2 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
4 \section[CoreRules]{Transformation rules}
7 -- | Functions for collecting together and applying rewrite rules to a module.
8 -- The 'CoreRule' datatype itself is declared elsewhere.
14 emptyRuleBase, mkRuleBase, extendRuleBaseList,
15 unionRuleBase, pprRuleBase,
17 -- ** Checking rule applications
20 -- ** Manipulating 'SpecInfo' rules
21 mkSpecInfo, extendSpecInfo, addSpecInfo,
24 -- * Misc. CoreRule helpers
25 rulesOfBinds, getRules, pprRulesForUser, expandId,
27 lookupRule, mkRule, mkLocalRule, roughTopNames
30 #include "HsVersions.h"
32 import CoreSyn -- All of it
33 import OccurAnal ( occurAnalyseExpr )
34 import CoreFVs ( exprFreeVars, exprsFreeVars, bindFreeVars, rulesFreeVars )
35 import CoreUtils ( exprType )
36 import PprCore ( pprRules )
37 import Type ( Type, TvSubstEnv, tcEqTypeX )
38 import TcType ( tcSplitTyConApp_maybe )
39 import CoreTidy ( tidyRules )
41 import IdInfo ( SpecInfo( SpecInfo ) )
45 import Name ( Name, NamedThing(..) )
47 import Unify ( ruleMatchTyX, MatchEnv(..) )
48 import BasicTypes ( Activation )
49 import StaticFlags ( opt_PprStyle_Debug )
60 %************************************************************************
62 \subsection[specialisation-IdInfo]{Specialisation info about an @Id@}
64 %************************************************************************
66 A @CoreRule@ holds details of one rule for an @Id@, which
67 includes its specialisations.
69 For example, if a rule for @f@ contains the mapping:
71 forall a b d. [Type (List a), Type b, Var d] ===> f' a b
73 then when we find an application of f to matching types, we simply replace
74 it by the matching RHS:
76 f (List Int) Bool dict ===> f' Int Bool
78 All the stuff about how many dictionaries to discard, and what types
79 to apply the specialised function to, are handled by the fact that the
80 Rule contains a template for the result of the specialisation.
82 There is one more exciting case, which is dealt with in exactly the same
83 way. If the specialised value is unboxed then it is lifted at its
84 definition site and unlifted at its uses. For example:
86 pi :: forall a. Num a => a
88 might have a specialisation
90 [Int#] ===> (case pi' of Lift pi# -> pi#)
92 where pi' :: Lift Int# is the specialised version of pi.
95 mkLocalRule :: RuleName -> Activation
96 -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> CoreRule
97 -- ^ Used to make 'CoreRule' for an 'Id' defined in the module being
98 -- compiled. See also 'CoreSyn.CoreRule'
99 mkLocalRule = mkRule True
101 mkRule :: Bool -> RuleName -> Activation
102 -> Name -> [CoreBndr] -> [CoreExpr] -> CoreExpr -> CoreRule
103 -- ^ Used to make 'CoreRule' for an 'Id' defined in the module being
104 -- compiled. See also 'CoreSyn.CoreRule'
105 mkRule is_local name act fn bndrs args rhs
106 = Rule { ru_name = name, ru_fn = fn, ru_act = act,
107 ru_bndrs = bndrs, ru_args = args,
108 ru_rhs = occurAnalyseExpr rhs,
109 ru_rough = roughTopNames args,
110 ru_local = is_local }
113 roughTopNames :: [CoreExpr] -> [Maybe Name]
114 -- ^ Find the \"top\" free names of several expressions.
115 -- Such names are either:
117 -- 1. The function finally being applied to in an application chain
118 -- (if that name is a GlobalId: see "Var#globalvslocal"), or
120 -- 2. The 'TyCon' if the expression is a 'Type'
122 -- This is used for the fast-match-check for rules;
123 -- if the top names don't match, the rest can't
124 roughTopNames args = map roughTopName args
126 roughTopName :: CoreExpr -> Maybe Name
127 roughTopName (Type ty) = case tcSplitTyConApp_maybe ty of
128 Just (tc,_) -> Just (getName tc)
130 roughTopName (App f _) = roughTopName f
131 roughTopName (Var f) | isGlobalId f = Just (idName f)
132 | otherwise = Nothing
133 roughTopName _ = Nothing
135 ruleCantMatch :: [Maybe Name] -> [Maybe Name] -> Bool
136 -- ^ @ruleCantMatch tpl actual@ returns True only if @actual@
137 -- definitely can't match @tpl@ by instantiating @tpl@.
138 -- It's only a one-way match; unlike instance matching we
139 -- don't consider unification.
