1 {-# OPTIONS -fno-warn-missing-signatures #-}
2 -----------------------------------------------------------------------------
4 -- The register allocator
6 -- (c) The University of Glasgow 2004
8 -----------------------------------------------------------------------------
11 The algorithm is roughly:
13 1) Compute strongly connected components of the basic block list.
15 2) Compute liveness (mapping from pseudo register to
18 3) Walk instructions in each basic block. We keep track of
19 (a) Free real registers (a bitmap?)
20 (b) Current assignment of temporaries to machine registers and/or
21 spill slots (call this the "assignment").
22 (c) Partial mapping from basic block ids to a virt-to-loc mapping.
23 When we first encounter a branch to a basic block,
24 we fill in its entry in this table with the current mapping.
27 (a) For each real register clobbered by this instruction:
28 If a temporary resides in it,
29 If the temporary is live after this instruction,
30 Move the temporary to another (non-clobbered & free) reg,
31 or spill it to memory. Mark the temporary as residing
32 in both memory and a register if it was spilled (it might
33 need to be read by this instruction).
34 (ToDo: this is wrong for jump instructions?)
36 (b) For each temporary *read* by the instruction:
37 If the temporary does not have a real register allocation:
38 - Allocate a real register from the free list. If
40 - Find a temporary to spill. Pick one that is
41 not used in this instruction (ToDo: not
43 - generate a spill instruction
44 - If the temporary was previously spilled,
45 generate an instruction to read the temp from its spill loc.
46 (optimisation: if we can see that a real register is going to
47 be used soon, then don't use it for allocation).
49 (c) Update the current assignment
51 (d) If the intstruction is a branch:
52 if the destination block already has a register assignment,
53 Generate a new block with fixup code and redirect the
54 jump to the new block.
56 Update the block id->assignment mapping with the current
59 (e) Delete all register assignments for temps which are read
60 (only) and die here. Update the free register list.
62 (f) Mark all registers clobbered by this instruction as not free,
63 and mark temporaries which have been spilled due to clobbering
64 as in memory (step (a) marks then as in both mem & reg).
66 (g) For each temporary *written* by this instruction:
67 Allocate a real register as for (b), spilling something
69 - except when updating the assignment, drop any memory
70 locations that the temporary was previously in, since
71 they will be no longer valid after this instruction.
73 (h) Delete all register assignments for temps which are
74 written and die here (there should rarely be any). Update
75 the free register list.
77 (i) Rewrite the instruction with the new mapping.
79 (j) For each spilled reg known to be now dead, re-add its stack slot
84 module RegAllocLinear (
86 RegAllocStats, pprStats
89 #include "HsVersions.h"
96 import Cmm hiding (RegSet)
99 import Unique ( Uniquable(getUnique), Unique )
114 -- -----------------------------------------------------------------------------
115 -- The free register set
117 -- This needs to be *efficient*
119 {- Here's an inefficient 'executable specification' of the FreeRegs data type:
120 type FreeRegs = [RegNo]
123 releaseReg n f = if n `elem` f then f else (n : f)
124 initFreeRegs = allocatableRegs
125 getFreeRegs cls f = filter ( (==cls) . regClass . RealReg ) f
126 allocateReg f r = filter (/= r) f
129 #if defined(powerpc_TARGET_ARCH)
131 -- The PowerPC has 32 integer and 32 floating point registers.
132 -- This is 32bit PowerPC, so Word64 is inefficient - two Word32s are much
134 -- Note that when getFreeRegs scans for free registers, it starts at register
135 -- 31 and counts down. This is a hack for the PowerPC - the higher-numbered
136 -- registers are callee-saves, while the lower regs are caller-saves, so it
137 -- makes sense to start at the high end.
138 -- Apart from that, the code does nothing PowerPC-specific, so feel free to
139 -- add your favourite platform to the #if (if you have 64 registers but only
142 data FreeRegs = FreeRegs !Word32 !Word32
143 deriving( Show ) -- The Show is used in an ASSERT
145 noFreeRegs :: FreeRegs
146 noFreeRegs = FreeRegs 0 0
148 releaseReg :: RegNo -> FreeRegs -> FreeRegs
149 releaseReg r (FreeRegs g f)
150 | r > 31 = FreeRegs g (f .|. (1 `shiftL` (fromIntegral r - 32)))
151 | otherwise = FreeRegs (g .|. (1 `shiftL` fromIntegral r)) f
153 initFreeRegs :: FreeRegs
154 initFreeRegs = foldr releaseReg noFreeRegs allocatableRegs
156 getFreeRegs :: RegClass -> FreeRegs -> [RegNo] -- lazilly
157 getFreeRegs cls (FreeRegs g f)
158 | RcDouble <- cls = go f (0x80000000) 63
159 | RcInteger <- cls = go g (0x80000000) 31
160 | otherwise = pprPanic "RegAllocLinear.getFreeRegs: Bad cls" (ppr cls)
163 go x m i | x .&. m /= 0 = i : (go x (m `shiftR` 1) $! i-1)
164 | otherwise = go x (m `shiftR` 1) $! i-1
166 allocateReg :: RegNo -> FreeRegs -> FreeRegs
167 allocateReg r (FreeRegs g f)
168 | r > 31 = FreeRegs g (f .&. complement (1 `shiftL` (fromIntegral r - 32)))
169 | otherwise = FreeRegs (g .&. complement (1 `shiftL` fromIntegral r)) f
173 -- If we have less than 32 registers, or if we have efficient 64-bit words,
174 -- we will just use a single bitfield.
