2 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 \section{Tidying up Core}
7 module TidyPgm( mkBootModDetailsDs, mkBootModDetailsTc,
8 tidyProgram, globaliseAndTidyId ) where
10 #include "HsVersions.h"
22 import CoreArity ( exprArity )
23 import Class ( classSelIds )
46 import FastBool hiding ( fastOr )
48 import Data.List ( partition )
49 import Data.Maybe ( isJust )
50 import Data.IORef ( IORef, readIORef, writeIORef )
54 Constructing the TypeEnv, Instances, Rules from which the ModIface is
55 constructed, and which goes on to subsequent modules in --make mode.
57 Most of the interface file is obtained simply by serialising the
58 TypeEnv. One important consequence is that if the *interface file*
59 has pragma info if and only if the final TypeEnv does. This is not so
60 important for *this* module, but it's essential for ghc --make:
61 subsequent compilations must not see (e.g.) the arity if the interface
62 file does not contain arity If they do, they'll exploit the arity;
63 then the arity might change, but the iface file doesn't change =>
64 recompilation does not happen => disaster.
66 For data types, the final TypeEnv will have a TyThing for the TyCon,
67 plus one for each DataCon; the interface file will contain just one
68 data type declaration, but it is de-serialised back into a collection
71 %************************************************************************
75 %************************************************************************
78 Plan A: mkBootModDetails: omit pragmas, make interfaces small
79 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
82 * Drop all WiredIn things from the TypeEnv
83 (we never want them in interface files)
85 * Retain all TyCons and Classes in the TypeEnv, to avoid
86 having to find which ones are mentioned in the
89 * Trim off the constructors of non-exported TyCons, both
90 from the TyCon and from the TypeEnv
92 * Drop non-exported Ids from the TypeEnv
94 * Tidy the types of the DFunIds of Instances,
95 make them into GlobalIds, (they already have External Names)
96 and add them to the TypeEnv
98 * Tidy the types of the (exported) Ids in the TypeEnv,
99 make them into GlobalIds (they already have External Names)
101 * Drop rules altogether
103 * Tidy the bindings, to ensure that the Caf and Arity
104 information is correct for each top-level binder; the
105 code generator needs it. And to ensure that local names have
106 distinct OccNames in case of object-file splitting
109 -- This is Plan A: make a small type env when typechecking only,
110 -- or when compiling a hs-boot file, or simply when not using -O
112 -- We don't look at the bindings at all -- there aren't any
115 mkBootModDetailsTc :: HscEnv -> TcGblEnv -> IO ModDetails
116 mkBootModDetailsTc hsc_env
117 TcGblEnv{ tcg_exports = exports,
118 tcg_type_env = type_env,
120 tcg_fam_insts = fam_insts
122 = mkBootModDetails hsc_env exports type_env insts fam_insts
124 mkBootModDetailsDs :: HscEnv -> ModGuts -> IO ModDetails
125 mkBootModDetailsDs hsc_env
126 ModGuts{ mg_exports = exports,
129 mg_fam_insts = fam_insts
131 = mkBootModDetails hsc_env exports type_env insts fam_insts
133 mkBootModDetails :: HscEnv -> [AvailInfo] -> NameEnv TyThing
134 -> [Instance] -> [FamInstEnv.FamInst] -> IO ModDetails
135 mkBootModDetails hsc_env exports type_env insts fam_insts
136 = do { let dflags = hsc_dflags hsc_env
137 ; showPass dflags "Tidy [hoot] type env"
139 ; let { insts' = tidyInstances globaliseAndTidyId insts
140 ; dfun_ids = map instanceDFunId insts'
141 ; type_env1 = tidyBootTypeEnv (availsToNameSet exports) type_env
142 ; type_env' = extendTypeEnvWithIds type_env1 dfun_ids
144 ; return (ModDetails { md_types = type_env'
146 , md_fam_insts = fam_insts
149 , md_exports = exports
150 , md_vect_info = noVectInfo
155 tidyBootTypeEnv :: NameSet -> TypeEnv -> TypeEnv
156 tidyBootTypeEnv exports type_env
157 = tidyTypeEnv True False exports type_env final_ids
159 -- Find the LocalIds in the type env that are exported
160 -- Make them into GlobalIds, and tidy their types
162 -- It's very important to remove the non-exported ones
163 -- because we don't tidy the OccNames, and if we don't remove
164 -- the non-exported ones we'll get many things with the
165 -- same name in the interface file, giving chaos.