142 -- @ruleCantMatch [Nothing] [Just n2] = False@
143 -- Reason: a template variable can be instantiated by a constant
145 -- @ruleCantMatch [Just n1] [Nothing] = False@
146 -- Reason: a local variable @v@ in the actuals might [_$_]
148 ruleCantMatch (Just n1 : ts) (Just n2 : as) = n1 /= n2 || ruleCantMatch ts as
149 ruleCantMatch (_ : ts) (_ : as) = ruleCantMatch ts as
150 ruleCantMatch _ _ = False
154 pprRulesForUser :: [CoreRule] -> SDoc
155 -- (a) tidy the rules
156 -- (b) sort them into order based on the rule name
157 -- (c) suppress uniques (unless -dppr-debug is on)
158 -- This combination makes the output stable so we can use in testing
159 -- It's here rather than in PprCore because it calls tidyRules
160 pprRulesForUser rules
161 = withPprStyle defaultUserStyle $
164 tidyRules emptyTidyEnv rules
166 le_rule r1 r2 = ru_name r1 <= ru_name r2
170 %************************************************************************
172 SpecInfo: the rules in an IdInfo
174 %************************************************************************
177 -- | Make a 'SpecInfo' containing a number of 'CoreRule's, suitable
178 -- for putting into an 'IdInfo'
179 mkSpecInfo :: [CoreRule] -> SpecInfo
180 mkSpecInfo rules = SpecInfo rules (rulesFreeVars rules)
182 extendSpecInfo :: SpecInfo -> [CoreRule] -> SpecInfo
183 extendSpecInfo (SpecInfo rs1 fvs1) rs2
184 = SpecInfo (rs2 ++ rs1) (rulesFreeVars rs2 `unionVarSet` fvs1)
186 addSpecInfo :: SpecInfo -> SpecInfo -> SpecInfo
187 addSpecInfo (SpecInfo rs1 fvs1) (SpecInfo rs2 fvs2)
188 = SpecInfo (rs1 ++ rs2) (fvs1 `unionVarSet` fvs2)
190 addIdSpecialisations :: Id -> [CoreRule] -> Id
191 addIdSpecialisations id []
193 addIdSpecialisations id rules
194 = setIdSpecialisation id $
195 extendSpecInfo (idSpecialisation id) rules
197 -- | Gather all the rules for locally bound identifiers from the supplied bindings
198 rulesOfBinds :: [CoreBind] -> [CoreRule]
199 rulesOfBinds binds = concatMap (concatMap idCoreRules . bindersOf) binds
201 getRules :: RuleBase -> Id -> [CoreRule]
202 -- See Note [Where rules are found]
203 getRules rule_base fn
204 = idCoreRules fn ++ imp_rules
206 imp_rules = lookupNameEnv rule_base (idName fn) `orElse` []
209 Note [Where rules are found]
210 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211 The rules for an Id come from two places:
212 (a) the ones it is born with, stored inside the Id iself (idCoreRules fn),
213 (b) rules added in other modules, stored in the global RuleBase (imp_rules)
215 It's tempting to think that
216 - LocalIds have only (a)
217 - non-LocalIds have only (b)
219 but that isn't quite right:
221 - PrimOps and ClassOps are born with a bunch of rules inside the Id,
222 even when they are imported
224 - The rules in PrelRules.builtinRules should be active even
225 in the module defining the Id (when it's a LocalId), but
226 the rules are kept in the global RuleBase
229 %************************************************************************
233 %************************************************************************
236 -- | Gathers a collection of 'CoreRule's. Maps (the name of) an 'Id' to its rules
237 type RuleBase = NameEnv [CoreRule]
238 -- The rules are are unordered;
239 -- we sort out any overlaps on lookup
241 emptyRuleBase :: RuleBase
242 emptyRuleBase = emptyNameEnv
244 mkRuleBase :: [CoreRule] -> RuleBase
245 mkRuleBase rules = extendRuleBaseList emptyRuleBase rules
247 extendRuleBaseList :: RuleBase -> [CoreRule] -> RuleBase
248 extendRuleBaseList rule_base new_guys
249 = foldl extendRuleBase rule_base new_guys
251 unionRuleBase :: RuleBase -> RuleBase -> RuleBase
252 unionRuleBase rb1 rb2 = plusNameEnv_C (++) rb1 rb2
254 extendRuleBase :: RuleBase -> CoreRule -> RuleBase
255 extendRuleBase rule_base rule
256 = extendNameEnv_Acc (:) singleton rule_base (ruleIdName rule) rule
258 pprRuleBase :: RuleBase -> SDoc
259 pprRuleBase rules = vcat [ pprRules (tidyRules emptyTidyEnv rs)
260 | rs <- nameEnvElts rules ]
264 %************************************************************************
266 \subsection{Matching}
268 %************************************************************************
270 Note [Extra args in rule matching]
271 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
272 If we find a matching rule, we return (Just (rule, rhs)),
273 but the rule firing has only consumed as many of the input args
274 as the ruleArity says. It's up to the caller to keep track