176 #if defined(alpha_TARGET_ARCH)
177 type FreeRegs = Word64
179 type FreeRegs = Word32
182 noFreeRegs :: FreeRegs
185 releaseReg :: RegNo -> FreeRegs -> FreeRegs
186 releaseReg n f = f .|. (1 `shiftL` n)
188 initFreeRegs :: FreeRegs
189 initFreeRegs = foldr releaseReg noFreeRegs allocatableRegs
191 getFreeRegs :: RegClass -> FreeRegs -> [RegNo] -- lazilly
192 getFreeRegs cls f = go f 0
195 | n .&. 1 /= 0 && regClass (RealReg m) == cls
196 = m : (go (n `shiftR` 1) $! (m+1))
198 = go (n `shiftR` 1) $! (m+1)
199 -- ToDo: there's no point looking through all the integer registers
200 -- in order to find a floating-point one.
202 allocateReg :: RegNo -> FreeRegs -> FreeRegs
203 allocateReg r f = f .&. complement (1 `shiftL` fromIntegral r)
207 -- -----------------------------------------------------------------------------
208 -- The assignment of virtual registers to stack slots
210 -- We have lots of stack slots. Memory-to-memory moves are a pain on most
211 -- architectures. Therefore, we avoid having to generate memory-to-memory moves
212 -- by simply giving every virtual register its own stack slot.
214 -- The StackMap stack map keeps track of virtual register - stack slot
215 -- associations and of which stack slots are still free. Once it has been
216 -- associated, a stack slot is never "freed" or removed from the StackMap again,
217 -- it remains associated until we are done with the current CmmProc.
220 data StackMap = StackMap [StackSlot] (UniqFM StackSlot)
222 emptyStackMap :: StackMap
223 emptyStackMap = StackMap [0..maxSpillSlots] emptyUFM
225 getStackSlotFor :: StackMap -> Unique -> (StackMap,Int)
226 getStackSlotFor (StackMap [] _) _
227 = panic "RegAllocLinear.getStackSlotFor: out of stack slots, try -fregs-graph"
228 -- This happens with darcs' SHA1.hs, see #1993
230 getStackSlotFor fs@(StackMap (freeSlot:stack') reserved) reg =
231 case lookupUFM reserved reg of
232 Just slot -> (fs,slot)
233 Nothing -> (StackMap stack' (addToUFM reserved reg freeSlot), freeSlot)
235 -- -----------------------------------------------------------------------------
236 -- Top level of the register allocator
238 -- Allocate registers
241 -> UniqSM (NatCmmTop, Maybe RegAllocStats)
243 regAlloc (CmmData sec d)
248 regAlloc (CmmProc (LiveInfo info _ _) lbl params (ListGraph []))
250 ( CmmProc info lbl params (ListGraph [])
253 regAlloc (CmmProc static lbl params (ListGraph comps))
254 | LiveInfo info (Just first_id) block_live <- static
256 -- do register allocation on each component.
257 (final_blocks, stats)
258 <- linearRegAlloc block_live
259 $ map (\b -> case b of
260 BasicBlock _ [b] -> AcyclicSCC b
261 BasicBlock _ bs -> CyclicSCC bs)
264 -- make sure the block that was first in the input list
265 -- stays at the front of the output
266 let ((first':_), rest')
267 = partition ((== first_id) . blockId) final_blocks
269 return ( CmmProc info lbl params (ListGraph (first' : rest'))
272 -- bogus. to make non-exhaustive match warning go away.
273 regAlloc (CmmProc _ _ _ _)
274 = panic "RegAllocLinear.regAlloc: no match"
277 -- -----------------------------------------------------------------------------
278 -- Linear sweep to allocate registers
280 data Loc = InReg {-# UNPACK #-} !RegNo
281 | InMem {-# UNPACK #-} !Int -- stack slot
282 | InBoth {-# UNPACK #-} !RegNo
283 {-# UNPACK #-} !Int -- stack slot
284 deriving (Eq, Show, Ord)
287 A temporary can be marked as living in both a register and memory
288 (InBoth), for example if it was recently loaded from a spill location.
289 This makes it cheap to spill (no save instruction required), but we
290 have to be careful to turn this into InReg if the value in the
293 This is also useful when a temporary is about to be clobbered. We
294 save it in a spill location, but mark it as InBoth because the current
295 instruction might still want to read it.
