2 % (c) The GRASP/AQUA Project, Glasgow University, 1993-1998
4 \section[CoreToStg]{Converts Core to STG Syntax}
6 And, as we have the info in hand, we may convert some lets to
10 module CoreToStg ( coreToStg, coreExprToStg ) where
12 #include "HsVersions.h"
15 import CoreUtils ( rhsIsStatic, exprType, findDefault )
16 import CoreArity ( manifestArity )
25 import CostCentre ( noCCS )
28 import Maybes ( maybeToBool )
29 import Name ( getOccName, isExternalName, nameOccName )
30 import OccName ( occNameString, occNameFS )
31 import BasicTypes ( Arity )
38 import PrimOp ( PrimCall(..) )
41 %************************************************************************
43 \subsection[live-vs-free-doc]{Documentation}
45 %************************************************************************
47 (There is other relevant documentation in codeGen/CgLetNoEscape.)
49 The actual Stg datatype is decorated with {\em live variable}
50 information, as well as {\em free variable} information. The two are
51 {\em not} the same. Liveness is an operational property rather than a
52 semantic one. A variable is live at a particular execution point if
53 it can be referred to {\em directly} again. In particular, a dead
54 variable's stack slot (if it has one):
57 should be stubbed to avoid space leaks, and
59 may be reused for something else.
62 There ought to be a better way to say this. Here are some examples:
69 Just after the `in', v is live, but q is dead. If the whole of that
70 let expression was enclosed in a case expression, thus:
72 case (let v = [q] \[x] -> e in ...v...) of
75 (ie @alts@ mention @q@), then @q@ is live even after the `in'; because
76 we'll return later to the @alts@ and need it.
78 Let-no-escapes make this a bit more interesting:
80 let-no-escape v = [q] \ [x] -> e
84 Here, @q@ is still live at the `in', because @v@ is represented not by
85 a closure but by the current stack state. In other words, if @v@ is
86 live then so is @q@. Furthermore, if @e@ mentions an enclosing
87 let-no-escaped variable, then {\em its} free variables are also live
90 %************************************************************************
92 \subsection[caf-info]{Collecting live CAF info}
94 %************************************************************************
96 In this pass we also collect information on which CAFs are live for
97 constructing SRTs (see SRT.lhs).
99 A top-level Id has CafInfo, which is
101 - MayHaveCafRefs, if it may refer indirectly to
103 - NoCafRefs if it definitely doesn't
105 The CafInfo has already been calculated during the CoreTidy pass.
107 During CoreToStg, we then pin onto each binding and case expression, a
108 list of Ids which represents the "live" CAFs at that point. The meaning
109 of "live" here is the same as for live variables, see above (which is
110 why it's convenient to collect CAF information here rather than elsewhere).
112 The later SRT pass takes these lists of Ids and uses them to construct
113 the actual nested SRTs, and replaces the lists of Ids with (offset,length)
117 Interaction of let-no-escape with SRTs [Sept 01]
118 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
121 let-no-escape x = ...caf1...caf2...
125 where caf1,caf2 are CAFs. Since x doesn't have a closure, we
126 build SRTs just as if x's defn was inlined at each call site, and
127 that means that x's CAF refs get duplicated in the overall SRT.
129 This is unlike ordinary lets, in which the CAF refs are not duplicated.
131 We could fix this loss of (static) sharing by making a sort of pseudo-closure
132 for x, solely to put in the SRTs lower down.