275 of any left-over args. E.g. if you call
276 lookupRule ... f [e1, e2, e3]
277 and it returns Just (r, rhs), where r has ruleArity 2
278 then the real rewrite is
279 f e1 e2 e3 ==> rhs e3
281 You might think it'd be cleaner for lookupRule to deal with the
282 leftover arguments, by applying 'rhs' to them, but the main call
283 in the Simplifier works better as it is. Reason: the 'args' passed
284 to lookupRule are the result of a lazy substitution
287 -- | The main rule matching function. Attempts to apply all (active)
288 -- supplied rules to this instance of an application in a given
289 -- context, returning the rule applied and the resulting expression if
291 lookupRule :: (Activation -> Bool) -> InScopeSet
293 -> [CoreRule] -> Maybe (CoreRule, CoreExpr)
295 -- See Note [Extra args in rule matching]
296 -- See comments on matchRule
297 lookupRule is_active in_scope fn args rules
298 = -- pprTrace "matchRules" (ppr fn <+> ppr rules) $
301 (m:ms) -> Just (findBest (fn,args) m ms)
303 rough_args = map roughTopName args
305 go :: [(CoreRule,CoreExpr)] -> [CoreRule] -> [(CoreRule,CoreExpr)]
307 go ms (r:rs) = case (matchRule is_active in_scope args rough_args r) of
308 Just e -> go ((r,e):ms) rs
309 Nothing -> -- pprTrace "match failed" (ppr r $$ ppr args $$
310 -- ppr [(arg_id, unfoldingTemplate unf) | Var arg_id <- args, let unf = idUnfolding arg_id, isCheapUnfolding unf] )
313 findBest :: (Id, [CoreExpr])
314 -> (CoreRule,CoreExpr) -> [(CoreRule,CoreExpr)] -> (CoreRule,CoreExpr)
315 -- All these pairs matched the expression
316 -- Return the pair the the most specific rule
317 -- The (fn,args) is just for overlap reporting
319 findBest _ (rule,ans) [] = (rule,ans)
320 findBest target (rule1,ans1) ((rule2,ans2):prs)
321 | rule1 `isMoreSpecific` rule2 = findBest target (rule1,ans1) prs
322 | rule2 `isMoreSpecific` rule1 = findBest target (rule2,ans2) prs
323 | debugIsOn = let pp_rule rule
324 | opt_PprStyle_Debug = ppr rule
325 | otherwise = doubleQuotes (ftext (ru_name rule))
326 in pprTrace "Rules.findBest: rule overlap (Rule 1 wins)"
327 (vcat [if opt_PprStyle_Debug then
328 ptext (sLit "Expression to match:") <+> ppr fn <+> sep (map ppr args)
330 ptext (sLit "Rule 1:") <+> pp_rule rule1,
331 ptext (sLit "Rule 2:") <+> pp_rule rule2]) $
332 findBest target (rule1,ans1) prs
333 | otherwise = findBest target (rule1,ans1) prs
337 isMoreSpecific :: CoreRule -> CoreRule -> Bool
338 isMoreSpecific (BuiltinRule {}) _ = True
339 isMoreSpecific _ (BuiltinRule {}) = False
340 isMoreSpecific (Rule { ru_bndrs = bndrs1, ru_args = args1 })
341 (Rule { ru_bndrs = bndrs2, ru_args = args2 })
342 = isJust (matchN in_scope bndrs2 args2 args1)
344 in_scope = mkInScopeSet (mkVarSet bndrs1)
345 -- Actually we should probably include the free vars
346 -- of rule1's args, but I can't be bothered
348 noBlackList :: Activation -> Bool
349 noBlackList _ = False -- Nothing is black listed
351 matchRule :: (Activation -> Bool) -> InScopeSet
352 -> [CoreExpr] -> [Maybe Name]
353 -> CoreRule -> Maybe CoreExpr
355 -- If (matchRule rule args) returns Just (name,rhs)
356 -- then (f args) matches the rule, and the corresponding
357 -- rewritten RHS is rhs
359 -- The bndrs and rhs is occurrence-analysed
364 -- forall f g x. map f (map g x) ==> map (f . g) x
366 -- CoreRule "map/map"
367 -- [f,g,x] -- tpl_vars
368 -- [f,map g x] -- tpl_args
369 -- map (f.g) x) -- rhs
371 -- Then the call: matchRule the_rule [e1,map e2 e3]
372 -- = Just ("map/map", (\f,g,x -> rhs) e1 e2 e3)
374 -- Any 'surplus' arguments in the input are simply put on the end
377 matchRule _is_active _in_scope args _rough_args
378 (BuiltinRule { ru_try = match_fn })
379 -- Built-in rules can't be switched off, it seems
380 = case match_fn args of
381 Just expr -> Just expr
384 matchRule is_active in_scope args rough_args
385 (Rule { ru_act = act, ru_rough = tpl_tops,
386 ru_bndrs = tpl_vars, ru_args = tpl_args,
388 | not (is_active act) = Nothing
389 | ruleCantMatch tpl_tops rough_args = Nothing
391 = case matchN in_scope tpl_vars tpl_args args of
393 Just (binds, tpl_vals) -> Just (mkLets binds $
394 rule_fn `mkApps` tpl_vals)
396 rule_fn = occurAnalyseExpr (mkLams tpl_vars rhs)
397 -- We could do this when putting things into the rulebase, I guess
401 -- For a given match template and context, find bindings to wrap around
402 -- the entire result and what should be substituted for each template variable.