298 instance Outputable Loc where
299 ppr l = text (show l)
302 -- | Do register allocation on some basic blocks.
305 :: BlockMap RegSet -- ^ live regs on entry to each basic block
306 -> [SCC LiveBasicBlock] -- ^ instructions annotated with "deaths"
307 -> UniqSM ([NatBasicBlock], RegAllocStats)
309 linearRegAlloc block_live sccs
311 let (_, _, stats, blocks) =
312 runR emptyBlockMap initFreeRegs emptyRegMap emptyStackMap us
313 $ linearRA_SCCs block_live [] sccs
315 return (blocks, stats)
317 linearRA_SCCs _ blocksAcc []
318 = return $ reverse blocksAcc
320 linearRA_SCCs block_live blocksAcc (AcyclicSCC block : sccs)
321 = do blocks' <- processBlock block_live block
322 linearRA_SCCs block_live
323 ((reverse blocks') ++ blocksAcc)
326 linearRA_SCCs block_live blocksAcc (CyclicSCC blocks : sccs)
327 = do blockss' <- mapM (processBlock block_live) blocks
328 linearRA_SCCs block_live
329 (reverse (concat blockss') ++ blocksAcc)
333 -- | Do register allocation on this basic block
336 :: BlockMap RegSet -- ^ live regs on entry to each basic block
337 -> LiveBasicBlock -- ^ block to do register allocation on
338 -> RegM [NatBasicBlock] -- ^ block with registers allocated
340 processBlock block_live (BasicBlock id instrs)
343 <- linearRA block_live [] [] instrs
345 return $ BasicBlock id instrs' : fixups
348 -- | Load the freeregs and current reg assignment into the RegM state
349 -- for the basic block with this BlockId.
350 initBlock :: BlockId -> RegM ()
352 = do block_assig <- getBlockAssigR
353 case lookupUFM block_assig id of
354 -- no prior info about this block: assume everything is
355 -- free and the assignment is empty.
357 -> do setFreeRegsR initFreeRegs
358 setAssigR emptyRegMap
360 -- load info about register assignments leading into this block.
361 Just (freeregs, assig)
362 -> do setFreeRegsR freeregs
368 -> [Instr] -> [NatBasicBlock] -> [LiveInstr]
369 -> RegM ([Instr], [NatBasicBlock])
371 linearRA _ instr_acc fixups []
372 = return (reverse instr_acc, fixups)
374 linearRA block_live instr_acc fixups (instr:instrs)
375 = do (instr_acc', new_fixups) <- raInsn block_live instr_acc instr
376 linearRA block_live instr_acc' (new_fixups++fixups) instrs
378 -- -----------------------------------------------------------------------------
379 -- Register allocation for a single instruction
381 type BlockAssignment = BlockMap (FreeRegs, RegMap Loc)
383 raInsn :: BlockMap RegSet -- Live temporaries at each basic block
384 -> [Instr] -- new instructions (accum.)
385 -> LiveInstr -- the instruction (with "deaths")
387 [Instr], -- new instructions
388 [NatBasicBlock] -- extra fixup blocks
391 raInsn _ new_instrs (Instr (COMMENT _) Nothing)
392 = return (new_instrs, [])
394 raInsn _ new_instrs (Instr (DELTA n) Nothing)
397 return (new_instrs, [])
399 raInsn block_live new_instrs (Instr instr (Just live))
403 -- If we have a reg->reg move between virtual registers, where the
404 -- src register is not live after this instruction, and the dst
405 -- register does not already have an assignment,
406 -- and the source register is assigned to a register, not to a spill slot,
407 -- then we can eliminate the instruction.
408 -- (we can't eliminitate it if the source register is on the stack, because
409 -- we do not want to use one spill slot for different virtual registers)
410 case isRegRegMove instr of
411 Just (src,dst) | src `elementOfUniqSet` (liveDieRead live),
413 not (dst `elemUFM` assig),
414 Just (InReg _) <- (lookupUFM assig src) -> do
416 RealReg i -> setAssigR (addToUFM assig dst (InReg i))
417 -- if src is a fixed reg, then we just map dest to this
418 -- reg in the assignment. src must be an allocatable reg,
419 -- otherwise it wouldn't be in r_dying.
420 _virt -> case lookupUFM assig src of
421 Nothing -> panic "raInsn"
423 setAssigR (addToUFM (delFromUFM assig src) dst loc)
425 -- we have elimianted this instruction
427 freeregs <- getFreeRegsR
429 pprTrace "raInsn" (text "ELIMINATED: " <> docToSDoc (pprInstr instr) $$ ppr r_dying <+> ppr w_dying $$ text (show freeregs) $$ ppr assig) $ do
431 return (new_instrs, [])
433 _ -> genRaInsn block_live new_instrs instr
434 (uniqSetToList $ liveDieRead live)
435 (uniqSetToList $ liveDieWrite live)
439 = pprPanic "raInsn" (text "no match for:" <> ppr li)
442 genRaInsn block_live new_instrs instr r_dying w_dying =
443 case regUsage instr of { RU read written ->
444 case partition isRealReg written of { (real_written1,virt_written) ->
447 real_written = [ r | RealReg r <- real_written1 ]
449 -- we don't need to do anything with real registers that are
450 -- only read by this instr. (the list is typically ~2 elements,
451 -- so using nub isn't a problem).