135 %************************************************************************
137 \subsection[binds-StgVarInfo]{Setting variable info: top-level, binds, RHSs}
139 %************************************************************************
142 coreToStg :: PackageId -> [CoreBind] -> IO [StgBinding]
143 coreToStg this_pkg pgm
145 where (_, _, pgm') = coreTopBindsToStg this_pkg emptyVarEnv pgm
147 coreExprToStg :: CoreExpr -> StgExpr
149 = new_expr where (new_expr,_,_) = initLne emptyVarEnv (coreToStgExpr expr)
154 -> IdEnv HowBound -- environment for the bindings
156 -> (IdEnv HowBound, FreeVarsInfo, [StgBinding])
158 coreTopBindsToStg _ env [] = (env, emptyFVInfo, [])
159 coreTopBindsToStg this_pkg env (b:bs)
160 = (env2, fvs2, b':bs')
162 -- Notice the mutually-recursive "knot" here:
163 -- env accumulates down the list of binds,
164 -- fvs accumulates upwards
165 (env1, fvs2, b' ) = coreTopBindToStg this_pkg env fvs1 b
166 (env2, fvs1, bs') = coreTopBindsToStg this_pkg env1 bs
171 -> FreeVarsInfo -- Info about the body
173 -> (IdEnv HowBound, FreeVarsInfo, StgBinding)
175 coreTopBindToStg this_pkg env body_fvs (NonRec id rhs)
177 env' = extendVarEnv env id how_bound
178 how_bound = LetBound TopLet $! manifestArity rhs
182 (stg_rhs, fvs') <- coreToTopStgRhs this_pkg body_fvs (id,rhs)
183 return (stg_rhs, fvs')
185 bind = StgNonRec id stg_rhs
187 ASSERT2(consistentCafInfo id bind, ppr id $$ ppr rhs $$ ppr bind )
188 (env', fvs' `unionFVInfo` body_fvs, bind)
190 coreTopBindToStg this_pkg env body_fvs (Rec pairs)
191 = ASSERT( not (null pairs) )
193 binders = map fst pairs
195 extra_env' = [ (b, LetBound TopLet $! manifestArity rhs)
196 | (b, rhs) <- pairs ]
197 env' = extendVarEnvList env extra_env'
201 (stg_rhss, fvss') <- mapAndUnzipM (coreToTopStgRhs this_pkg body_fvs) pairs
202 let fvs' = unionFVInfos fvss'
203 return (stg_rhss, fvs')
205 bind = StgRec (zip binders stg_rhss)
207 ASSERT2(consistentCafInfo (head binders) bind, ppr binders)
208 (env', fvs' `unionFVInfo` body_fvs, bind)
211 -- Assertion helper: this checks that the CafInfo on the Id matches
212 -- what CoreToStg has figured out about the binding's SRT. The
213 -- CafInfo will be exact in all cases except when CorePrep has
214 -- floated out a binding, in which case it will be approximate.
215 consistentCafInfo :: Id -> GenStgBinding Var Id -> Bool
216 consistentCafInfo id bind
217 | occNameFS (nameOccName (idName id)) == fsLit "sat"
220 = WARN (not exact, ppr id) safe
222 safe = id_marked_caffy || not binding_is_caffy
223 exact = id_marked_caffy == binding_is_caffy
224 id_marked_caffy = mayHaveCafRefs (idCafInfo id)
225 binding_is_caffy = stgBindHasCafRefs bind
231 -> FreeVarsInfo -- Free var info for the scope of the binding
233 -> LneM (StgRhs, FreeVarsInfo)
235 coreToTopStgRhs this_pkg scope_fv_info (bndr, rhs)
236 = do { (new_rhs, rhs_fvs, _) <- coreToStgExpr rhs
237 ; lv_info <- freeVarsToLiveVars rhs_fvs
239 ; let stg_rhs = mkTopStgRhs is_static rhs_fvs (mkSRT lv_info) bndr_info new_rhs
240 stg_arity = stgRhsArity stg_rhs
241 ; return (ASSERT2( arity_ok stg_arity, mk_arity_msg stg_arity) stg_rhs,
244 bndr_info = lookupFVInfo scope_fv_info bndr
245 is_static = rhsIsStatic this_pkg rhs
247 -- It's vital that the arity on a top-level Id matches
248 -- the arity of the generated STG binding, else an importing
249 -- module will use the wrong calling convention
250 -- (Trac #2844 was an example where this happened)
251 -- NB1: we can't move the assertion further out without
252 -- blocking the "knot" tied in coreTopBindsToStg
253 -- NB2: the arity check is only needed for Ids with External
254 -- Names, because they are externally visible. The CorePrep
255 -- pass introduces "sat" things with Local Names and does
256 -- not bother to set their Arity info, so don't fail for those
258 | isExternalName (idName bndr) = id_arity == stg_arity
260 id_arity = idArity bndr
261 mk_arity_msg stg_arity
263 ptext (sLit "Id arity:") <+> ppr id_arity,
264 ptext (sLit "STG arity:") <+> ppr stg_arity]
266 mkTopStgRhs :: Bool -> FreeVarsInfo
267 -> SRT -> StgBinderInfo -> StgExpr
270 mkTopStgRhs is_static rhs_fvs srt binder_info (StgLam _ bndrs body)
271 = ASSERT( is_static )
272 StgRhsClosure noCCS binder_info
278 mkTopStgRhs is_static _ _ _ (StgConApp con args)
279 | is_static -- StgConApps can be updatable (see isCrossDllConApp)
280 = StgRhsCon noCCS con args
282 mkTopStgRhs is_static rhs_fvs srt binder_info rhs
283 = ASSERT2( not is_static, ppr rhs )
284 StgRhsClosure noCCS binder_info
292 -- ---------------------------------------------------------------------------
294 -- ---------------------------------------------------------------------------
299 -> LneM (StgExpr, -- Decorated STG expr
300 FreeVarsInfo, -- Its free vars (NB free, not live)
301 EscVarsSet) -- Its escapees, a subset of its free vars;
302 -- also a subset of the domain of the envt
303 -- because we are only interested in the escapees
304 -- for vars which might be turned into
305 -- let-no-escaped ones.
