2 % (c) The University of Glasgow 2006
3 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
6 Desugaring exporessions.
9 module DsExpr ( dsExpr, dsLExpr, dsLocalBinds, dsValBinds, dsLit ) where
11 #include "HsVersions.h"
26 -- Template Haskell stuff iff bootstrapped
33 -- NB: The desugarer, which straddles the source and Core worlds, sometimes
34 -- needs to see source types
55 %************************************************************************
57 dsLocalBinds, dsValBinds
59 %************************************************************************
62 dsLocalBinds :: HsLocalBinds Id -> CoreExpr -> DsM CoreExpr
63 dsLocalBinds EmptyLocalBinds body = return body
64 dsLocalBinds (HsValBinds binds) body = dsValBinds binds body
65 dsLocalBinds (HsIPBinds binds) body = dsIPBinds binds body
67 -------------------------
68 dsValBinds :: HsValBinds Id -> CoreExpr -> DsM CoreExpr
69 dsValBinds (ValBindsOut binds _) body = foldrDs ds_val_bind body binds
71 -------------------------
72 dsIPBinds (IPBinds ip_binds dict_binds) body
73 = do { prs <- dsLHsBinds dict_binds
74 ; let inner = Let (Rec prs) body
75 -- The dict bindings may not be in
76 -- dependency order; hence Rec
77 ; foldrDs ds_ip_bind inner ip_binds }
79 ds_ip_bind (L _ (IPBind n e)) body
80 = dsLExpr e `thenDs` \ e' ->
81 returnDs (Let (NonRec (ipNameName n) e') body)
83 -------------------------
84 ds_val_bind :: (RecFlag, LHsBinds Id) -> CoreExpr -> DsM CoreExpr
85 -- Special case for bindings which bind unlifted variables
86 -- We need to do a case right away, rather than building
87 -- a tuple and doing selections.
88 -- Silently ignore INLINE and SPECIALISE pragmas...
89 ds_val_bind (NonRecursive, hsbinds) body
90 | [L _ (AbsBinds [] [] exports binds)] <- bagToList hsbinds,
91 (L loc bind : null_binds) <- bagToList binds,
93 || isUnboxedTupleBind bind
94 || or [isUnLiftedType (idType g) | (_, g, _, _) <- exports]
96 body_w_exports = foldr bind_export body exports
97 bind_export (tvs, g, l, _) body = ASSERT( null tvs )
98 bindNonRec g (Var l) body
100 ASSERT (null null_binds)
101 -- Non-recursive, non-overloaded bindings only come in ones
102 -- ToDo: in some bizarre case it's conceivable that there
103 -- could be dict binds in the 'binds'. (See the notes
104 -- below. Then pattern-match would fail. Urk.)
107 FunBind { fun_id = L _ fun, fun_matches = matches, fun_co_fn = co_fn, fun_tick = tick }
108 -> matchWrapper (FunRhs (idName fun)) matches `thenDs` \ (args, rhs) ->
109 ASSERT( null args ) -- Functions aren't lifted
110 ASSERT( isIdHsWrapper co_fn )
111 mkOptTickBox tick rhs `thenDs` \ rhs' ->
112 returnDs (bindNonRec fun rhs' body_w_exports)
114 PatBind {pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty }
115 -> -- let C x# y# = rhs in body
116 -- ==> case rhs of C x# y# -> body
118 do { rhs <- dsGuarded grhss ty
119 ; let upat = unLoc pat
120 eqn = EqnInfo { eqn_pats = [upat],
121 eqn_rhs = cantFailMatchResult body_w_exports }
122 ; var <- selectMatchVar upat
123 ; result <- matchEquations PatBindRhs [var] [eqn] (exprType body)
124 ; return (scrungleMatch var rhs result) }
126 other -> pprPanic "dsLet: unlifted" (pprLHsBinds hsbinds $$ ppr body)
129 -- Ordinary case for bindings; none should be unlifted
130 ds_val_bind (is_rec, binds) body
131 = do { prs <- dsLHsBinds binds
132 ; ASSERT( not (any (isUnLiftedType . idType . fst) prs) )
135 other -> return (Let (Rec prs) body) }
136 -- Use a Rec regardless of is_rec.
137 -- Why? Because it allows the binds to be all
138 -- mixed up, which is what happens in one rare case
139 -- Namely, for an AbsBind with no tyvars and no dicts,
140 -- but which does have dictionary bindings.