452 virt_read = nub (filter isVirtualReg read)
455 -- (a) save any temporaries which will be clobbered by this instruction
456 clobber_saves <- saveClobberedTemps real_written r_dying
459 freeregs <- getFreeRegsR
461 pprTrace "raInsn" (docToSDoc (pprInstr instr) $$ ppr r_dying <+> ppr w_dying $$ ppr virt_read <+> ppr virt_written $$ text (show freeregs) $$ ppr assig) $ do
464 -- (b), (c) allocate real regs for all regs read by this instruction.
465 (r_spills, r_allocd) <-
466 allocateRegsAndSpill True{-reading-} virt_read [] [] virt_read
468 -- (d) Update block map for new destinations
469 -- NB. do this before removing dead regs from the assignment, because
470 -- these dead regs might in fact be live in the jump targets (they're
471 -- only dead in the code that follows in the current basic block).
472 (fixup_blocks, adjusted_instr)
473 <- joinToTargets block_live [] instr (jumpDests instr [])
475 -- (e) Delete all register assignments for temps which are read
476 -- (only) and die here. Update the free register list.
479 -- (f) Mark regs which are clobbered as unallocatable
480 clobberRegs real_written
482 -- (g) Allocate registers for temporaries *written* (only)
483 (w_spills, w_allocd) <-
484 allocateRegsAndSpill False{-writing-} virt_written [] [] virt_written
486 -- (h) Release registers for temps which are written here and not
491 -- (i) Patch the instruction
492 patch_map = listToUFM [ (t,RealReg r) |
493 (t,r) <- zip virt_read r_allocd
494 ++ zip virt_written w_allocd ]
496 patched_instr = patchRegs adjusted_instr patchLookup
497 patchLookup x = case lookupUFM patch_map x of
502 -- pprTrace "patched" (docToSDoc (pprInstr patched_instr)) $ do
504 -- (j) free up stack slots for dead spilled regs
505 -- TODO (can't be bothered right now)
507 -- erase reg->reg moves where the source and destination are the same.
508 -- If the src temp didn't die in this instr but happened to be allocated
509 -- to the same real reg as the destination, then we can erase the move anyway.
510 squashed_instr = case isRegRegMove patched_instr of
515 return (squashed_instr ++ w_spills ++ reverse r_spills
516 ++ clobber_saves ++ new_instrs,
520 -- -----------------------------------------------------------------------------
523 releaseRegs regs = do
528 loop _ free _ | free `seq` False = undefined
529 loop assig free [] = do setAssigR assig; setFreeRegsR free; return ()
530 loop assig free (RealReg r : rs) = loop assig (releaseReg r free) rs
531 loop assig free (r:rs) =
532 case lookupUFM assig r of
533 Just (InBoth real _) -> loop (delFromUFM assig r) (releaseReg real free) rs
534 Just (InReg real) -> loop (delFromUFM assig r) (releaseReg real free) rs
535 _other -> loop (delFromUFM assig r) free rs
537 -- -----------------------------------------------------------------------------
538 -- Clobber real registers
541 For each temp in a register that is going to be clobbered:
542 - if the temp dies after this instruction, do nothing
543 - otherwise, put it somewhere safe (another reg if possible,
544 otherwise spill and record InBoth in the assignment).
546 for allocateRegs on the temps *read*,
547 - clobbered regs are allocatable.
549 for allocateRegs on the temps *written*,
550 - clobbered regs are not allocatable.
554 :: [RegNo] -- real registers clobbered by this instruction
555 -> [Reg] -- registers which are no longer live after this insn
556 -> RegM [Instr] -- return: instructions to spill any temps that will
559 saveClobberedTemps [] _ = return [] -- common case
560 saveClobberedTemps clobbered dying = do
563 to_spill = [ (temp,reg) | (temp, InReg reg) <- ufmToList assig,
564 reg `elem` clobbered,
565 temp `notElem` map getUnique dying ]
567 (instrs,assig') <- clobber assig [] to_spill
571 clobber assig instrs [] = return (instrs,assig)
572 clobber assig instrs ((temp,reg):rest)
574 --ToDo: copy it to another register if possible
575 (spill,slot) <- spillR (RealReg reg) temp
576 recordSpill (SpillClobber temp)
578 let new_assign = addToUFM assig temp (InBoth reg slot)
579 clobber new_assign (spill : COMMENT (fsLit "spill clobber") : instrs) rest
581 clobberRegs :: [RegNo] -> RegM ()
582 clobberRegs [] = return () -- common case
583 clobberRegs clobbered = do
584 freeregs <- getFreeRegsR
585 setFreeRegsR $! foldr allocateReg freeregs clobbered
587 setAssigR $! clobber assig (ufmToList assig)
589 -- if the temp was InReg and clobbered, then we will have
590 -- saved it in saveClobberedTemps above. So the only case
591 -- we have to worry about here is InBoth. Note that this
592 -- also catches temps which were loaded up during allocation
593 -- of read registers, not just those saved in saveClobberedTemps.