403 -- Fail if there are two few actual arguments from the target to match the template
404 matchN :: InScopeSet -- ^ In-scope variables
405 -> [Var] -- ^ Match template type variables
406 -> [CoreExpr] -- ^ Match template
407 -> [CoreExpr] -- ^ Target; can have more elements than the template
408 -> Maybe ([CoreBind],
411 matchN in_scope tmpl_vars tmpl_es target_es
412 = do { (tv_subst, id_subst, binds)
413 <- go init_menv emptySubstEnv tmpl_es target_es
414 ; return (fromOL binds,
415 map (lookup_tmpl tv_subst id_subst) tmpl_vars') }
417 (init_rn_env, tmpl_vars') = mapAccumL rnBndrL (mkRnEnv2 in_scope) tmpl_vars
418 -- See Note [Template binders]
420 init_menv = ME { me_tmpls = mkVarSet tmpl_vars', me_env = init_rn_env }
422 go _ subst [] _ = Just subst
423 go _ _ _ [] = Nothing -- Fail if too few actual args
424 go menv subst (t:ts) (e:es) = do { subst1 <- match menv subst t e
425 ; go menv subst1 ts es }
427 lookup_tmpl :: TvSubstEnv -> IdSubstEnv -> Var -> CoreExpr
428 lookup_tmpl tv_subst id_subst tmpl_var'
429 | isTyVar tmpl_var' = case lookupVarEnv tv_subst tmpl_var' of
431 Nothing -> unbound tmpl_var'
432 | otherwise = case lookupVarEnv id_subst tmpl_var' of
434 _ -> unbound tmpl_var'
436 unbound var = pprPanic "Template variable unbound in rewrite rule"
437 (ppr var $$ ppr tmpl_vars $$ ppr tmpl_vars' $$ ppr tmpl_es $$ ppr target_es)
440 Note [Template binders]
441 ~~~~~~~~~~~~~~~~~~~~~~~
442 Consider the following match:
443 Template: forall x. f x
445 This should succeed, because the template variable 'x' has
446 nothing to do with the 'x' in the target.
448 On reflection, this case probably does just work, but this might not
449 Template: forall x. f (\x.x)
451 Here we want to clone when we find the \x, but to know that x must be in scope
453 To achive this, we use rnBndrL to rename the template variables if
454 necessary; the renamed ones are the tmpl_vars'
457 ---------------------------------------------
458 The inner workings of matching
459 ---------------------------------------------
462 -- These two definitions are not the same as in Subst,
463 -- but they simple and direct, and purely local to this module
465 -- * The domain of the TvSubstEnv and IdSubstEnv are the template
466 -- variables passed into the match.
468 -- * The (OrdList CoreBind) in a SubstEnv are the bindings floated out
469 -- from nested matches; see the Let case of match, below
471 type SubstEnv = (TvSubstEnv, IdSubstEnv, OrdList CoreBind)
472 type IdSubstEnv = IdEnv CoreExpr
474 emptySubstEnv :: SubstEnv
475 emptySubstEnv = (emptyVarEnv, emptyVarEnv, nilOL)
478 -- At one stage I tried to match even if there are more
479 -- template args than real args.
481 -- I now think this is probably a bad idea.
482 -- Should the template (map f xs) match (map g)? I think not.
483 -- For a start, in general eta expansion wastes work.
489 -> CoreExpr -- Template
490 -> CoreExpr -- Target
493 -- See the notes with Unify.match, which matches types
494 -- Everything is very similar for terms
496 -- Interesting examples:
498 -- \x->f against \f->f
499 -- When we meet the lambdas we must remember to rename f to f' in the
500 -- second expresion. The RnEnv2 does that.
503 -- forall a. \b->b against \a->3
504 -- We must rename the \a. Otherwise when we meet the lambdas we
505 -- might substitute [a/b] in the template, and then erroneously
506 -- succeed in matching what looks like the template variable 'a' against 3.