166 final_ids = [ globaliseAndTidyId id
167 | id <- typeEnvIds type_env
171 -- default methods have their export flag set, but everything
172 -- else doesn't (yet), because this is pre-desugaring, so we
174 keep_it id = isExportedId id || idName id `elemNameSet` exports
178 globaliseAndTidyId :: Id -> Id
179 -- Takes an LocalId with an External Name,
180 -- makes it into a GlobalId
181 -- * unchanged Name (might be Internal or External)
182 -- * unchanged details
183 -- * VanillaIdInfo (makes a conservative assumption about Caf-hood)
184 globaliseAndTidyId id
185 = Id.setIdType (globaliseId id) tidy_type
187 tidy_type = tidyTopType (idType id)
191 %************************************************************************
193 Plan B: tidy bindings, make TypeEnv full of IdInfo
195 %************************************************************************
197 Plan B: include pragmas, make interfaces
198 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
199 * Figure out which Ids are externally visible
201 * Tidy the bindings, externalising appropriate Ids
203 * Drop all Ids from the TypeEnv, and add all the External Ids from
204 the bindings. (This adds their IdInfo to the TypeEnv; and adds
205 floated-out Ids that weren't even in the TypeEnv before.)
207 Step 1: Figure out external Ids
208 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
209 First we figure out which Ids are "external" Ids. An
210 "external" Id is one that is visible from outside the compilation
212 a) the user exported ones
213 b) ones mentioned in the unfoldings, workers,
214 or rules of externally-visible ones
215 This exercise takes a sweep of the bindings bottom to top. Actually,
216 in Step 2 we're also going to need to know which Ids should be
217 exported with their unfoldings, so we produce not an IdSet but an
221 Step 2: Tidy the program
222 ~~~~~~~~~~~~~~~~~~~~~~~~
223 Next we traverse the bindings top to bottom. For each *top-level*
226 1. Make it into a GlobalId; its IdDetails becomes VanillaGlobal,
227 reflecting the fact that from now on we regard it as a global,
230 2. Give it a system-wide Unique.
231 [Even non-exported things need system-wide Uniques because the
232 byte-code generator builds a single Name->BCO symbol table.]
234 We use the NameCache kept in the HscEnv as the
235 source of such system-wide uniques.
237 For external Ids, use the original-name cache in the NameCache
238 to ensure that the unique assigned is the same as the Id had
239 in any previous compilation run.
241 3. If it's an external Id, make it have a External Name, otherwise
242 make it have an Internal Name.
243 This is used by the code generator to decide whether
244 to make the label externally visible
246 4. Give external Ids a "tidy" OccName. This means
247 we can print them in interface files without confusing
248 "x" (unique 5) with "x" (unique 10).
250 5. Give it its UTTERLY FINAL IdInfo; in ptic,
251 * its unfolding, if it should have one
253 * its arity, computed from the number of visible lambdas
255 * its CAF info, computed from what is free in its RHS
258 Finally, substitute these new top-level binders consistently
259 throughout, including in unfoldings. We also tidy binders in
260 RHSs, so that they print nicely in interfaces.
263 tidyProgram :: HscEnv -> ModGuts -> IO (CgGuts, ModDetails)
264 tidyProgram hsc_env (ModGuts { mg_module = mod, mg_exports = exports,
266 mg_insts = insts, mg_fam_insts = fam_insts,
268 mg_rules = imp_rules,
269 mg_vect_info = vect_info,
270 mg_dir_imps = dir_imps,
273 mg_foreign = foreign_stubs,
274 mg_hpc_info = hpc_info,
275 mg_modBreaks = modBreaks })
277 = do { let dflags = hsc_dflags hsc_env
278 ; showPass dflags "Tidy Core"
280 ; let { omit_prags = dopt Opt_OmitInterfacePragmas dflags
281 ; th = dopt Opt_TemplateHaskell dflags
282 ; ext_ids = findExternalIds omit_prags binds
285 | otherwise = findExternalRules binds imp_rules ext_ids
286 -- findExternalRules filters imp_rules to avoid binders that
287 -- aren't externally visible; but the externally-visible binders
288 -- are computed (by findExternalIds) assuming that all orphan
289 -- rules are exported (they get their Exported flag set in the desugarer)
290 -- So in fact we may export more than we need.
291 -- (It's a sort of mutual recursion.)
