -- Know nothing
972 arityDepth :: ArityType -> Arity
973 arityDepth (AFun _ ty) = 1 + arityDepth ty
976 andArityType ABot at2 = at2
977 andArityType ATop at2 = ATop
978 andArityType (AFun t1 at1) (AFun t2 at2) = AFun (t1 && t2) (andArityType at1 at2)
979 andArityType at1 at2 = andArityType at2 at1
981 arityType :: DynFlags -> CoreExpr -> ArityType
982 -- (go1 e) = [b1,..,bn]
983 -- means expression can be rewritten \x_b1 -> ... \x_bn -> body
984 -- where bi is True <=> the lambda is one-shot
986 arityType dflags (Note n e) = arityType dflags e
987 -- Not needed any more: etaExpand is cleverer
988 -- | ok_note n = arityType dflags e
989 -- | otherwise = ATop
991 arityType dflags (Cast e co) = arityType dflags e
993 arityType dflags (Var v)
994 = mk (idArity v) (arg_tys (idType v))
996 mk :: Arity -> [Type] -> ArityType
997 -- The argument types are only to steer the "state hack"
998 -- Consider case x of
1000 -- False -> \(s:RealWorld) -> e
1001 -- where foo has arity 1. Then we want the state hack to
1002 -- apply to foo too, so we can eta expand the case.
1003 mk 0 tys | isBottomingId v = ABot
1004 | (ty:tys) <- tys, isStateHackType ty = AFun True ATop
1006 mk n (ty:tys) = AFun (isStateHackType ty) (mk (n-1) tys)
1007 mk n [] = AFun False (mk (n-1) [])
1009 arg_tys :: Type -> [Type] -- Ignore for-alls
1011 | Just (_, ty') <- splitForAllTy_maybe ty = arg_tys ty'
1012 | Just (arg,res) <- splitFunTy_maybe ty = arg : arg_tys res
1015 -- Lambdas; increase arity
1016 arityType dflags (Lam x e)
1017 | isId x = AFun (isOneShotBndr x) (arityType dflags e)
1018 | otherwise = arityType dflags e
1020 -- Applications; decrease arity
1021 arityType dflags (App f (Type _)) = arityType dflags f
1022 arityType dflags (App f a) = case arityType dflags f of
1023 AFun one_shot xs | exprIsCheap a -> xs
1026 -- Case/Let; keep arity if either the expression is cheap
1027 -- or it's a 1-shot lambda
1028 -- The former is not really right for Haskell
1029 -- f x = case x of { (a,b) -> \y. e }
1031 -- f x y = case x of { (a,b) -> e }
1032 -- The difference is observable using 'seq'
1033 arityType dflags (Case scrut _ _ alts)
1034 = case foldr1 andArityType [arityType dflags rhs | (_,_,rhs) <- alts] of
1035 xs | exprIsCheap scrut -> xs
1036 xs@(AFun one_shot _) | one_shot -> AFun True ATop
1039 arityType dflags (Let b e)
1040 = case arityType dflags e of
1041 xs | cheap_bind b -> xs
1042 xs@(AFun one_shot _) | one_shot -> AFun True ATop
1045 cheap_bind (NonRec b e) = is_cheap (b,e)
1046 cheap_bind (Rec prs) = all is_cheap prs
1047 is_cheap (b,e) = (dopt Opt_DictsCheap dflags && isDictId b)
1049 -- If the experimental -fdicts-cheap flag is on, we eta-expand through
1050 -- dictionary bindings. This improves arities. Thereby, it also
1051 -- means that full laziness is less prone to floating out the
1052 -- application of a function to its dictionary arguments, which
1053 -- can thereby lose opportunities for fusion. Example:
1054 -- foo :: Ord a => a -> ...
1055 -- foo = /\a \(d:Ord a). let d' = ...d... in \(x:a). ....
1056 -- -- So foo has arity 1
1058 -- f = \x. foo dInt $ bar x
1060 -- The (foo DInt) is floated out, and makes ineffective a RULE
1061 -- foo (bar x) = ...
1063 -- One could go further and make exprIsCheap reply True to any
1064 -- dictionary-typed expression, but that's more work.