594 clobber assig [] = assig
595 clobber assig ((temp, InBoth reg slot) : rest)
596 | reg `elem` clobbered
597 = clobber (addToUFM assig temp (InMem slot)) rest
598 clobber assig (_:rest)
601 -- -----------------------------------------------------------------------------
602 -- allocateRegsAndSpill
604 -- This function does several things:
605 -- For each temporary referred to by this instruction,
606 -- we allocate a real register (spilling another temporary if necessary).
607 -- We load the temporary up from memory if necessary.
608 -- We also update the register assignment in the process, and
609 -- the list of free registers and free stack slots.
612 :: Bool -- True <=> reading (load up spilled regs)
613 -> [Reg] -- don't push these out
614 -> [Instr] -- spill insns
615 -> [RegNo] -- real registers allocated (accum.)
616 -> [Reg] -- temps to allocate
617 -> RegM ([Instr], [RegNo])
619 allocateRegsAndSpill _ _ spills alloc []
620 = return (spills,reverse alloc)
622 allocateRegsAndSpill reading keep spills alloc (r:rs) = do
624 case lookupUFM assig r of
625 -- case (1a): already in a register
626 Just (InReg my_reg) ->
627 allocateRegsAndSpill reading keep spills (my_reg:alloc) rs
629 -- case (1b): already in a register (and memory)
630 -- NB1. if we're writing this register, update its assignemnt to be
631 -- InReg, because the memory value is no longer valid.
632 -- NB2. This is why we must process written registers here, even if they
633 -- are also read by the same instruction.
634 Just (InBoth my_reg _) -> do
635 when (not reading) (setAssigR (addToUFM assig r (InReg my_reg)))
636 allocateRegsAndSpill reading keep spills (my_reg:alloc) rs
638 -- Not already in a register, so we need to find a free one...
640 freeregs <- getFreeRegsR
642 case getFreeRegs (regClass r) freeregs of
644 -- case (2): we have a free register
646 spills' <- loadTemp reading r loc my_reg spills
648 | Just (InMem slot) <- loc, reading = InBoth my_reg slot
649 | otherwise = InReg my_reg
650 setAssigR (addToUFM assig r $! new_loc)
651 setFreeRegsR (allocateReg my_reg freeregs)
652 allocateRegsAndSpill reading keep spills' (my_reg:alloc) rs
654 -- case (3): we need to push something out to free up a register
657 keep' = map getUnique keep
658 candidates1 = [ (temp,reg,mem)
659 | (temp, InBoth reg mem) <- ufmToList assig,
660 temp `notElem` keep', regClass (RealReg reg) == regClass r ]
661 candidates2 = [ (temp,reg)
662 | (temp, InReg reg) <- ufmToList assig,
663 temp `notElem` keep', regClass (RealReg reg) == regClass r ]
665 ASSERT2(not (null candidates1 && null candidates2),
666 text (show freeregs) <+> ppr r <+> ppr assig) do
670 -- we have a temporary that is in both register and mem,
671 -- just free up its register for use.
673 (temp,my_reg,slot):_ -> do
674 spills' <- loadTemp reading r loc my_reg spills
676 assig1 = addToUFM assig temp (InMem slot)
677 assig2 = addToUFM assig1 r (InReg my_reg)
680 allocateRegsAndSpill reading keep spills' (my_reg:alloc) rs
682 -- otherwise, we need to spill a temporary that currently
683 -- resides in a register.
688 -- TODO: plenty of room for optimisation in choosing which temp
689 -- to spill. We just pick the first one that isn't used in
690 -- the current instruction for now.
692 let (temp_to_push_out, my_reg) = myHead "regalloc" candidates2
694 (spill_insn, slot) <- spillR (RealReg my_reg) temp_to_push_out
695 let spill_store = (if reading then id else reverse)
696 [ COMMENT (fsLit "spill alloc")
699 -- record that this temp was spilled
700 recordSpill (SpillAlloc temp_to_push_out)
702 -- update the register assignment
703 let assig1 = addToUFM assig temp_to_push_out (InMem slot)
704 let assig2 = addToUFM assig1 r (InReg my_reg)
707 -- if need be, load up a spilled temp into the reg we've just freed up.
708 spills' <- loadTemp reading r loc my_reg spills
710 allocateRegsAndSpill reading keep
711 (spill_store ++ spills')
715 -- | Load up a spilled temporary if we need to.