508 -- The Var case follows closely what happens in Unify.match
509 match menv subst (Var v1) e2
510 | Just subst <- match_var menv subst v1 e2
513 match menv subst (Note _ e1) e2 = match menv subst e1 e2
514 match menv subst e1 (Note _ e2) = match menv subst e1 e2
515 -- Ignore notes in both template and thing to be matched
516 -- See Note [Notes in RULE matching]
518 match menv subst e1 (Var v2) -- Note [Expanding variables]
519 | not (locallyBoundR rn_env v2) -- Note [Do not expand locally-bound variables]
520 , Just e2' <- expandId v2'
521 = match (menv { me_env = nukeRnEnvR rn_env }) subst e1 e2'
523 v2' = lookupRnInScope rn_env v2
525 -- Notice that we look up v2 in the in-scope set
526 -- See Note [Lookup in-scope]
527 -- No need to apply any renaming first (hence no rnOccR)
528 -- becuase of the not-locallyBoundR
530 match menv (tv_subst, id_subst, binds) e1 (Let bind e2)
531 | all freshly_bound bndrs -- See Note [Matching lets]
532 , not (any (locallyBoundR rn_env) bind_fvs)
533 = match (menv { me_env = rn_env' })
534 (tv_subst, id_subst, binds `snocOL` bind')
538 bndrs = bindersOf bind
539 bind_fvs = varSetElems (bindFreeVars bind)
540 freshly_bound x = not (x `rnInScope` rn_env)
543 rn_env' = extendRnInScopeList rn_env bndrs
545 match _ subst (Lit lit1) (Lit lit2)
549 match menv subst (App f1 a1) (App f2 a2)
550 = do { subst' <- match menv subst f1 f2
551 ; match menv subst' a1 a2 }
553 match menv subst (Lam x1 e1) (Lam x2 e2)
554 = match menv' subst e1 e2
556 menv' = menv { me_env = rnBndr2 (me_env menv) x1 x2 }
558 -- This rule does eta expansion
559 -- (\x.M) ~ N iff M ~ N x
560 -- It's important that this is *after* the let rule,
561 -- so that (\x.M) ~ (let y = e in \y.N)
562 -- does the let thing, and then gets the lam/lam rule above
563 match menv subst (Lam x1 e1) e2
564 = match menv' subst e1 (App e2 (varToCoreExpr new_x))
566 (rn_env', new_x) = rnBndrL (me_env menv) x1
567 menv' = menv { me_env = rn_env' }
569 -- Eta expansion the other way
570 -- M ~ (\y.N) iff M y ~ N
571 match menv subst e1 (Lam x2 e2)
572 = match menv' subst (App e1 (varToCoreExpr new_x)) e2
574 (rn_env', new_x) = rnBndrR (me_env menv) x2
575 menv' = menv { me_env = rn_env' }
577 match menv subst (Case e1 x1 ty1 alts1) (Case e2 x2 ty2 alts2)
578 = do { subst1 <- match_ty menv subst ty1 ty2
579 ; subst2 <- match menv subst1 e1 e2
580 ; let menv' = menv { me_env = rnBndr2 (me_env menv) x1 x2 }
581 ; match_alts menv' subst2 alts1 alts2 -- Alts are both sorted
584 match menv subst (Type ty1) (Type ty2)
585 = match_ty menv subst ty1 ty2
587 match menv subst (Cast e1 co1) (Cast e2 co2)
588 = do { subst1 <- match_ty menv subst co1 co2
589 ; match menv subst1 e1 e2 }
591 -- Everything else fails
592 match _ _ _e1 _e2 = -- pprTrace "Failing at" ((text "e1:" <+> ppr _e1) $$ (text "e2:" <+> ppr _e2)) $
595 ------------------------------------------
596 match_var :: MatchEnv
599 -> CoreExpr -- Target
601 match_var menv subst@(tv_subst, id_subst, binds) v1 e2
602 | v1' `elemVarSet` me_tmpls menv
603 = case lookupVarEnv id_subst v1' of
604 Nothing | any (inRnEnvR rn_env) (varSetElems (exprFreeVars e2))
605 -> Nothing -- Occurs check failure
606 -- e.g. match forall a. (\x-> a x) against (\y. y y)
608 | otherwise -- No renaming to do on e2, because no free var
609 -- of e2 is in the rnEnvR of the envt
610 -- Note [Matching variable types]
611 -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
612 -- However, we must match the *types*; e.g.
613 -- forall (c::Char->Int) (x::Char).
614 -- f (c x) = "RULE FIRED"
615 -- We must only match on args that have the right type
616 -- It's actually quite difficult to come up with an example that shows
617 -- you need type matching, esp since matching is left-to-right, so type
618 -- args get matched first. But it's possible (e.g. simplrun008) and
619 -- this is the Right Thing to do
620 -> do { tv_subst' <- Unify.ruleMatchTyX menv tv_subst (idType v1') (exprType e2)
621 -- c.f. match_ty below
622 ; return (tv_subst', extendVarEnv id_subst v1' e2, binds) }
624 Just e1' | eqExpr (nukeRnEnvL rn_env) e1' e2
630 | otherwise -- v1 is not a template variable; check for an exact match with e2
632 Var v2 | v1' == rnOccR rn_env v2 -> Just subst
637 v1' = rnOccL rn_env v1
638 -- If the template is
639 -- forall x. f x (\x -> x) = ...
640 -- Then the x inside the lambda isn't the
641 -- template x, so we must rename first!