1066 arityType dflags other = ATop
1068 {- NOT NEEDED ANY MORE: etaExpand is cleverer
1069 ok_note InlineMe = False
1070 ok_note other = True
1071 -- Notice that we do not look through __inline_me__
1072 -- This may seem surprising, but consider
1073 -- f = _inline_me (\x -> e)
1074 -- We DO NOT want to eta expand this to
1075 -- f = \x -> (_inline_me (\x -> e)) x
1076 -- because the _inline_me gets dropped now it is applied,
1085 etaExpand :: Arity -- Result should have this number of value args
1087 -> CoreExpr -> Type -- Expression and its type
1089 -- (etaExpand n us e ty) returns an expression with
1090 -- the same meaning as 'e', but with arity 'n'.
1092 -- Given e' = etaExpand n us e ty
1094 -- ty = exprType e = exprType e'
1096 -- Note that SCCs are not treated specially. If we have
1097 -- etaExpand 2 (\x -> scc "foo" e)
1098 -- = (\xy -> (scc "foo" e) y)
1099 -- So the costs of evaluating 'e' (not 'e y') are attributed to "foo"
1101 etaExpand n us expr ty
1102 | manifestArity expr >= n = expr -- The no-op case
1104 = eta_expand n us expr ty
1107 -- manifestArity sees how many leading value lambdas there are
1108 manifestArity :: CoreExpr -> Arity
1109 manifestArity (Lam v e) | isId v = 1 + manifestArity e
1110 | otherwise = manifestArity e
1111 manifestArity (Note _ e) = manifestArity e
1112 manifestArity (Cast e _) = manifestArity e
1115 -- etaExpand deals with for-alls. For example:
1117 -- where E :: forall a. a -> a
1119 -- (/\b. \y::a -> E b y)
1121 -- It deals with coerces too, though they are now rare
1122 -- so perhaps the extra code isn't worth it
1124 eta_expand n us expr ty
1126 -- The ILX code generator requires eta expansion for type arguments
1127 -- too, but alas the 'n' doesn't tell us how many of them there
1128 -- may be. So we eagerly eta expand any big lambdas, and just
1129 -- cross our fingers about possible loss of sharing in the ILX case.
1130 -- The Right Thing is probably to make 'arity' include
1131 -- type variables throughout the compiler. (ToDo.)
1133 -- Saturated, so nothing to do
1136 -- Short cut for the case where there already
1137 -- is a lambda; no point in gratuitously adding more
1138 eta_expand n us (Lam v body) ty
1140 = Lam v (eta_expand n us body (applyTy ty (mkTyVarTy v)))
1143 = Lam v (eta_expand (n-1) us body (funResultTy ty))
1145 -- We used to have a special case that stepped inside Coerces here,
1146 -- thus: eta_expand n us (Note note@(Coerce _ ty) e) _
1147 -- = Note note (eta_expand n us e ty)
1148 -- BUT this led to an infinite loop
1149 -- Example: newtype T = MkT (Int -> Int)
1150 -- eta_expand 1 (coerce (Int->Int) e)
1151 -- --> coerce (Int->Int) (eta_expand 1 T e)
1153 -- --> coerce (Int->Int) (coerce T
1154 -- (\x::Int -> eta_expand 1 (coerce (Int->Int) e)))
1155 -- by the splitNewType_maybe case below
1158 eta_expand n us expr ty
1159 = ASSERT2 (exprType expr `coreEqType` ty, ppr (exprType expr) $$ ppr ty)
1160 case splitForAllTy_maybe ty of {
1163 Lam lam_tv (eta_expand n us2 (App expr (Type (mkTyVarTy lam_tv))) (substTyWith [tv] [mkTyVarTy lam_tv] ty'))
1165 lam_tv = setVarName tv (mkSysTvName uniq FSLIT("etaT"))
1166 -- Using tv as a base retains its tyvar/covar-ness
1170 case splitFunTy_maybe ty of {
1171 Just (arg_ty, res_ty) -> Lam arg1 (eta_expand (n-1) us2 (App expr (Var arg1)) res_ty)
1173 arg1 = mkSysLocal FSLIT("eta") uniq arg_ty
1179 -- newtype T = MkT ([T] -> Int)
1180 -- Consider eta-expanding this
1183 -- coerce T (\x::[T] -> (coerce ([T]->Int) e) x)
1185 case splitNewTypeRepCo_maybe ty of {
1186 Just(ty1,co) -> mkCoerce (mkSymCoercion co)
1187 (eta_expand n us (mkCoerce co expr) ty1) ;
1190 -- We have an expression of arity > 0, but its type isn't a function
1191 -- This *can* legitmately happen: e.g. coerce Int (\x. x)
1192 -- Essentially the programmer is playing fast and loose with types
1193 -- (Happy does this a lot). So we simply decline to eta-expand.