718 -> Reg -- the temp being loaded
719 -> Maybe Loc -- the current location of this temp
720 -> RegNo -- the hreg to load the temp into
724 loadTemp True vreg (Just (InMem slot)) hreg spills
726 insn <- loadR (RealReg hreg) slot
727 recordSpill (SpillLoad $ getUnique vreg)
728 return $ COMMENT (fsLit "spill load") : insn : spills
730 loadTemp _ _ _ _ spills =
734 myHead s [] = panic s
737 -- -----------------------------------------------------------------------------
738 -- Joining a jump instruction to its targets
740 -- The first time we encounter a jump to a particular basic block, we
741 -- record the assignment of temporaries. The next time we encounter a
742 -- jump to the same block, we compare our current assignment to the
743 -- stored one. They might be different if spilling has occrred in one
744 -- branch; so some fixup code will be required to match up the
752 -> RegM ([NatBasicBlock], Instr)
754 joinToTargets _ new_blocks instr []
755 = return (new_blocks, instr)
757 joinToTargets block_live new_blocks instr (dest:dests) = do
758 block_assig <- getBlockAssigR
761 -- adjust the assignment to remove any registers which are not
762 -- live on entry to the destination block.
763 adjusted_assig = filterUFM_Directly still_live assig
765 live_set = lookItUp "joinToTargets" block_live dest
766 still_live uniq _ = uniq `elemUniqSet_Directly` live_set
768 -- and free up those registers which are now free.
770 [ r | (reg, loc) <- ufmToList assig,
771 not (elemUniqSet_Directly reg live_set),
774 regsOfLoc (InReg r) = [r]
775 regsOfLoc (InBoth r _) = [r]
776 regsOfLoc (InMem _) = []
778 case lookupUFM block_assig dest of
779 -- Nothing <=> this is the first time we jumped to this
782 freeregs <- getFreeRegsR
783 let freeregs' = foldr releaseReg freeregs to_free
784 setBlockAssigR (addToUFM block_assig dest
785 (freeregs',adjusted_assig))
786 joinToTargets block_live new_blocks instr dests
790 -- the assignments match
791 | ufmToList dest_assig == ufmToList adjusted_assig
792 -> joinToTargets block_live new_blocks instr dests
799 let graph = makeRegMovementGraph adjusted_assig dest_assig
800 let sccs = stronglyConnCompR graph
801 fixUpInstrs <- mapM (handleComponent delta instr) sccs
803 block_id <- getUniqueR
804 let block = BasicBlock (BlockId block_id) $
805 concat fixUpInstrs ++ mkBranchInstr dest
807 let instr' = patchJump instr dest (BlockId block_id)
809 joinToTargets block_live (block : new_blocks) instr' dests
812 -- | Construct a graph of register/spill movements.
814 -- We cut some corners by
815 -- a) not handling cyclic components
816 -- b) not handling memory-to-memory moves.
818 -- Cyclic components seem to occur only very rarely,
819 -- and we don't need memory-to-memory moves because we
820 -- make sure that every temporary always gets its own
823 makeRegMovementGraph :: RegMap Loc -> RegMap Loc -> [(Unique, Loc, [Loc])]
824 makeRegMovementGraph adjusted_assig dest_assig
827 = expandNode vreg src
828 $ lookupWithDefaultUFM_Directly
830 (panic "RegAllocLinear.makeRegMovementGraph")
833 in [ node | (vreg, src) <- ufmToList adjusted_assig
834 , node <- mkNodes src vreg ]
836 -- The InBoth handling is a little tricky here. If
837 -- the destination is InBoth, then we must ensure that
838 -- the value ends up in both locations. An InBoth
839 -- destination must conflict with an InReg or InMem
840 -- source, so we expand an InBoth destination as
841 -- necessary. An InBoth source is slightly different:
842 -- we only care about the register that the source value
843 -- is in, so that we can move it to the destinations.
845 expandNode vreg loc@(InReg src) (InBoth dst mem)
846 | src == dst = [(vreg, loc, [InMem mem])]
847 | otherwise = [(vreg, loc, [InReg dst, InMem mem])]
849 expandNode vreg loc@(InMem src) (InBoth dst mem)
850 | src == mem = [(vreg, loc, [InReg dst])]
851 | otherwise = [(vreg, loc, [InReg dst, InMem mem])]
853 expandNode _ (InBoth _ src) (InMem dst)
854 | src == dst = [] -- guaranteed to be true
856 expandNode _ (InBoth src _) (InReg dst)
859 expandNode vreg (InBoth src _) dst
860 = expandNode vreg (InReg src) dst
862 expandNode vreg src dst
864 | otherwise = [(vreg, src, [dst])]
867 -- | Make a move instruction between these two locations so we
868 -- can join together allocations for different basic blocks.