644 ------------------------------------------
645 match_alts :: MatchEnv
647 -> [CoreAlt] -- Template
648 -> [CoreAlt] -- Target
650 match_alts _ subst [] []
652 match_alts menv subst ((c1,vs1,r1):alts1) ((c2,vs2,r2):alts2)
654 = do { subst1 <- match menv' subst r1 r2
655 ; match_alts menv subst1 alts1 alts2 }
658 menv' = menv { me_env = rnBndrs2 (me_env menv) vs1 vs2 }
664 Matching Core types: use the matcher in TcType.
665 Notice that we treat newtypes as opaque. For example, suppose
666 we have a specialised version of a function at a newtype, say
668 We only want to replace (f T) with f', not (f Int).
671 ------------------------------------------
677 match_ty menv (tv_subst, id_subst, binds) ty1 ty2
678 = do { tv_subst' <- Unify.ruleMatchTyX menv tv_subst ty1 ty2
679 ; return (tv_subst', id_subst, binds) }
682 Note [Expanding variables]
683 ~~~~~~~~~~~~~~~~~~~~~~~~~~
684 Here is another Very Important rule: if the term being matched is a
685 variable, we expand it so long as its unfolding is "expandable". (Its
686 occurrence information is not necessarily up to date, so we don't use
687 it.) By "expandable" we mean a WHNF or a "constructor-like" application.
688 This is the key reason for "constructor-like" Ids. If we have
689 {-# NOINLINE [1] CONLIKE g #-}
690 {-# RULE f (g x) = h x #-}
692 let v = g 3 in ....(f v)....
693 we want to make the rule fire, to replace (f v) with (h 3).
695 Note [Do not expand locally-bound variables]
696 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
697 Do *not* expand locally-bound variables, else there's a worry that the
698 unfolding might mention variables that are themselves renamed.
700 case x of y { (p,q) -> ...y... }
701 Don't expand 'y' to (p,q) because p,q might themselves have been
702 renamed. Essentially we only expand unfoldings that are "outside"
705 Hence, (a) the guard (not (isLocallyBoundR v2))
706 (b) when we expand we nuke the renaming envt (nukeRnEnvR).
708 Note [Notes in RULE matching]
709 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
710 Look through Notes in both template and expression being matched. In
711 particular, we don't want to be confused by InlineMe notes. Maybe we
712 should be more careful about profiling notes, but for now I'm just
713 riding roughshod over them. cf Note [Notes in call patterns] in
718 Matching a let-expression. Consider
719 RULE forall x. f (g x) = <rhs>
720 and target expression
721 f (let { w=R } in g E))
722 Then we'd like the rule to match, to generate
723 let { w=R } in (\x. <rhs>) E
724 In effect, we want to float the let-binding outward, to enable
725 the match to happen. This is the WHOLE REASON for accumulating
726 bindings in the SubstEnv
728 We can only do this if
729 (a) Widening the scope of w does not capture any variables
730 We use a conservative test: w is not already in scope
731 If not, we clone the binders, and substitute
732 (b) The free variables of R are not bound by the part of the
733 target expression outside the let binding; e.g.
734 f (\v. let w = v+1 in g E)
735 Here we obviously cannot float the let-binding for w.
737 You may think rule (a) would never apply, because rule matching is
738 mostly invoked from the simplifier, when we have just run substExpr
739 over the argument, so there will be no shadowing anyway.
740 The fly in the ointment is that the forall'd variables of the
741 RULE itself are considered in scope.
743 I though of various ways to solve (a). One plan was to
744 clone the binders if they are in scope. But watch out!
745 (let x=y+1 in let z=x+1 in (z,z)
746 --> should match (p,p) but watch out that
747 the use of x on z's rhs is OK!
748 If we clone x, then the let-binding for 'z' is then caught by (b),
749 at least unless we elaborate the RnEnv stuff a bit.
751 So for we simply fail to match unless both (a) and (b) hold.
753 Other cases to think about
754 (let x=y+1 in \x. (x,x))
755 --> let x=y+1 in (\x1. (x1,x1))
756 (\x. let x = y+1 in (x,x))
757 --> let x1 = y+1 in (\x. (x1,x1)
758 (let x=y+1 in (x,x), let x=y-1 in (x,x))
759 --> let x=y+1 in let x1=y-1 in ((x,x),(x1,x1))
762 Note [Lookup in-scope]
763 ~~~~~~~~~~~~~~~~~~~~~~
764 Consider this example
765 foo :: Int -> Maybe Int -> Int
767 foo m (Just n) = foo (m-n) (Just n)
769 SpecConstr sees this fragment:
771 case w_smT of wild_Xf [Just A] {
772 Data.Maybe.Nothing -> lvl_smf;
773 Data.Maybe.Just n_acT [Just S(L)] ->
774 case n_acT of wild1_ams [Just A] { GHC.Base.I# y_amr [Just L] ->
775 \$wfoo_smW (GHC.Prim.-# ds_Xmb y_amr) wild_Xf
778 and correctly generates the rule
780 RULES: "SC:$wfoo1" [0] __forall {y_amr [Just L] :: GHC.Prim.Int#
781 sc_snn :: GHC.Prim.Int#}
782 \$wfoo_smW sc_snn (Data.Maybe.Just @ GHC.Base.Int (GHC.Base.I# y_amr))
783 = \$s\$wfoo_sno y_amr sc_snn ;]