1198 exprArity is a cheap-and-cheerful version of exprEtaExpandArity.
1199 It tells how many things the expression can be applied to before doing
1200 any work. It doesn't look inside cases, lets, etc. The idea is that
1201 exprEtaExpandArity will do the hard work, leaving something that's easy
1202 for exprArity to grapple with. In particular, Simplify uses exprArity to
1203 compute the ArityInfo for the Id.
1205 Originally I thought that it was enough just to look for top-level lambdas, but
1206 it isn't. I've seen this
1208 foo = PrelBase.timesInt
1210 We want foo to get arity 2 even though the eta-expander will leave it
1211 unchanged, in the expectation that it'll be inlined. But occasionally it
1212 isn't, because foo is blacklisted (used in a rule).
1214 Similarly, see the ok_note check in exprEtaExpandArity. So
1215 f = __inline_me (\x -> e)
1216 won't be eta-expanded.
1218 And in any case it seems more robust to have exprArity be a bit more intelligent.
1219 But note that (\x y z -> f x y z)
1220 should have arity 3, regardless of f's arity.
1223 exprArity :: CoreExpr -> Arity
1226 go (Var v) = idArity v
1227 go (Lam x e) | isId x = go e + 1
1229 go (Note n e) = go e
1230 go (Cast e _) = go e
1231 go (App e (Type t)) = go e
1232 go (App f a) | exprIsCheap a = (go f - 1) `max` 0
1233 -- NB: exprIsCheap a!
1234 -- f (fac x) does not have arity 2,
1235 -- even if f has arity 3!
1236 -- NB: `max 0`! (\x y -> f x) has arity 2, even if f is
1237 -- unknown, hence arity 0
1241 %************************************************************************
1243 \subsection{Equality}
1245 %************************************************************************
1247 @cheapEqExpr@ is a cheap equality test which bales out fast!
1248 True => definitely equal
1249 False => may or may not be equal
1252 cheapEqExpr :: Expr b -> Expr b -> Bool
1254 cheapEqExpr (Var v1) (Var v2) = v1==v2
1255 cheapEqExpr (Lit lit1) (Lit lit2) = lit1 == lit2
1256 cheapEqExpr (Type t1) (Type t2) = t1 `coreEqType` t2
1258 cheapEqExpr (App f1 a1) (App f2 a2)
1259 = f1 `cheapEqExpr` f2 && a1 `cheapEqExpr` a2
1261 cheapEqExpr _ _ = False
1263 exprIsBig :: Expr b -> Bool
1264 -- Returns True of expressions that are too big to be compared by cheapEqExpr
1265 exprIsBig (Lit _) = False
1266 exprIsBig (Var v) = False
1267 exprIsBig (Type t) = False
1268 exprIsBig (App f a) = exprIsBig f || exprIsBig a
1269 exprIsBig (Cast e _) = exprIsBig e -- Hopefully coercions are not too big!