870 makeMove :: Int -> Unique -> Loc -> Loc -> RegM Instr
871 makeMove _ vreg (InReg src) (InReg dst)
872 = do recordSpill (SpillJoinRR vreg)
873 return $ mkRegRegMoveInstr (RealReg src) (RealReg dst)
875 makeMove delta vreg (InMem src) (InReg dst)
876 = do recordSpill (SpillJoinRM vreg)
877 return $ mkLoadInstr (RealReg dst) delta src
879 makeMove delta vreg (InReg src) (InMem dst)
880 = do recordSpill (SpillJoinRM vreg)
881 return $ mkSpillInstr (RealReg src) delta dst
883 makeMove _ vreg src dst
884 = panic $ "makeMove " ++ show vreg ++ " (" ++ show src ++ ") ("
886 ++ " (workaround: use -fviaC)"
889 -- we have eliminated any possibility of single-node cylces
890 -- in expandNode above.
891 handleComponent :: Int -> Instr -> SCC (Unique, Loc, [Loc]) -> RegM [Instr]
892 handleComponent delta _ (AcyclicSCC (vreg,src,dsts))
893 = mapM (makeMove delta vreg src) dsts
895 -- we can not have cycles that involve memory
896 -- locations as source nor as single destination
897 -- because memory locations (stack slots) are
898 -- allocated exclusively for a virtual register and
899 -- therefore can not require a fixup
900 handleComponent delta instr (CyclicSCC ((vreg, (InReg sreg),dsts):rest))
902 spill_id <- getUniqueR
903 (_, slot) <- spillR (RealReg sreg) spill_id
904 remainingFixUps <- mapM (handleComponent delta instr) (stronglyConnCompR rest)
905 restoreAndFixInstr <- getRestoreMoves dsts slot
906 return ([instr] ++ concat remainingFixUps ++ restoreAndFixInstr)
909 getRestoreMoves [r@(InReg reg), mem@(InMem _)] slot
911 restoreToReg <- loadR (RealReg reg) slot
912 moveInstr <- makeMove delta vreg r mem
913 return $ [COMMENT (fsLit "spill join move"), restoreToReg, moveInstr]
915 getRestoreMoves [InReg reg] slot
916 = loadR (RealReg reg) slot >>= return . (:[])
918 getRestoreMoves [InMem _] _ = panic "getRestoreMoves can not handle memory only restores"
919 getRestoreMoves _ _ = panic "getRestoreMoves unknown case"
922 handleComponent _ _ (CyclicSCC _)
923 = panic "Register Allocator: handleComponent cyclic"
927 -- -----------------------------------------------------------------------------
928 -- The register allocator's monad.
930 -- Here we keep all the state that the register allocator keeps track
931 -- of as it walks the instructions in a basic block.
935 ra_blockassig :: BlockAssignment,
936 -- The current mapping from basic blocks to
937 -- the register assignments at the beginning of that block.
938 ra_freeregs :: {-#UNPACK#-}!FreeRegs, -- free machine registers
939 ra_assig :: RegMap Loc, -- assignment of temps to locations
940 ra_delta :: Int, -- current stack delta
941 ra_stack :: StackMap, -- free stack slots for spilling
942 ra_us :: UniqSupply, -- unique supply for generating names
945 -- Record why things were spilled, for -ddrop-asm-stats.
946 -- Just keep a list here instead of a map of regs -> reasons.
947 -- We don't want to slow down the allocator if we're not going to emit the stats.
948 ra_spills :: [SpillReason]
951 newtype RegM a = RegM { unReg :: RA_State -> (# RA_State, a #) }
954 instance Monad RegM where
955 m >>= k = RegM $ \s -> case unReg m s of { (# s, a #) -> unReg (k a) s }
956 return a = RegM $ \s -> (# s, a #)
958 runR :: BlockAssignment -> FreeRegs -> RegMap Loc -> StackMap -> UniqSupply
959 -> RegM a -> (BlockAssignment, StackMap, RegAllocStats, a)
960 runR block_assig freeregs assig stack us thing =
961 case unReg thing (RA_State{ ra_blockassig=block_assig, ra_freeregs=freeregs,
962 ra_assig=assig, ra_delta=0{-???-}, ra_stack=stack,
963 ra_us = us, ra_spills = [] }) of
964 (# state'@RA_State{ ra_blockassig=block_assig, ra_stack=stack' }, returned_thing #)
965 -> (block_assig, stack', makeRAStats state', returned_thing)
967 spillR :: Reg -> Unique -> RegM (Instr, Int)
968 spillR reg temp = RegM $ \ s@RA_State{ra_delta=delta, ra_stack=stack} ->
969 let (stack',slot) = getStackSlotFor stack temp
970 instr = mkSpillInstr reg delta slot
972 (# s{ra_stack=stack'}, (instr,slot) #)
974 loadR :: Reg -> Int -> RegM Instr
975 loadR reg slot = RegM $ \ s@RA_State{ra_delta=delta} ->
976 (# s, mkLoadInstr reg delta slot #)
978 getFreeRegsR :: RegM FreeRegs
979 getFreeRegsR = RegM $ \ s@RA_State{ra_freeregs = freeregs} ->
982 setFreeRegsR :: FreeRegs -> RegM ()
983 setFreeRegsR regs = RegM $ \ s ->
984 (# s{ra_freeregs = regs}, () #)
986 getAssigR :: RegM (RegMap Loc)
987 getAssigR = RegM $ \ s@RA_State{ra_assig = assig} ->
990 setAssigR :: RegMap Loc -> RegM ()
991 setAssigR assig = RegM $ \ s ->
992 (# s{ra_assig=assig}, () #)
994 getBlockAssigR :: RegM BlockAssignment
995 getBlockAssigR = RegM $ \ s@RA_State{ra_blockassig = assig} ->
998 setBlockAssigR :: BlockAssignment -> RegM ()
999 setBlockAssigR assig = RegM $ \ s ->
1000 (# s{ra_blockassig = assig}, () #)
1002 setDeltaR :: Int -> RegM ()
1003 setDeltaR n = RegM $ \ s ->
1004 (# s{ra_delta = n}, () #)
1006 getDeltaR :: RegM Int
1007 getDeltaR = RegM $ \s -> (# s, ra_delta s #)
1009 getUniqueR :: RegM Unique
1010 getUniqueR = RegM $ \s ->
1011 case splitUniqSupply (ra_us s) of
1012 (us1, us2) -> (# s{ra_us = us2}, uniqFromSupply us1 #)
1014 -- | Record that a spill instruction was inserted, for profiling.