785 BUT we must ensure that this rule matches in the original function!
786 Note that the call to \$wfoo is
787 \$wfoo_smW (GHC.Prim.-# ds_Xmb y_amr) wild_Xf
789 During matching we expand wild_Xf to (Just n_acT). But then we must also
790 expand n_acT to (I# y_amr). And we can only do that if we look up n_acT
791 in the in-scope set, because in wild_Xf's unfolding it won't have an unfolding
794 That is why the 'lookupRnInScope' call in the (Var v2) case of 'match'
798 eqExpr :: RnEnv2 -> CoreExpr -> CoreExpr -> Bool
799 -- ^ A kind of shallow equality used in rule matching, so does
800 -- /not/ look through newtypes or predicate types
802 eqExpr env (Var v1) (Var v2)
803 | rnOccL env v1 == rnOccR env v2
806 -- The next two rules expand non-local variables
807 -- C.f. Note [Expanding variables]
808 -- and Note [Do not expand locally-bound variables]
809 eqExpr env (Var v1) e2
810 | not (locallyBoundL env v1)
811 , Just e1' <- expandId (lookupRnInScope env v1)
812 = eqExpr (nukeRnEnvL env) e1' e2
814 eqExpr env e1 (Var v2)
815 | not (locallyBoundR env v2)
816 , Just e2' <- expandId (lookupRnInScope env v2)
817 = eqExpr (nukeRnEnvR env) e1 e2'
819 eqExpr _ (Lit lit1) (Lit lit2) = lit1 == lit2
820 eqExpr env (App f1 a1) (App f2 a2) = eqExpr env f1 f2 && eqExpr env a1 a2
821 eqExpr env (Lam v1 e1) (Lam v2 e2) = eqExpr (rnBndr2 env v1 v2) e1 e2
822 eqExpr env (Note n1 e1) (Note n2 e2) = eq_note env n1 n2 && eqExpr env e1 e2
823 eqExpr env (Cast e1 co1) (Cast e2 co2) = tcEqTypeX env co1 co2 && eqExpr env e1 e2
824 eqExpr env (Type t1) (Type t2) = tcEqTypeX env t1 t2
826 eqExpr env (Let (NonRec v1 r1) e1)
827 (Let (NonRec v2 r2) e2) = eqExpr env r1 r2
828 && eqExpr (rnBndr2 env v1 v2) e1 e2
829 eqExpr env (Let (Rec ps1) e1)
830 (Let (Rec ps2) e2) = equalLength ps1 ps2
831 && and (zipWith eq_rhs ps1 ps2)
834 env' = foldl2 rn_bndr2 env ps2 ps2
835 rn_bndr2 env (b1,_) (b2,_) = rnBndr2 env b1 b2
836 eq_rhs (_,r1) (_,r2) = eqExpr env' r1 r2
837 eqExpr env (Case e1 v1 t1 a1)
838 (Case e2 v2 t2 a2) = eqExpr env e1 e2
839 && tcEqTypeX env t1 t2
841 && and (zipWith (eq_alt env') a1 a2)
843 env' = rnBndr2 env v1 v2
847 eq_alt :: RnEnv2 -> CoreAlt -> CoreAlt -> Bool
848 eq_alt env (c1,vs1,r1) (c2,vs2,r2) = c1==c2 && eqExpr (rnBndrs2 env vs1 vs2) r1 r2
850 eq_note :: RnEnv2 -> Note -> Note -> Bool
851 eq_note _ (SCC cc1) (SCC cc2) = cc1 == cc2
852 eq_note _ (CoreNote s1) (CoreNote s2) = s1 == s2
853 eq_note _ _ _ = False
859 locallyBoundL, locallyBoundR :: RnEnv2 -> Var -> Bool
860 locallyBoundL rn_env v = inRnEnvL rn_env v
861 locallyBoundR rn_env v = inRnEnvR rn_env v
864 expandId :: Id -> Maybe CoreExpr
866 | isExpandableUnfolding unfolding = Just (unfoldingTemplate unfolding)