1270 exprIsBig other = True
1275 tcEqExpr :: CoreExpr -> CoreExpr -> Bool
1276 -- Used in rule matching, so does *not* look through
1277 -- newtypes, predicate types; hence tcEqExpr
1279 tcEqExpr e1 e2 = tcEqExprX rn_env e1 e2
1281 rn_env = mkRnEnv2 (mkInScopeSet (exprFreeVars e1 `unionVarSet` exprFreeVars e2))
1283 tcEqExprX :: RnEnv2 -> CoreExpr -> CoreExpr -> Bool
1284 tcEqExprX env (Var v1) (Var v2) = rnOccL env v1 == rnOccR env v2
1285 tcEqExprX env (Lit lit1) (Lit lit2) = lit1 == lit2
1286 tcEqExprX env (App f1 a1) (App f2 a2) = tcEqExprX env f1 f2 && tcEqExprX env a1 a2
1287 tcEqExprX env (Lam v1 e1) (Lam v2 e2) = tcEqExprX (rnBndr2 env v1 v2) e1 e2
1288 tcEqExprX env (Let (NonRec v1 r1) e1)
1289 (Let (NonRec v2 r2) e2) = tcEqExprX env r1 r2
1290 && tcEqExprX (rnBndr2 env v1 v2) e1 e2
1291 tcEqExprX env (Let (Rec ps1) e1)
1292 (Let (Rec ps2) e2) = equalLength ps1 ps2
1293 && and (zipWith eq_rhs ps1 ps2)
1294 && tcEqExprX env' e1 e2
1296 env' = foldl2 rn_bndr2 env ps2 ps2
1297 rn_bndr2 env (b1,_) (b2,_) = rnBndr2 env b1 b2
1298 eq_rhs (_,r1) (_,r2) = tcEqExprX env' r1 r2
1299 tcEqExprX env (Case e1 v1 t1 a1)
1300 (Case e2 v2 t2 a2) = tcEqExprX env e1 e2
1301 && tcEqTypeX env t1 t2
1302 && equalLength a1 a2
1303 && and (zipWith (eq_alt env') a1 a2)
1305 env' = rnBndr2 env v1 v2
1307 tcEqExprX env (Note n1 e1) (Note n2 e2) = eq_note env n1 n2 && tcEqExprX env e1 e2
1308 tcEqExprX env (Cast e1 co1) (Cast e2 co2) = tcEqTypeX env co1 co2 && tcEqExprX env e1 e2
1309 tcEqExprX env (Type t1) (Type t2) = tcEqTypeX env t1 t2
1310 tcEqExprX env e1 e2 = False
1312 eq_alt env (c1,vs1,r1) (c2,vs2,r2) = c1==c2 && tcEqExprX (rnBndrs2 env vs1 vs2) r1 r2
1314 eq_note env (SCC cc1) (SCC cc2) = cc1 == cc2
1315 eq_note env (CoreNote s1) (CoreNote s2) = s1 == s2
1316 eq_note env other1 other2 = False
1320 %************************************************************************
1322 \subsection{The size of an expression}
1324 %************************************************************************
1327 coreBindsSize :: [CoreBind] -> Int
1328 coreBindsSize bs = foldr ((+) . bindSize) 0 bs
1330 exprSize :: CoreExpr -> Int
1331 -- A measure of the size of the expressions
1332 -- It also forces the expression pretty drastically as a side effect
1333 exprSize (Var v) = v `seq` 1
1334 exprSize (Lit lit) = lit `seq` 1
1335 exprSize (App f a) = exprSize f + exprSize a
1336 exprSize (Lam b e) = varSize b + exprSize e
1337 exprSize (Let b e) = bindSize b + exprSize e
1338 exprSize (Case e b t as) = seqType t `seq` exprSize e + varSize b + 1 + foldr ((+) . altSize) 0 as
1339 exprSize (Cast e co) = (seqType co `seq` 1) + exprSize e
1340 exprSize (Note n e) = noteSize n + exprSize e
1341 exprSize (Type t) = seqType t `seq` 1
1343 noteSize (SCC cc) = cc `seq` 1
1344 noteSize InlineMe = 1
1345 noteSize (CoreNote s) = s `seq` 1 -- hdaume: core annotations
1347 varSize :: Var -> Int
1348 varSize b | isTyVar b = 1
1349 | otherwise = seqType (idType b) `seq`
1350 megaSeqIdInfo (idInfo b) `seq`
1353 varsSize = foldr ((+) . varSize) 0
1355 bindSize (NonRec b e) = varSize b + exprSize e
1356 bindSize (Rec prs) = foldr ((+) . pairSize) 0 prs
1358 pairSize (b,e) = varSize b + exprSize e
1360 altSize (c,bs,e) = c `seq` varsSize bs + exprSize e
1364 %************************************************************************
1366 \subsection{Hashing}
1368 %************************************************************************
1371 hashExpr :: CoreExpr -> Int
1372 -- Two expressions that hash to the same Int may be equal (but may not be)
1373 -- Two expressions that hash to the different Ints are definitely unequal
1375 -- But "unequal" here means "not identical"; two alpha-equivalent
1376 -- expressions may hash to the different Ints
1378 -- The emphasis is on a crude, fast hash, rather than on high precision
1380 -- We must be careful that \x.x and \y.y map to the same hash code,
1381 -- (at least if we want the above invariant to be true)
1383 hashExpr e = fromIntegral (hash_expr (1,emptyVarEnv) e .&. 0x7fffffff)
1384 -- UniqFM doesn't like negative Ints
1386 type HashEnv = (Int, VarEnv Int) -- Hash code for bound variables
1388 hash_expr :: HashEnv -> CoreExpr -> Word32
1389 -- Word32, because we're expecting overflows here, and overflowing
1390 -- signed types just isn't cool. In C it's even undefined.