294 ; (tidy_env, tidy_binds) <- tidyTopBinds hsc_env mod type_env ext_ids
297 ; let { export_set = availsToNameSet exports
298 ; final_ids = [ id | id <- bindersOfBinds tidy_binds,
299 isExternalName (idName id)]
300 ; tidy_type_env = tidyTypeEnv omit_prags th export_set
302 ; tidy_insts = tidyInstances (lookup_dfun tidy_type_env) insts
303 -- A DFunId will have a binding in tidy_binds, and so
304 -- will now be in final_env, replete with IdInfo
305 -- Its name will be unchanged since it was born, but
306 -- we want Global, IdInfo-rich (or not) DFunId in the
309 ; tidy_rules = tidyRules tidy_env ext_rules
310 -- You might worry that the tidy_env contains IdInfo-rich stuff
311 -- and indeed it does, but if omit_prags is on, ext_rules is
314 -- See Note [Injecting implicit bindings]
315 ; implicit_binds = getImplicitBinds type_env
316 ; all_tidy_binds = implicit_binds ++ tidy_binds
318 ; alg_tycons = filter isAlgTyCon (typeEnvTyCons type_env)
321 ; endPass dflags "Tidy Core" Opt_D_dump_simpl all_tidy_binds
322 ; dumpIfSet_core dflags Opt_D_dump_simpl
324 (pprRules tidy_rules)
326 ; let dir_imp_mods = moduleEnvKeys dir_imps
328 ; return (CgGuts { cg_module = mod,
329 cg_tycons = alg_tycons,
330 cg_binds = all_tidy_binds,
331 cg_dir_imps = dir_imp_mods,
332 cg_foreign = foreign_stubs,
333 cg_dep_pkgs = dep_pkgs deps,
334 cg_hpc_info = hpc_info,
335 cg_modBreaks = modBreaks },
337 ModDetails { md_types = tidy_type_env,
338 md_rules = tidy_rules,
339 md_insts = tidy_insts,
340 md_fam_insts = fam_insts,
341 md_exports = exports,
342 md_anns = anns, -- are already tidy
343 md_vect_info = vect_info --
347 lookup_dfun :: TypeEnv -> Var -> Id
348 lookup_dfun type_env dfun_id
349 = case lookupTypeEnv type_env (idName dfun_id) of
350 Just (AnId dfun_id') -> dfun_id'
351 _other -> pprPanic "lookup_dfun" (ppr dfun_id)
353 --------------------------
354 tidyTypeEnv :: Bool -- Compiling without -O, so omit prags
355 -> Bool -- Template Haskell is on
356 -> NameSet -> TypeEnv -> [Id] -> TypeEnv
358 -- The competed type environment is gotten from
359 -- Dropping any wired-in things, and then
360 -- a) keeping the types and classes
361 -- b) removing all Ids,
362 -- c) adding Ids with correct IdInfo, including unfoldings,
363 -- gotten from the bindings
364 -- From (c) we keep only those Ids with External names;
365 -- the CoreTidy pass makes sure these are all and only
366 -- the externally-accessible ones
367 -- This truncates the type environment to include only the
368 -- exported Ids and things needed from them, which saves space
370 tidyTypeEnv omit_prags th exports type_env final_ids
371 = let type_env1 = filterNameEnv keep_it type_env
372 type_env2 = extendTypeEnvWithIds type_env1 final_ids
373 type_env3 | omit_prags = mapNameEnv (trimThing th exports) type_env2
374 | otherwise = type_env2
378 -- We keep GlobalIds, because they won't appear
379 -- in the bindings from which final_ids are derived!
380 -- (The bindings bind LocalIds.)
381 keep_it thing | isWiredInThing thing = False
382 keep_it (AnId id) = isGlobalId id -- Keep GlobalIds (e.g. class ops)
383 keep_it _other = True -- Keep all TyCons, DataCons, and Classes
385 --------------------------
386 isWiredInThing :: TyThing -> Bool
387 isWiredInThing thing = isWiredInName (getName thing)
389 --------------------------
390 trimThing :: Bool -> NameSet -> TyThing -> TyThing
391 -- Trim off inessentials, for boot files and no -O
392 trimThing th exports (ATyCon tc)
393 | not th && not (mustExposeTyCon exports tc)
394 = ATyCon (makeTyConAbstract tc) -- Note [Trimming and Template Haskell]
396 trimThing _th _exports (AnId id)
397 | not (isImplicitId id)
398 = AnId (id `setIdInfo` vanillaIdInfo)
400 trimThing _th _exports other_thing
404 {- Note [Trimming and Template Haskell]
405 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
406 Consider (Trac #2386) this
407 module M(T, makeOne) where
409 makeOne = [| Yay "Yep" |]
410 Notice that T is exported abstractly, but makeOne effectively exports it too!
411 A module that splices in $(makeOne) will then look for a declartion of Yay,
412 so it'd better be there. Hence, brutally but simply, we switch off type
413 constructor trimming if TH is enabled in this module. -}
416 mustExposeTyCon :: NameSet -- Exports
417 -> TyCon -- The tycon
418 -> Bool -- Can its rep be hidden?