141 -- See notes with TcSimplify.inferLoop [NO TYVARS]
142 -- It turned out that wrapping a Rec here was the easiest solution
144 -- NB The previous case dealt with unlifted bindings, so we
145 -- only have to deal with lifted ones now; so Rec is ok
147 isUnboxedTupleBind :: HsBind Id -> Bool
148 isUnboxedTupleBind (PatBind { pat_rhs_ty = ty }) = isUnboxedTupleType ty
149 isUnboxedTupleBind other = False
151 scrungleMatch :: Id -> CoreExpr -> CoreExpr -> CoreExpr
152 -- Returns something like (let var = scrut in body)
153 -- but if var is an unboxed-tuple type, it inlines it in a fragile way
154 -- Special case to handle unboxed tuple patterns; they can't appear nested
156 -- case e of (# p1, p2 #) -> rhs
158 -- case e of (# x1, x2 #) -> ... match p1, p2 ...
160 -- let x = e in case x of ....
162 -- But there may be a big
163 -- let fail = ... in case e of ...
164 -- wrapping the whole case, which complicates matters slightly
165 -- It all seems a bit fragile. Test is dsrun013.
167 scrungleMatch var scrut body
168 | isUnboxedTupleType (idType var) = scrungle body
169 | otherwise = bindNonRec var scrut body
171 scrungle (Case (Var x) bndr ty alts)
172 | x == var = Case scrut bndr ty alts
173 scrungle (Let binds body) = Let binds (scrungle body)
174 scrungle other = panic ("scrungleMatch: tuple pattern:\n" ++ showSDoc (ppr other))
178 %************************************************************************
180 \subsection[DsExpr-vars-and-cons]{Variables, constructors, literals}
182 %************************************************************************
185 dsLExpr :: LHsExpr Id -> DsM CoreExpr
187 dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e
189 dsExpr :: HsExpr Id -> DsM CoreExpr
190 dsExpr (HsPar e) = dsLExpr e
191 dsExpr (ExprWithTySigOut e _) = dsLExpr e
192 dsExpr (HsVar var) = returnDs (Var var)
193 dsExpr (HsIPVar ip) = returnDs (Var (ipNameName ip))
194 dsExpr (HsLit lit) = dsLit lit
195 dsExpr (HsOverLit lit) = dsOverLit lit
196 dsExpr (HsWrap co_fn e) = dsCoercion co_fn (dsExpr e)
198 dsExpr (NegApp expr neg_expr)
199 = do { core_expr <- dsLExpr expr
200 ; core_neg <- dsExpr neg_expr
201 ; return (core_neg `App` core_expr) }
203 dsExpr expr@(HsLam a_Match)
204 = matchWrapper LambdaExpr a_Match `thenDs` \ (binders, matching_code) ->
205 returnDs (mkLams binders matching_code)
207 dsExpr expr@(HsApp fun arg)
208 = dsLExpr fun `thenDs` \ core_fun ->
209 dsLExpr arg `thenDs` \ core_arg ->
210 returnDs (core_fun `mkDsApp` core_arg)
213 Operator sections. At first it looks as if we can convert
222 But no! expr might be a redex, and we can lose laziness badly this
227 for example. So we convert instead to
229 let y = expr in \x -> op y x
231 If \tr{expr} is actually just a variable, say, then the simplifier
235 dsExpr (OpApp e1 op _ e2)
236 = dsLExpr op `thenDs` \ core_op ->
237 -- for the type of y, we need the type of op's 2nd argument
238 dsLExpr e1 `thenDs` \ x_core ->
239 dsLExpr e2 `thenDs` \ y_core ->
240 returnDs (mkDsApps core_op [x_core, y_core])
242 dsExpr (SectionL expr op) -- Desugar (e !) to ((!) e)
243 = dsLExpr op `thenDs` \ core_op ->
244 dsLExpr expr `thenDs` \ x_core ->
245 returnDs (mkDsApp core_op x_core)
247 -- dsLExpr (SectionR op expr) -- \ x -> op x expr
248 dsExpr (SectionR op expr)
249 = dsLExpr op `thenDs` \ core_op ->
250 -- for the type of x, we need the type of op's 2nd argument
252 (x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
253 -- See comment with SectionL
255 dsLExpr expr `thenDs` \ y_core ->
256 newSysLocalDs x_ty `thenDs` \ x_id ->
257 newSysLocalDs y_ty `thenDs` \ y_id ->
259 returnDs (bindNonRec y_id y_core $
260 Lam x_id (mkDsApps core_op [Var x_id, Var y_id]))
262 dsExpr (HsSCC cc expr)
263 = dsLExpr expr `thenDs` \ core_expr ->
264 getModuleDs `thenDs` \ mod_name ->
265 returnDs (Note (SCC (mkUserCC cc mod_name)) core_expr)