1391 hash_expr env (Note _ e) = hash_expr env e
1392 hash_expr env (Cast e co) = hash_expr env e
1393 hash_expr env (Var v) = hashVar env v
1394 hash_expr env (Lit lit) = fromIntegral (hashLiteral lit)
1395 hash_expr env (App f e) = hash_expr env f * fast_hash_expr env e
1396 hash_expr env (Let (NonRec b r) e) = hash_expr (extend_env env b) e * fast_hash_expr env r
1397 hash_expr env (Let (Rec ((b,r):_)) e) = hash_expr (extend_env env b) e
1398 hash_expr env (Case e _ _ _) = hash_expr env e
1399 hash_expr env (Lam b e) = hash_expr (extend_env env b) e
1400 hash_expr env (Type t) = WARN(True, text "hash_expr: type") 1
1401 -- Shouldn't happen. Better to use WARN than trace, because trace
1402 -- prevents the CPR optimisation kicking in for hash_expr.
1404 fast_hash_expr env (Var v) = hashVar env v
1405 fast_hash_expr env (Type t) = fast_hash_type env t
1406 fast_hash_expr env (Lit lit) = fromIntegral (hashLiteral lit)
1407 fast_hash_expr env (Cast e co) = fast_hash_expr env e
1408 fast_hash_expr env (Note n e) = fast_hash_expr env e
1409 fast_hash_expr env (App f a) = fast_hash_expr env a -- A bit idiosyncratic ('a' not 'f')!
1410 fast_hash_expr env other = 1
1412 fast_hash_type :: HashEnv -> Type -> Word32
1413 fast_hash_type env ty
1414 | Just tv <- getTyVar_maybe ty = hashVar env tv
1415 | Just (tc,tys) <- splitTyConApp_maybe ty = let hash_tc = fromIntegral (hashName (tyConName tc))
1416 in foldr (\t n -> fast_hash_type env t + n) hash_tc tys
1419 extend_env :: HashEnv -> Var -> (Int, VarEnv Int)
1420 extend_env (n,env) b = (n+1, extendVarEnv env b n)
1422 hashVar :: HashEnv -> Var -> Word32
1424 = fromIntegral (lookupVarEnv env v `orElse` hashName (idName v))
1427 %************************************************************************
1429 \subsection{Determining non-updatable right-hand-sides}
1431 %************************************************************************
1433 Top-level constructor applications can usually be allocated
1434 statically, but they can't if the constructor, or any of the
1435 arguments, come from another DLL (because we can't refer to static
1436 labels in other DLLs).
1438 If this happens we simply make the RHS into an updatable thunk,
1439 and 'exectute' it rather than allocating it statically.
1442 rhsIsStatic :: PackageId -> CoreExpr -> Bool
1443 -- This function is called only on *top-level* right-hand sides
1444 -- Returns True if the RHS can be allocated statically, with
1445 -- no thunks involved at all.
1447 -- It's called (i) in TidyPgm.hasCafRefs to decide if the rhs is, or
1448 -- refers to, CAFs; and (ii) in CoreToStg to decide whether to put an
1449 -- update flag on it.