308 The second and third components can be derived in a simple bottom up pass, not
309 dependent on any decisions about which variables will be let-no-escaped or
310 not. The first component, that is, the decorated expression, may then depend
311 on these components, but it in turn is not scrutinised as the basis for any
312 decisions. Hence no black holes.
315 coreToStgExpr (Lit l) = return (StgLit l, emptyFVInfo, emptyVarSet)
316 coreToStgExpr (Var v) = coreToStgApp Nothing v []
318 coreToStgExpr expr@(App _ _)
319 = coreToStgApp Nothing f args
321 (f, args) = myCollectArgs expr
323 coreToStgExpr expr@(Lam _ _)
325 (args, body) = myCollectBinders expr
326 args' = filterStgBinders args
328 extendVarEnvLne [ (a, LambdaBound) | a <- args' ] $ do
329 (body, body_fvs, body_escs) <- coreToStgExpr body
331 fvs = args' `minusFVBinders` body_fvs
332 escs = body_escs `delVarSetList` args'
333 result_expr | null args' = body
334 | otherwise = StgLam (exprType expr) args' body
336 return (result_expr, fvs, escs)
338 coreToStgExpr (Note (SCC cc) expr) = do
339 (expr2, fvs, escs) <- coreToStgExpr expr
340 return (StgSCC cc expr2, fvs, escs)
342 coreToStgExpr (Case (Var id) _bndr _ty [(DEFAULT,[],expr)])
343 | Just (TickBox m n) <- isTickBoxOp_maybe id = do
344 (expr2, fvs, escs) <- coreToStgExpr expr
345 return (StgTick m n expr2, fvs, escs)
347 coreToStgExpr (Note _ expr)
350 coreToStgExpr (Cast expr _)
353 -- Cases require a little more real work.
355 coreToStgExpr (Case scrut bndr _ alts) = do
356 (alts2, alts_fvs, alts_escs)
357 <- extendVarEnvLne [(bndr, LambdaBound)] $ do
358 (alts2, fvs_s, escs_s) <- mapAndUnzip3M vars_alt alts
361 unionVarSets escs_s )
363 -- Determine whether the default binder is dead or not
364 -- This helps the code generator to avoid generating an assignment
365 -- for the case binder (is extremely rare cases) ToDo: remove.
366 bndr' | bndr `elementOfFVInfo` alts_fvs = bndr
367 | otherwise = bndr `setIdOccInfo` IAmDead
369 -- Don't consider the default binder as being 'live in alts',
370 -- since this is from the point of view of the case expr, where
371 -- the default binder is not free.
372 alts_fvs_wo_bndr = bndr `minusFVBinder` alts_fvs
373 alts_escs_wo_bndr = alts_escs `delVarSet` bndr
375 alts_lv_info <- freeVarsToLiveVars alts_fvs_wo_bndr
377 -- We tell the scrutinee that everything
378 -- live in the alts is live in it, too.
379 (scrut2, scrut_fvs, _scrut_escs, scrut_lv_info)
380 <- setVarsLiveInCont alts_lv_info $ do
381 (scrut2, scrut_fvs, scrut_escs) <- coreToStgExpr scrut
382 scrut_lv_info <- freeVarsToLiveVars scrut_fvs
383 return (scrut2, scrut_fvs, scrut_escs, scrut_lv_info)
386 StgCase scrut2 (getLiveVars scrut_lv_info)
387 (getLiveVars alts_lv_info)
390 (mkStgAltType bndr alts)
392 scrut_fvs `unionFVInfo` alts_fvs_wo_bndr,
393 alts_escs_wo_bndr `unionVarSet` getFVSet scrut_fvs
394 -- You might think we should have scrut_escs, not
395 -- (getFVSet scrut_fvs), but actually we can't call, and
396 -- then return from, a let-no-escape thing.