268 -- hdaume: core annotation
270 dsExpr (HsCoreAnn fs expr)
271 = dsLExpr expr `thenDs` \ core_expr ->
272 returnDs (Note (CoreNote $ unpackFS fs) core_expr)
274 dsExpr (HsCase discrim matches)
275 = dsLExpr discrim `thenDs` \ core_discrim ->
276 matchWrapper CaseAlt matches `thenDs` \ ([discrim_var], matching_code) ->
277 returnDs (scrungleMatch discrim_var core_discrim matching_code)
279 -- Pepe: The binds are in scope in the body but NOT in the binding group
280 -- This is to avoid silliness in breakpoints
281 dsExpr (HsLet binds body)
282 = dsLExpr body `thenDs` \ body' ->
283 dsLocalBinds binds body'
285 -- We need the `ListComp' form to use `deListComp' (rather than the "do" form)
286 -- because the interpretation of `stmts' depends on what sort of thing it is.
288 dsExpr (HsDo ListComp stmts body result_ty)
289 = -- Special case for list comprehensions
290 dsListComp stmts body elt_ty
292 [elt_ty] = tcTyConAppArgs result_ty
294 dsExpr (HsDo DoExpr stmts body result_ty)
295 = dsDo stmts body result_ty
297 dsExpr (HsDo (MDoExpr tbl) stmts body result_ty)
298 = dsMDo tbl stmts body result_ty
300 dsExpr (HsDo PArrComp stmts body result_ty)
301 = -- Special case for array comprehensions
302 dsPArrComp (map unLoc stmts) body elt_ty
304 [elt_ty] = tcTyConAppArgs result_ty
306 dsExpr (HsIf guard_expr then_expr else_expr)
307 = dsLExpr guard_expr `thenDs` \ core_guard ->
308 dsLExpr then_expr `thenDs` \ core_then ->
309 dsLExpr else_expr `thenDs` \ core_else ->
310 returnDs (mkIfThenElse core_guard core_then core_else)
315 \underline{\bf Various data construction things}
316 % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
318 dsExpr (ExplicitList ty xs)
321 go [] = returnDs (mkNilExpr ty)
322 go (x:xs) = dsLExpr x `thenDs` \ core_x ->
323 go xs `thenDs` \ core_xs ->
324 returnDs (mkConsExpr ty core_x core_xs)
326 -- we create a list from the array elements and convert them into a list using
329 -- * the main disadvantage to this scheme is that `toP' traverses the list
330 -- twice: once to determine the length and a second time to put to elements
331 -- into the array; this inefficiency could be avoided by exposing some of
332 -- the innards of `PrelPArr' to the compiler (ie, have a `PrelPArrBase') so
333 -- that we can exploit the fact that we already know the length of the array
334 -- here at compile time
336 dsExpr (ExplicitPArr ty xs)
337 = dsLookupGlobalId toPName `thenDs` \toP ->
338 dsExpr (ExplicitList ty xs) `thenDs` \coreList ->
339 returnDs (mkApps (Var toP) [Type ty, coreList])
341 dsExpr (ExplicitTuple expr_list boxity)
342 = mappM dsLExpr expr_list `thenDs` \ core_exprs ->
343 returnDs (mkConApp (tupleCon boxity (length expr_list))
344 (map (Type . exprType) core_exprs ++ core_exprs))
346 dsExpr (ArithSeq expr (From from))
347 = dsExpr expr `thenDs` \ expr2 ->
348 dsLExpr from `thenDs` \ from2 ->
349 returnDs (App expr2 from2)
351 dsExpr (ArithSeq expr (FromTo from two))
352 = dsExpr expr `thenDs` \ expr2 ->
353 dsLExpr from `thenDs` \ from2 ->
354 dsLExpr two `thenDs` \ two2 ->
355 returnDs (mkApps expr2 [from2, two2])
357 dsExpr (ArithSeq expr (FromThen from thn))
358 = dsExpr expr `thenDs` \ expr2 ->
359 dsLExpr from `thenDs` \ from2 ->
360 dsLExpr thn `thenDs` \ thn2 ->
361 returnDs (mkApps expr2 [from2, thn2])
363 dsExpr (ArithSeq expr (FromThenTo from thn two))
364 = dsExpr expr `thenDs` \ expr2 ->
365 dsLExpr from `thenDs` \ from2 ->
366 dsLExpr thn `thenDs` \ thn2 ->
367 dsLExpr two `thenDs` \ two2 ->
368 returnDs (mkApps expr2 [from2, thn2, two2])
370 dsExpr (PArrSeq expr (FromTo from two))
371 = dsExpr expr `thenDs` \ expr2 ->
372 dsLExpr from `thenDs` \ from2 ->
373 dsLExpr two `thenDs` \ two2 ->
374 returnDs (mkApps expr2 [from2, two2])
376 dsExpr (PArrSeq expr (FromThenTo from thn two))
377 = dsExpr expr `thenDs` \ expr2 ->
378 dsLExpr from `thenDs` \ from2 ->