867 | otherwise = Nothing
869 unfolding = idUnfolding id
872 %************************************************************************
874 Rule-check the program
876 %************************************************************************
878 We want to know what sites have rules that could have fired but didn't.
879 This pass runs over the tree (without changing it) and reports such.
882 -- | Report partial matches for rules beginning with the specified
883 -- string for the purposes of error reporting
884 ruleCheckProgram :: (Activation -> Bool) -- ^ Rule activation test
885 -> String -- ^ Rule pattern
886 -> RuleBase -- ^ Database of rules
887 -> [CoreBind] -- ^ Bindings to check in
888 -> SDoc -- ^ Resulting check message
889 ruleCheckProgram is_active rule_pat rule_base binds
891 = text "Rule check results: no rule application sites"
893 = vcat [text "Rule check results:",
895 vcat [ p $$ line | p <- bagToList results ]
898 results = unionManyBags (map (ruleCheckBind (RuleCheckEnv is_active rule_pat rule_base)) binds)
899 line = text (replicate 20 '-')
901 data RuleCheckEnv = RuleCheckEnv {
902 rc_is_active :: Activation -> Bool,
903 rc_pattern :: String,
904 rc_rule_base :: RuleBase
907 ruleCheckBind :: RuleCheckEnv -> CoreBind -> Bag SDoc
908 -- The Bag returned has one SDoc for each call site found
909 ruleCheckBind env (NonRec _ r) = ruleCheck env r
910 ruleCheckBind env (Rec prs) = unionManyBags [ruleCheck env r | (_,r) <- prs]
912 ruleCheck :: RuleCheckEnv -> CoreExpr -> Bag SDoc
913 ruleCheck _ (Var _) = emptyBag
914 ruleCheck _ (Lit _) = emptyBag
915 ruleCheck _ (Type _) = emptyBag
916 ruleCheck env (App f a) = ruleCheckApp env (App f a) []
917 ruleCheck env (Note _ e) = ruleCheck env e
918 ruleCheck env (Cast e _) = ruleCheck env e
919 ruleCheck env (Let bd e) = ruleCheckBind env bd `unionBags` ruleCheck env e
920 ruleCheck env (Lam _ e) = ruleCheck env e
921 ruleCheck env (Case e _ _ as) = ruleCheck env e `unionBags`
922 unionManyBags [ruleCheck env r | (_,_,r) <- as]
924 ruleCheckApp :: RuleCheckEnv -> Expr CoreBndr -> [Arg CoreBndr] -> Bag SDoc
925 ruleCheckApp env (App f a) as = ruleCheck env a `unionBags` ruleCheckApp env f (a:as)
926 ruleCheckApp env (Var f) as = ruleCheckFun env f as
927 ruleCheckApp env other _ = ruleCheck env other
931 ruleCheckFun :: RuleCheckEnv -> Id -> [CoreExpr] -> Bag SDoc
932 -- Produce a report for all rules matching the predicate
933 -- saying why it doesn't match the specified application
935 ruleCheckFun env fn args
936 | null name_match_rules = emptyBag
937 | otherwise = unitBag (ruleAppCheck_help (rc_is_active env) fn args name_match_rules)
939 name_match_rules = filter match (getRules (rc_rule_base env) fn)
940 match rule = (rc_pattern env) `isPrefixOf` unpackFS (ruleName rule)
942 ruleAppCheck_help :: (Activation -> Bool) -> Id -> [CoreExpr] -> [CoreRule] -> SDoc
943 ruleAppCheck_help is_active fn args rules
944 = -- The rules match the pattern, so we want to print something
945 vcat [text "Expression:" <+> ppr (mkApps (Var fn) args),
946 vcat (map check_rule rules)]
949 i_args = args `zip` [1::Int ..]
950 rough_args = map roughTopName args
952 check_rule rule = rule_herald rule <> colon <+> rule_info rule
954 rule_herald (BuiltinRule { ru_name = name })
955 = ptext (sLit "Builtin rule") <+> doubleQuotes (ftext name)
956 rule_herald (Rule { ru_name = name })
957 = ptext (sLit "Rule") <+> doubleQuotes (ftext name)
960 | Just _ <- matchRule noBlackList emptyInScopeSet args rough_args rule
961 = text "matches (which is very peculiar!)"
963 rule_info (BuiltinRule {}) = text "does not match"
965 rule_info (Rule { ru_act = act,
966 ru_bndrs = rule_bndrs, ru_args = rule_args})
967 | not (is_active act) = text "active only in later phase"
968 | n_args < n_rule_args = text "too few arguments"
969 | n_mismatches == n_rule_args = text "no arguments match"
970 | n_mismatches == 0 = text "all arguments match (considered individually), but rule as a whole does not"
971 | otherwise = text "arguments" <+> ppr mismatches <+> text "do not match (1-indexing)"
973 n_rule_args = length rule_args
974 n_mismatches = length mismatches
975 mismatches = [i | (rule_arg, (arg,i)) <- rule_args `zip` i_args,
976 not (isJust (match_fn rule_arg arg))]
978 lhs_fvs = exprsFreeVars rule_args -- Includes template tyvars
979 match_fn rule_arg arg = match menv emptySubstEnv rule_arg arg
981 in_scope = lhs_fvs `unionVarSet` exprFreeVars arg
982 menv = ME { me_env = mkRnEnv2 (mkInScopeSet in_scope)
983 , me_tmpls = mkVarSet rule_bndrs }