419 -- We are compiling without -O, and thus trying to write as little as
420 -- possible into the interface file. But we must expose the details of
421 -- any data types whose constructors or fields are exported
422 mustExposeTyCon exports tc
423 | not (isAlgTyCon tc) -- Synonyms
425 | isEnumerationTyCon tc -- For an enumeration, exposing the constructors
426 = True -- won't lead to the need for further exposure
427 -- (This includes data types with no constructors.)
428 | isOpenTyCon tc -- Open type family
431 | otherwise -- Newtype, datatype
432 = any exported_con (tyConDataCons tc)
433 -- Expose rep if any datacon or field is exported
435 || (isNewTyCon tc && isFFITy (snd (newTyConRhs tc)))
436 -- Expose the rep for newtypes if the rep is an FFI type.
437 -- For a very annoying reason. 'Foreign import' is meant to
438 -- be able to look through newtypes transparently, but it
439 -- can only do that if it can "see" the newtype representation
441 exported_con con = any (`elemNameSet` exports)
442 (dataConName con : dataConFieldLabels con)
444 tidyInstances :: (DFunId -> DFunId) -> [Instance] -> [Instance]
445 tidyInstances tidy_dfun ispecs
448 tidy ispec = setInstanceDFunId ispec $
449 tidy_dfun (instanceDFunId ispec)
453 %************************************************************************
457 %************************************************************************
459 Note [Injecting implicit bindings]
460 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
461 We inject the implict bindings right at the end, in CoreTidy.
462 Some of these bindings, notably record selectors, are not
463 constructed in an optimised form. E.g. record selector for
464 data T = MkT { x :: {-# UNPACK #-} !Int }
465 Then the unfolding looks like
466 x = \t. case t of MkT x1 -> let x = I# x1 in x
467 This generates bad code unless it's first simplified a bit. That is
468 why CoreUnfold.mkImplicitUnfolding uses simleExprOpt to do a bit of
469 optimisation first. (Only matters when the selector is used curried;
470 eg map x ys.) See Trac #2070.
472 At one time I tried injecting the implicit bindings *early*, at the
473 beginning of SimplCore. But that gave rise to real difficulty,
474 becuase GlobalIds are supposed to have *fixed* IdInfo, but the
475 simplifier and other core-to-core passes mess with IdInfo all the
476 time. The straw that broke the camels back was when a class selector
477 got the wrong arity -- ie the simplifier gave it arity 2, whereas
478 importing modules were expecting it to have arity 1 (Trac #2844).
479 It's much safer just to inject them right at the end, after tidying.
481 Oh: two other reasons for injecting them late:
482 - If implicit Ids are already in the bindings when we start TidyPgm,
483 we'd have to be careful not to treat them as external Ids (in
484 the sense of findExternalIds); else the Ids mentioned in *their*
485 RHSs will be treated as external and you get an interface file
487 but nothing refererring to a18 (because the implicit Id is the
490 - More seriously, the tidied type-envt will include the implicit
491 Id replete with a18 in its unfolding; but we won't take account
492 of a18 when computing a fingerprint for the class; result chaos.