379 dsLExpr thn `thenDs` \ thn2 ->
380 dsLExpr two `thenDs` \ two2 ->
381 returnDs (mkApps expr2 [from2, thn2, two2])
383 dsExpr (PArrSeq expr _)
384 = panic "DsExpr.dsExpr: Infinite parallel array!"
385 -- the parser shouldn't have generated it and the renamer and typechecker
386 -- shouldn't have let it through
390 \underline{\bf Record construction and update}
391 % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
392 For record construction we do this (assuming T has three arguments)
396 let err = /\a -> recConErr a
397 T (recConErr t1 "M.lhs/230/op1")
399 (recConErr t1 "M.lhs/230/op3")
401 @recConErr@ then converts its arugment string into a proper message
402 before printing it as
404 M.lhs, line 230: missing field op1 was evaluated
407 We also handle @C{}@ as valid construction syntax for an unlabelled
408 constructor @C@, setting all of @C@'s fields to bottom.
411 dsExpr (RecordCon (L _ data_con_id) con_expr rbinds)
412 = dsExpr con_expr `thenDs` \ con_expr' ->
414 (arg_tys, _) = tcSplitFunTys (exprType con_expr')
415 -- A newtype in the corner should be opaque;
416 -- hence TcType.tcSplitFunTys
418 mk_arg (arg_ty, lbl) -- Selector id has the field label as its name
419 = case findField (rec_flds rbinds) lbl of
420 (rhs:rhss) -> ASSERT( null rhss )
422 [] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (showSDoc (ppr lbl))
423 unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty ""
425 labels = dataConFieldLabels (idDataCon data_con_id)
426 -- The data_con_id is guaranteed to be the wrapper id of the constructor
430 then mappM unlabelled_bottom arg_tys
431 else mappM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels))
432 `thenDs` \ con_args ->
434 returnDs (mkApps con_expr' con_args)
437 Record update is a little harder. Suppose we have the decl:
439 data T = T1 {op1, op2, op3 :: Int}
440 | T2 {op4, op2 :: Int}
443 Then we translate as follows:
449 T1 op1 _ op3 -> T1 op1 op2 op3
450 T2 op4 _ -> T2 op4 op2
451 other -> recUpdError "M.lhs/230"
453 It's important that we use the constructor Ids for @T1@, @T2@ etc on the
454 RHSs, and do not generate a Core constructor application directly, because the constructor
455 might do some argument-evaluation first; and may have to throw away some
459 dsExpr expr@(RecordUpd record_expr (HsRecFields { rec_flds = fields })
460 cons_to_upd in_inst_tys out_inst_tys)
462 = dsLExpr record_expr
464 = -- Record stuff doesn't work for existentials
465 -- The type checker checks for this, but we need
466 -- worry only about the constructors that are to be updated
467 ASSERT2( notNull cons_to_upd && all isVanillaDataCon cons_to_upd, ppr expr )
469 do { record_expr' <- dsLExpr record_expr
470 ; let -- Awkwardly, for families, the match goes
471 -- from instance type to family type
472 tycon = dataConTyCon (head cons_to_upd)
473 in_ty = mkTyConApp tycon in_inst_tys
474 in_out_ty = mkFunTy in_ty
475 (mkFamilyTyConApp tycon out_inst_tys)
477 mk_val_arg field old_arg_id
478 = case findField fields field of
479 (rhs:rest) -> ASSERT(null rest) rhs
480 [] -> nlHsVar old_arg_id
483 = ASSERT( isVanillaDataCon con )
484 do { arg_ids <- newSysLocalsDs (dataConInstOrigArgTys con in_inst_tys)
485 -- This call to dataConInstOrigArgTys won't work for existentials
486 -- but existentials don't have record types anyway
487 ; let val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg
488 (dataConFieldLabels con) arg_ids
489 rhs = foldl (\a b -> nlHsApp a b)
490 (nlHsTyApp (dataConWrapId con) out_inst_tys)
492 pat = mkPrefixConPat con (map nlVarPat arg_ids) in_ty
494 ; return (mkSimpleMatch [pat] rhs) }
496 -- It's important to generate the match with matchWrapper,
497 -- and the right hand sides with applications of the wrapper Id
498 -- so that everything works when we are doing fancy unboxing on the
499 -- constructor aguments.