1451 -- The basic idea is that rhsIsStatic returns True only if the RHS is
1452 -- (a) a value lambda
1453 -- (b) a saturated constructor application with static args
1455 -- BUT watch out for
1456 -- (i) Any cross-DLL references kill static-ness completely
1457 -- because they must be 'executed' not statically allocated
1458 -- ("DLL" here really only refers to Windows DLLs, on other platforms,
1459 -- this is not necessary)
1461 -- (ii) We treat partial applications as redexes, because in fact we
1462 -- make a thunk for them that runs and builds a PAP
1463 -- at run-time. The only appliations that are treated as
1464 -- static are *saturated* applications of constructors.
1466 -- We used to try to be clever with nested structures like this:
1467 -- ys = (:) w ((:) w [])
1468 -- on the grounds that CorePrep will flatten ANF-ise it later.
1469 -- But supporting this special case made the function much more
1470 -- complicated, because the special case only applies if there are no
1471 -- enclosing type lambdas:
1472 -- ys = /\ a -> Foo (Baz ([] a))
1473 -- Here the nested (Baz []) won't float out to top level in CorePrep.
1475 -- But in fact, even without -O, nested structures at top level are
1476 -- flattened by the simplifier, so we don't need to be super-clever here.
1480 -- f = \x::Int. x+7 TRUE
1481 -- p = (True,False) TRUE
1483 -- d = (fst p, False) FALSE because there's a redex inside
1484 -- (this particular one doesn't happen but...)
1486 -- h = D# (1.0## /## 2.0##) FALSE (redex again)
1487 -- n = /\a. Nil a TRUE
1489 -- t = /\a. (:) (case w a of ...) (Nil a) FALSE (redex)
1492 -- This is a bit like CoreUtils.exprIsHNF, with the following differences:
1493 -- a) scc "foo" (\x -> ...) is updatable (so we catch the right SCC)
1495 -- b) (C x xs), where C is a contructors is updatable if the application is
1498 -- c) don't look through unfolding of f in (f x).
1500 -- When opt_RuntimeTypes is on, we keep type lambdas and treat
1501 -- them as making the RHS re-entrant (non-updatable).
1503 rhsIsStatic this_pkg rhs = is_static False rhs
1505 is_static :: Bool -- True <=> in a constructor argument; must be atomic
1508 is_static False (Lam b e) = isRuntimeVar b || is_static False e
1510 is_static in_arg (Note (SCC _) e) = False
1511 is_static in_arg (Note _ e) = is_static in_arg e
1512 is_static in_arg (Cast e co) = is_static in_arg e
1514 is_static in_arg (Lit lit)
1516 MachLabel _ _ -> False
1518 -- A MachLabel (foreign import "&foo") in an argument
1519 -- prevents a constructor application from being static. The
1520 -- reason is that it might give rise to unresolvable symbols
1521 -- in the object file: under Linux, references to "weak"
1522 -- symbols from the data segment give rise to "unresolvable
1523 -- relocation" errors at link time This might be due to a bug
1524 -- in the linker, but we'll work around it here anyway.
1527 is_static in_arg other_expr = go other_expr 0
1529 go (Var f) n_val_args
1530 #if mingw32_TARGET_OS
1531 | not (isDllName this_pkg (idName f))
1533 = saturated_data_con f n_val_args
1534 || (in_arg && n_val_args == 0)
1535 -- A naked un-applied variable is *not* deemed a static RHS
1537 -- Reason: better to update so that the indirection gets shorted
1538 -- out, and the true value will be seen
1539 -- NB: if you change this, you'll break the invariant that THUNK_STATICs
1540 -- are always updatable. If you do so, make sure that non-updatable
1541 -- ones have enough space for their static link field!
1543 go (App f a) n_val_args
1544 | isTypeArg a = go f n_val_args
1545 | not in_arg && is_static True a = go f (n_val_args + 1)
1546 -- The (not in_arg) checks that we aren't in a constructor argument;
1547 -- if we are, we don't allow (value) applications of any sort
1549 -- NB. In case you wonder, args are sometimes not atomic. eg.
1550 -- x = D# (1.0## /## 2.0##)
1551 -- can't float because /## can fail.
1553 go (Note (SCC _) f) n_val_args = False
1554 go (Note _ f) n_val_args = go f n_val_args
1555 go (Cast e co) n_val_args = go e n_val_args
1557 go other n_val_args = False
1559 saturated_data_con f n_val_args
1560 = case isDataConWorkId_maybe f of
1561 Just dc -> n_val_args == dataConRepArity dc