496 getImplicitBinds :: TypeEnv -> [CoreBind]
497 getImplicitBinds type_env
498 = map get_defn (concatMap implicit_ids (typeEnvElts type_env))
500 implicit_ids (ATyCon tc) = mapCatMaybes dataConWrapId_maybe (tyConDataCons tc)
501 implicit_ids (AClass cls) = classSelIds cls
504 get_defn :: Id -> CoreBind
505 get_defn id = NonRec id (unfoldingTemplate (idUnfolding id))
509 %************************************************************************
511 \subsection{Step 1: finding externals}
513 %************************************************************************
516 findExternalIds :: Bool
518 -> IdEnv Bool -- In domain => external
519 -- Range = True <=> show unfolding
520 -- Step 1 from the notes above
521 findExternalIds omit_prags binds
523 = mkVarEnv [ (id,False) | id <- bindersOfBinds binds, isExportedId id ]
526 = foldr find emptyVarEnv binds
528 find (NonRec id rhs) needed
529 | need_id needed id = addExternal (id,rhs) needed
531 find (Rec prs) needed = find_prs prs needed
533 -- For a recursive group we have to look for a fixed point
535 | null needed_prs = needed
536 | otherwise = find_prs other_prs new_needed
538 (needed_prs, other_prs) = partition (need_pr needed) prs
539 new_needed = foldr addExternal needed needed_prs
541 -- The 'needed' set contains the Ids that are needed by earlier
542 -- interface file emissions. If the Id isn't in this set, and isn't
543 -- exported, there's no need to emit anything
544 need_id needed_set id = id `elemVarEnv` needed_set || isExportedId id
545 need_pr needed_set (id,_) = need_id needed_set id
547 addExternal :: (Id,CoreExpr) -> IdEnv Bool -> IdEnv Bool
548 -- The Id is needed; extend the needed set
549 -- with it and its dependents (free vars etc)
550 addExternal (id,rhs) needed
551 = extendVarEnv (foldVarSet add_occ needed new_needed_ids)
554 add_occ id needed | id `elemVarEnv` needed = needed
555 | otherwise = extendVarEnv needed id False
556 -- "False" because we don't know we need the Id's unfolding
557 -- Don't override existing bindings; we might have already set it to True
559 new_needed_ids = worker_ids `unionVarSet`
560 unfold_ids `unionVarSet`
564 dont_inline = isNeverActive (inlinePragmaActivation (inlinePragInfo idinfo))
565 loop_breaker = isNonRuleLoopBreaker (occInfo idinfo)
566 bottoming_fn = isBottomingSig (newStrictnessInfo idinfo `orElse` topSig)
567 spec_ids = specInfoFreeVars (specInfo idinfo)
568 worker_info = workerInfo idinfo
570 -- Stuff to do with the Id's unfolding
571 -- The simplifier has put an up-to-date unfolding
572 -- in the IdInfo, but the RHS will do just as well
573 unfolding = unfoldingInfo idinfo
574 rhs_is_small = not (neverUnfold unfolding)
576 -- We leave the unfolding there even if there is a worker
577 -- In GHCI the unfolding is used by importers
578 -- When writing an interface file, we omit the unfolding
579 -- if there is a worker
580 show_unfold = not bottoming_fn && -- Not necessary
583 rhs_is_small -- Small enough
585 unfold_ids | show_unfold = exprSomeFreeVars isLocalId rhs
586 | otherwise = emptyVarSet
588 worker_ids = case worker_info of
589 HasWorker work_id _ -> unitVarSet work_id
590 _otherwise -> emptyVarSet
595 findExternalRules :: [CoreBind]
596 -> [CoreRule] -- Non-local rules (i.e. ones for imported fns)
597 -> IdEnv a -- Ids that are exported, so we need their rules
599 -- The complete rules are gotten by combining
600 -- a) the non-local rules
601 -- b) rules embedded in the top-level Ids
602 findExternalRules binds non_local_rules ext_ids
603 = filter (not . internal_rule) (non_local_rules ++ local_rules)
606 | id <- bindersOfBinds binds,
607 id `elemVarEnv` ext_ids,
608 rule <- idCoreRules id
612 = any internal_id (varSetElems (ruleLhsFreeIds rule))
613 -- Don't export a rule whose LHS mentions a locally-defined
614 -- Id that is completely internal (i.e. not visible to an
617 internal_id id = not (id `elemVarEnv` ext_ids)
622 %************************************************************************
624 \subsection{Step 2: top-level tidying}
626 %************************************************************************
630 -- TopTidyEnv: when tidying we need to know
631 -- * nc_var: The NameCache, containing a unique supply and any pre-ordained Names.
632 -- These may have arisen because the
633 -- renamer read in an interface file mentioning M.$wf, say,
634 -- and assigned it unique r77. If, on this compilation, we've
635 -- invented an Id whose name is $wf (but with a different unique)
636 -- we want to rename it to have unique r77, so that we can do easy
637 -- comparisons with stuff from the interface file
639 -- * occ_env: The TidyOccEnv, which tells us which local occurrences
642 -- * subst_env: A Var->Var mapping that substitutes the new Var for the old
644 tidyTopBinds :: HscEnv
647 -> IdEnv Bool -- Domain = Ids that should be external
648 -- True <=> their unfolding is external too
650 -> IO (TidyEnv, [CoreBind])
652 tidyTopBinds hsc_env mod type_env ext_ids binds
653 = tidy init_env binds
655 nc_var = hsc_NC hsc_env
657 -- We also make sure to avoid any exported binders. Consider
658 -- f{-u1-} = 1 -- Local decl
660 -- f{-u2-} = 2 -- Exported decl
662 -- The second exported decl must 'get' the name 'f', so we
663 -- have to put 'f' in the avoids list before we get to the first
664 -- decl. tidyTopId then does a no-op on exported binders.