500 ; alts <- mapM mk_alt cons_to_upd
501 ; ([discrim_var], matching_code) <- matchWrapper RecUpd (MatchGroup alts in_out_ty)
503 ; return (bindNonRec discrim_var record_expr' matching_code) }
506 Here is where we desugar the Template Haskell brackets and escapes
509 -- Template Haskell stuff
511 #ifdef GHCI /* Only if bootstrapping */
512 dsExpr (HsBracketOut x ps) = dsBracket x ps
513 dsExpr (HsSpliceE s) = pprPanic "dsExpr:splice" (ppr s)
516 -- Arrow notation extension
517 dsExpr (HsProc pat cmd) = dsProcExpr pat cmd
523 dsExpr (HsTick ix vars e) = do
527 -- There is a problem here. The then and else branches
528 -- have no free variables, so they are open to lifting.
529 -- We need someway of stopping this.
530 -- This will make no difference to binary coverage
531 -- (did you go here: YES or NO), but will effect accurate
534 dsExpr (HsBinTick ixT ixF e) = do
536 do { ASSERT(exprType e2 `coreEqType` boolTy)
537 mkBinaryTickBox ixT ixF e2
544 -- HsSyn constructs that just shouldn't be here:
545 dsExpr (ExprWithTySig _ _) = panic "dsExpr:ExprWithTySig"
549 findField :: [HsRecField Id arg] -> Name -> [arg]
551 = [rhs | HsRecField { hsRecFieldId = id, hsRecFieldArg = rhs } <- rbinds
552 , lbl == idName (unLoc id) ]
555 %--------------------------------------------------------------------
557 Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're
558 handled in DsListComp). Basically does the translation given in the
564 -> Type -- Type of the whole expression
567 dsDo stmts body result_ty
568 = go (map unLoc stmts)
572 go (ExprStmt rhs then_expr _ : stmts)
573 = do { rhs2 <- dsLExpr rhs
574 ; then_expr2 <- dsExpr then_expr
576 ; returnDs (mkApps then_expr2 [rhs2, rest]) }
578 go (LetStmt binds : stmts)
579 = do { rest <- go stmts
580 ; dsLocalBinds binds rest }
582 go (BindStmt pat rhs bind_op fail_op : stmts)
584 do { body <- go stmts
585 ; var <- selectSimpleMatchVarL pat
586 ; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat
587 result_ty (cantFailMatchResult body)
588 ; match_code <- handle_failure pat match fail_op
589 ; rhs' <- dsLExpr rhs
590 ; bind_op' <- dsExpr bind_op
591 ; returnDs (mkApps bind_op' [rhs', Lam var match_code]) }
593 -- In a do expression, pattern-match failure just calls
594 -- the monadic 'fail' rather than throwing an exception
595 handle_failure pat match fail_op
597 = do { fail_op' <- dsExpr fail_op
598 ; fail_msg <- mkStringExpr (mk_fail_msg pat)
599 ; extractMatchResult match (App fail_op' fail_msg) }
601 = extractMatchResult match (error "It can't fail")
603 mk_fail_msg pat = "Pattern match failure in do expression at " ++
604 showSDoc (ppr (getLoc pat))
607 Translation for RecStmt's:
608 -----------------------------
609 We turn (RecStmt [v1,..vn] stmts) into:
611 (v1,..,vn) <- mfix (\~(v1,..vn). do stmts
618 -> Type -- Type of the whole expression
621 dsMDo tbl stmts body result_ty
622 = go (map unLoc stmts)