1015 recordSpill :: SpillReason -> RegM ()
1017 = RegM $ \s -> (# s { ra_spills = spill : ra_spills s}, () #)
1019 -- -----------------------------------------------------------------------------
1021 -- | Reasons why instructions might be inserted by the spiller.
1022 -- Used when generating stats for -ddrop-asm-stats.
1025 = SpillAlloc !Unique -- ^ vreg was spilled to a slot so we could use its
1026 -- current hreg for another vreg
1027 | SpillClobber !Unique -- ^ vreg was moved because its hreg was clobbered
1028 | SpillLoad !Unique -- ^ vreg was loaded from a spill slot
1030 | SpillJoinRR !Unique -- ^ reg-reg move inserted during join to targets
1031 | SpillJoinRM !Unique -- ^ reg-mem move inserted during join to targets
1034 -- | Used to carry interesting stats out of the register allocator.
1037 { ra_spillInstrs :: UniqFM [Int] }
1040 -- | Make register allocator stats from its final state.
1041 makeRAStats :: RA_State -> RegAllocStats
1044 { ra_spillInstrs = binSpillReasons (ra_spills state) }
1047 -- | Build a map of how many times each reg was alloced, clobbered, loaded etc.
1049 :: [SpillReason] -> UniqFM [Int]
1051 binSpillReasons reasons
1055 (map (\reason -> case reason of
1056 SpillAlloc r -> (r, [1, 0, 0, 0, 0])
1057 SpillClobber r -> (r, [0, 1, 0, 0, 0])
1058 SpillLoad r -> (r, [0, 0, 1, 0, 0])
1059 SpillJoinRR r -> (r, [0, 0, 0, 1, 0])
1060 SpillJoinRM r -> (r, [0, 0, 0, 0, 1])) reasons)
1063 -- | Count reg-reg moves remaining in this code.
1064 countRegRegMovesNat :: NatCmmTop -> Int
1065 countRegRegMovesNat cmm
1066 = execState (mapGenBlockTopM countBlock cmm) 0
1068 countBlock b@(BasicBlock _ instrs)
1069 = do mapM_ countInstr instrs
1073 | Just _ <- isRegRegMove instr
1081 -- | Pretty print some RegAllocStats
1082 pprStats :: [NatCmmTop] -> [RegAllocStats] -> SDoc
1083 pprStats code statss
1084 = let -- sum up all the instrs inserted by the spiller
1085 spills = foldl' (plusUFM_C (zipWith (+)))
1087 $ map ra_spillInstrs statss
1089 spillTotals = foldl' (zipWith (+))
1093 -- count how many reg-reg-moves remain in the code
1094 moves = sum $ map countRegRegMovesNat code
1096 pprSpill (reg, spills)
1097 = parens $ (hcat $ punctuate (text ", ") (doubleQuotes (ppr reg) : map ppr spills))
1099 in ( text "-- spills-added-total"
1100 $$ text "-- (allocs, clobbers, loads, joinRR, joinRM, reg_reg_moves_remaining)"
1101 $$ (parens $ (hcat $ punctuate (text ", ") (map ppr spillTotals ++ [ppr moves])))
1103 $$ text "-- spills-added"
1104 $$ text "-- (reg_name, allocs, clobbers, loads, joinRR, joinRM)"
1105 $$ (vcat $ map pprSpill
1110 -- -----------------------------------------------------------------------------
1113 my_fromJust :: String -> SDoc -> Maybe a -> a
1114 my_fromJust _ _ (Just x) = x
1115 my_fromJust s p Nothing = pprPanic ("fromJust: " ++ s) p
1117 lookItUp :: Uniquable b => String -> UniqFM a -> b -> a
1118 lookItUp str fm x = my_fromJust str (ppr (getUnique x)) (lookupUFM fm x)