665 init_env = (initTidyOccEnv avoids, emptyVarEnv)
666 avoids = [getOccName name | bndr <- typeEnvIds type_env,
667 let name = idName bndr,
669 -- In computing our "avoids" list, we must include
671 -- all things with global names (assigned once and for
672 -- all by the renamer)
673 -- since their names are "taken".
674 -- The type environment is a convenient source of such things.
676 this_pkg = thisPackage (hsc_dflags hsc_env)
678 tidy env [] = return (env, [])
679 tidy env (b:bs) = do { (env1, b') <- tidyTopBind this_pkg mod nc_var ext_ids env b
680 ; (env2, bs') <- tidy env1 bs
681 ; return (env2, b':bs') }
683 ------------------------
684 tidyTopBind :: PackageId
686 -> IORef NameCache -- For allocating new unique names
687 -> IdEnv Bool -- Domain = Ids that should be external
688 -- True <=> their unfolding is external too
689 -> TidyEnv -> CoreBind
690 -> IO (TidyEnv, CoreBind)
692 tidyTopBind this_pkg mod nc_var ext_ids (occ_env1,subst1) (NonRec bndr rhs)
693 = do { (occ_env2, name') <- tidyTopName mod nc_var ext_ids occ_env1 bndr
694 ; let { (bndr', rhs') = tidyTopPair ext_ids tidy_env2 caf_info name' (bndr, rhs)
695 ; subst2 = extendVarEnv subst1 bndr bndr'
696 ; tidy_env2 = (occ_env2, subst2) }
697 ; return (tidy_env2, NonRec bndr' rhs') }
699 caf_info = hasCafRefs this_pkg subst1 (idArity bndr) rhs
701 tidyTopBind this_pkg mod nc_var ext_ids (occ_env1,subst1) (Rec prs)
702 = do { (occ_env2, names') <- tidyTopNames mod nc_var ext_ids occ_env1 bndrs
703 ; let { prs' = zipWith (tidyTopPair ext_ids tidy_env2 caf_info)
705 ; subst2 = extendVarEnvList subst1 (bndrs `zip` map fst prs')
706 ; tidy_env2 = (occ_env2, subst2) }
707 ; return (tidy_env2, Rec prs') }
711 -- the CafInfo for a recursive group says whether *any* rhs in
712 -- the group may refer indirectly to a CAF (because then, they all do).
714 | or [ mayHaveCafRefs (hasCafRefs this_pkg subst1 (idArity bndr) rhs)
715 | (bndr,rhs) <- prs ] = MayHaveCafRefs
716 | otherwise = NoCafRefs
718 --------------------------------------------------------------------
720 -- This is where we set names to local/global based on whether they really are
721 -- externally visible (see comment at the top of this module). If the name
722 -- was previously local, we have to give it a unique occurrence name if
723 -- we intend to externalise it.