624 (m_ty, b_ty) = tcSplitAppTy result_ty -- result_ty must be of the form (m b)
625 mfix_id = lookupEvidence tbl mfixName
626 return_id = lookupEvidence tbl returnMName
627 bind_id = lookupEvidence tbl bindMName
628 then_id = lookupEvidence tbl thenMName
629 fail_id = lookupEvidence tbl failMName
634 go (LetStmt binds : stmts)
635 = do { rest <- go stmts
636 ; dsLocalBinds binds rest }
638 go (ExprStmt rhs _ rhs_ty : stmts)
639 = do { rhs2 <- dsLExpr rhs
641 ; returnDs (mkApps (Var then_id) [Type rhs_ty, Type b_ty, rhs2, rest]) }
643 go (BindStmt pat rhs _ _ : stmts)
644 = do { body <- go stmts
645 ; var <- selectSimpleMatchVarL pat
646 ; match <- matchSinglePat (Var var) (StmtCtxt ctxt) pat
647 result_ty (cantFailMatchResult body)
648 ; fail_msg <- mkStringExpr (mk_fail_msg pat)
649 ; let fail_expr = mkApps (Var fail_id) [Type b_ty, fail_msg]
650 ; match_code <- extractMatchResult match fail_expr
652 ; rhs' <- dsLExpr rhs
653 ; returnDs (mkApps (Var bind_id) [Type (hsLPatType pat), Type b_ty,
654 rhs', Lam var match_code]) }
656 go (RecStmt rec_stmts later_ids rec_ids rec_rets binds : stmts)
657 = ASSERT( length rec_ids > 0 )
658 ASSERT( length rec_ids == length rec_rets )
659 go (new_bind_stmt : let_stmt : stmts)
661 new_bind_stmt = mkBindStmt (mk_tup_pat later_pats) mfix_app
662 let_stmt = LetStmt (HsValBinds (ValBindsOut [(Recursive, binds)] []))
665 -- Remove the later_ids that appear (without fancy coercions)
666 -- in rec_rets, because there's no need to knot-tie them separately
667 -- See Note [RecStmt] in HsExpr
668 later_ids' = filter (`notElem` mono_rec_ids) later_ids
669 mono_rec_ids = [ id | HsVar id <- rec_rets ]
671 mfix_app = nlHsApp (nlHsTyApp mfix_id [tup_ty]) mfix_arg
672 mfix_arg = noLoc $ HsLam (MatchGroup [mkSimpleMatch [mfix_pat] body]
673 (mkFunTy tup_ty body_ty))
675 -- The rec_tup_pat must bind the rec_ids only; remember that the
676 -- trimmed_laters may share the same Names
677 -- Meanwhile, the later_pats must bind the later_vars
678 rec_tup_pats = map mk_wild_pat later_ids' ++ map nlVarPat rec_ids
679 later_pats = map nlVarPat later_ids' ++ map mk_later_pat rec_ids
680 rets = map nlHsVar later_ids' ++ map noLoc rec_rets
682 mfix_pat = noLoc $ LazyPat $ mk_tup_pat rec_tup_pats
683 body = noLoc $ HsDo ctxt rec_stmts return_app body_ty
684 body_ty = mkAppTy m_ty tup_ty
685 tup_ty = mkCoreTupTy (map idType (later_ids' ++ rec_ids))
686 -- mkCoreTupTy deals with singleton case
688 return_app = nlHsApp (nlHsTyApp return_id [tup_ty])
691 mk_wild_pat :: Id -> LPat Id
692 mk_wild_pat v = noLoc $ WildPat $ idType v
694 mk_later_pat :: Id -> LPat Id
695 mk_later_pat v | v `elem` later_ids' = mk_wild_pat v
696 | otherwise = nlVarPat v
698 mk_tup_pat :: [LPat Id] -> LPat Id
700 mk_tup_pat ps = noLoc $ mkVanillaTuplePat ps Boxed
702 mk_ret_tup :: [LHsExpr Id] -> LHsExpr Id
704 mk_ret_tup rs = noLoc $ ExplicitTuple rs Boxed