724 tidyTopNames :: Module -> IORef NameCache -> VarEnv Bool -> TidyOccEnv
725 -> [Id] -> IO (TidyOccEnv, [Name])
726 tidyTopNames _mod _nc_var _ext_ids occ_env [] = return (occ_env, [])
727 tidyTopNames mod nc_var ext_ids occ_env (id:ids)
728 = do { (occ_env1, name) <- tidyTopName mod nc_var ext_ids occ_env id
729 ; (occ_env2, names) <- tidyTopNames mod nc_var ext_ids occ_env1 ids
730 ; return (occ_env2, name:names) }
732 tidyTopName :: Module -> IORef NameCache -> VarEnv Bool -> TidyOccEnv
733 -> Id -> IO (TidyOccEnv, Name)
734 tidyTopName mod nc_var ext_ids occ_env id
735 | global && internal = return (occ_env, localiseName name)
737 | global && external = return (occ_env, name)
738 -- Global names are assumed to have been allocated by the renamer,
739 -- so they already have the "right" unique
740 -- And it's a system-wide unique too
742 -- Now we get to the real reason that all this is in the IO Monad:
743 -- we have to update the name cache in a nice atomic fashion
745 | local && internal = do { nc <- readIORef nc_var
746 ; let (nc', new_local_name) = mk_new_local nc
747 ; writeIORef nc_var nc'
748 ; return (occ_env', new_local_name) }
749 -- Even local, internal names must get a unique occurrence, because
750 -- if we do -split-objs we externalise the name later, in the code generator
752 -- Similarly, we must make sure it has a system-wide Unique, because
753 -- the byte-code generator builds a system-wide Name->BCO symbol table
755 | local && external = do { nc <- readIORef nc_var
756 ; let (nc', new_external_name) = mk_new_external nc
757 ; writeIORef nc_var nc'
758 ; return (occ_env', new_external_name) }
760 | otherwise = panic "tidyTopName"
763 external = id `elemVarEnv` ext_ids
764 global = isExternalName name
766 internal = not external
767 loc = nameSrcSpan name
769 (occ_env', occ') = tidyOccName occ_env (nameOccName name)
771 mk_new_local nc = (nc { nsUniqs = us2 }, mkInternalName uniq occ' loc)
773 (us1, us2) = splitUniqSupply (nsUniqs nc)
774 uniq = uniqFromSupply us1
776 mk_new_external nc = allocateGlobalBinder nc mod occ' loc
777 -- If we want to externalise a currently-local name, check
778 -- whether we have already assigned a unique for it.
779 -- If so, use it; if not, extend the table.
780 -- All this is done by allcoateGlobalBinder.
781 -- This is needed when *re*-compiling a module in GHCi; we must
782 -- use the same name for externally-visible things as we did before.
785 -----------------------------------------------------------
786 tidyTopPair :: VarEnv Bool
787 -> TidyEnv -- The TidyEnv is used to tidy the IdInfo
788 -- It is knot-tied: don't look at it!
791 -> (Id, CoreExpr) -- Binder and RHS before tidying
793 -- This function is the heart of Step 2
794 -- The rec_tidy_env is the one to use for the IdInfo
795 -- It's necessary because when we are dealing with a recursive
796 -- group, a variable late in the group might be mentioned
797 -- in the IdInfo of one early in the group
799 tidyTopPair ext_ids rhs_tidy_env caf_info name' (bndr, rhs)
802 bndr' = mkGlobalId details name' ty' idinfo'
803 details = idDetails bndr -- Preserve the IdDetails
804 ty' = tidyTopType (idType bndr)
805 rhs' = tidyExpr rhs_tidy_env rhs
807 idinfo' = tidyTopIdInfo (isJust maybe_external)
808 idinfo unfold_info worker_info
811 -- Expose an unfolding if ext_ids tells us to
812 -- Remember that ext_ids maps an Id to a Bool:
813 -- True to show the unfolding, False to hide it
814 maybe_external = lookupVarEnv ext_ids bndr
815 show_unfold = maybe_external `orElse` False
816 unfold_info | show_unfold = mkTopUnfolding rhs'
817 | otherwise = noUnfolding
818 worker_info = tidyWorker rhs_tidy_env show_unfold (workerInfo idinfo)
820 -- Usually the Id will have an accurate arity on it, because
821 -- the simplifier has just run, but not always.
822 -- One case I found was when the last thing the simplifier
823 -- did was to let-bind a non-atomic argument and then float
824 -- it to the top level. So it seems more robust just to
826 arity = exprArity rhs
829 -- tidyTopIdInfo creates the final IdInfo for top-level
830 -- binders. There are two delicate pieces:
832 -- * Arity. After CoreTidy, this arity must not change any more.
833 -- Indeed, CorePrep must eta expand where necessary to make
834 -- the manifest arity equal to the claimed arity.
836 -- * CAF info. This must also remain valid through to code generation.
837 -- We add the info here so that it propagates to all
838 -- occurrences of the binders in RHSs, and hence to occurrences in
839 -- unfoldings, which are inside Ids imported by GHCi. Ditto RULES.
840 -- CoreToStg makes use of this when constructing SRTs.
841 tidyTopIdInfo :: Bool -> IdInfo -> Unfolding
842 -> WorkerInfo -> ArityInfo -> CafInfo
844 tidyTopIdInfo is_external idinfo unfold_info worker_info arity caf_info
845 | not is_external -- For internal Ids (not externally visible)
846 = vanillaIdInfo -- we only need enough info for code generation
847 -- Arity and strictness info are enough;
848 -- c.f. CoreTidy.tidyLetBndr
849 `setCafInfo` caf_info
851 `setAllStrictnessInfo` newStrictnessInfo idinfo
853 | otherwise -- Externally-visible Ids get the whole lot
855 `setCafInfo` caf_info
857 `setAllStrictnessInfo` newStrictnessInfo idinfo
858 `setInlinePragInfo` inlinePragInfo idinfo
859 `setUnfoldingInfo` unfold_info
860 `setWorkerInfo` worker_info
861 -- NB: we throw away the Rules
862 -- They have already been extracted by findExternalRules
866 ------------ Worker --------------
867 tidyWorker :: TidyEnv -> Bool -> WorkerInfo -> WorkerInfo
868 tidyWorker _tidy_env _show_unfold NoWorker
870 tidyWorker tidy_env show_unfold (HasWorker work_id wrap_arity)
871 | show_unfold = HasWorker (tidyVarOcc tidy_env work_id) wrap_arity
872 | otherwise = NoWorker
873 -- NB: do *not* expose the worker if show_unfold is off,
874 -- because that means this thing is a loop breaker or
875 -- marked NOINLINE or something like that
876 -- This is important: if you expose the worker for a loop-breaker
877 -- then you can make the simplifier go into an infinite loop, because
878 -- in effect the unfolding is exposed. See Trac #1709
880 -- You might think that if show_unfold is False, then the thing should
881 -- not be w/w'd in the first place. But a legitimate reason is this:
882 -- the function returns bottom
883 -- In this case, show_unfold will be false (we don't expose unfoldings
884 -- for bottoming functions), but we might still have a worker/wrapper
885 -- split (see Note [Worker-wrapper for bottoming functions] in WorkWrap.lhs
888 %************************************************************************
890 \subsection{Figuring out CafInfo for an expression}
892 %************************************************************************
894 hasCafRefs decides whether a top-level closure can point into the dynamic heap.
895 We mark such things as `MayHaveCafRefs' because this information is
896 used to decide whether a particular closure needs to be referenced
899 There are two reasons for setting MayHaveCafRefs:
900 a) The RHS is a CAF: a top-level updatable thunk.
901 b) The RHS refers to something that MayHaveCafRefs
903 Possible improvement: In an effort to keep the number of CAFs (and
904 hence the size of the SRTs) down, we could also look at the expression and
905 decide whether it requires a small bounded amount of heap, so we can ignore
906 it as a CAF. In these cases however, we would need to use an additional
907 CAF list to keep track of non-collectable CAFs.
910 hasCafRefs :: PackageId -> VarEnv Var -> Arity -> CoreExpr -> CafInfo
911 hasCafRefs this_pkg p arity expr
912 | is_caf || mentions_cafs
914 | otherwise = NoCafRefs
916 mentions_cafs = isFastTrue (cafRefs p expr)
917 is_caf = not (arity > 0 || rhsIsStatic this_pkg expr)
919 -- NB. we pass in the arity of the expression, which is expected
920 -- to be calculated by exprArity. This is because exprArity
921 -- knows how much eta expansion is going to be done by
922 -- CorePrep later on, and we don't want to duplicate that
923 -- knowledge in rhsIsStatic below.
925 cafRefs :: VarEnv Id -> Expr a -> FastBool
927 -- imported Ids first:
928 | not (isLocalId id) = fastBool (mayHaveCafRefs (idCafInfo id))
929 -- now Ids local to this module:
931 case lookupVarEnv p id of
932 Just id' -> fastBool (mayHaveCafRefs (idCafInfo id'))
933 Nothing -> fastBool False
935 cafRefs _ (Lit _) = fastBool False
936 cafRefs p (App f a) = fastOr (cafRefs p f) (cafRefs p) a
937 cafRefs p (Lam _ e) = cafRefs p e
938 cafRefs p (Let b e) = fastOr (cafRefss p (rhssOfBind b)) (cafRefs p) e
939 cafRefs p (Case e _bndr _ alts) = fastOr (cafRefs p e) (cafRefss p) (rhssOfAlts alts)
940 cafRefs p (Note _n e) = cafRefs p e
941 cafRefs p (Cast e _co) = cafRefs p e
942 cafRefs _ (Type _) = fastBool False
944 cafRefss :: VarEnv Id -> [Expr a] -> FastBool
945 cafRefss _ [] = fastBool False
946 cafRefss p (e:es) = fastOr (cafRefs p e) (cafRefss p) es
948 fastOr :: FastBool -> (a -> FastBool) -> a -> FastBool
949 -- hack for lazy-or over FastBool.
950 fastOr a f x = fastBool (isFastTrue a || isFastTrue (f x))