399 vars_alt (con, binders, rhs)
400 = let -- Remove type variables
401 binders' = filterStgBinders binders
403 extendVarEnvLne [(b, LambdaBound) | b <- binders'] $ do
404 (rhs2, rhs_fvs, rhs_escs) <- coreToStgExpr rhs
406 -- Records whether each param is used in the RHS
407 good_use_mask = [ b `elementOfFVInfo` rhs_fvs | b <- binders' ]
409 return ( (con, binders', good_use_mask, rhs2),
410 binders' `minusFVBinders` rhs_fvs,
411 rhs_escs `delVarSetList` binders' )
412 -- ToDo: remove the delVarSet;
413 -- since escs won't include any of these binders
416 Lets not only take quite a bit of work, but this is where we convert
417 then to let-no-escapes, if we wish.
419 (Meanwhile, we don't expect to see let-no-escapes...)
421 coreToStgExpr (Let bind body) = do
422 (new_let, fvs, escs, _)
423 <- mfix (\ ~(_, _, _, no_binder_escapes) ->
424 coreToStgLet no_binder_escapes bind body
427 return (new_let, fvs, escs)
429 coreToStgExpr e = pprPanic "coreToStgExpr" (ppr e)
433 mkStgAltType :: Id -> [CoreAlt] -> AltType
434 mkStgAltType bndr alts
435 = case splitTyConApp_maybe (repType (idType bndr)) of
436 Just (tc,_) | isUnboxedTupleTyCon tc -> UbxTupAlt tc
437 | isUnLiftedTyCon tc -> PrimAlt tc
438 | isHiBootTyCon tc -> look_for_better_tycon
439 | isAlgTyCon tc -> AlgAlt tc
440 | otherwise -> ASSERT( _is_poly_alt_tycon tc )
445 _is_poly_alt_tycon tc
447 || isPrimTyCon tc -- "Any" is lifted but primitive
448 || isOpenTyCon tc -- Type family; e.g. arising from strict
449 -- function application where argument has a
452 -- Sometimes, the TyCon is a HiBootTyCon which may not have any
453 -- constructors inside it. Then we can get a better TyCon by
454 -- grabbing the one from a constructor alternative
456 look_for_better_tycon
457 | ((DataAlt con, _, _) : _) <- data_alts =
458 AlgAlt (dataConTyCon con)
460 ASSERT(null data_alts)
463 (data_alts, _deflt) = findDefault alts
467 -- ---------------------------------------------------------------------------
469 -- ---------------------------------------------------------------------------
473 :: Maybe UpdateFlag -- Just upd <=> this application is
474 -- the rhs of a thunk binding
475 -- x = [...] \upd [] -> the_app
476 -- with specified update flag
478 -> [CoreArg] -- Arguments
479 -> LneM (StgExpr, FreeVarsInfo, EscVarsSet)
482 coreToStgApp _ f args = do
483 (args', args_fvs) <- coreToStgArgs args
484 how_bound <- lookupVarLne f
487 n_val_args = valArgCount args
488 not_letrec_bound = not (isLetBound how_bound)
489 fun_fvs = singletonFVInfo f how_bound fun_occ
490 -- e.g. (f :: a -> int) (x :: a)
491 -- Here the free variables are "f", "x" AND the type variable "a"
492 -- coreToStgArgs will deal with the arguments recursively
494 -- Mostly, the arity info of a function is in the fn's IdInfo
495 -- But new bindings introduced by CoreSat may not have no
496 -- arity info; it would do us no good anyway. For example:
497 -- let f = \ab -> e in f
498 -- No point in having correct arity info for f!
499 -- Hence the hasArity stuff below.
500 -- NB: f_arity is only consulted for LetBound things
501 f_arity = stgArity f how_bound
502 saturated = f_arity <= n_val_args
505 | not_letrec_bound = noBinderInfo -- Uninteresting variable
506 | f_arity > 0 && saturated = stgSatOcc -- Saturated or over-saturated function call
507 | otherwise = stgUnsatOcc -- Unsaturated function or thunk
510 | not_letrec_bound = emptyVarSet -- Only letrec-bound escapees are interesting
511 | f_arity == n_val_args = emptyVarSet -- A function *or thunk* with an exactly
512 -- saturated call doesn't escape
513 -- (let-no-escape applies to 'thunks' too)
515 | otherwise = unitVarSet f -- Inexact application; it does escape
517 -- At the moment of the call:
519 -- either the function is *not* let-no-escaped, in which case
520 -- nothing is live except live_in_cont
521 -- or the function *is* let-no-escaped in which case the
522 -- variables it uses are live, but still the function
523 -- itself is not. PS. In this case, the function's
524 -- live vars should already include those of the
525 -- continuation, but it does no harm to just union the
528 res_ty = exprType (mkApps (Var f) args)
529 app = case idDetails f of
530 DataConWorkId dc | saturated -> StgConApp dc args'
531 PrimOpId op -> ASSERT( saturated )
532 StgOpApp (StgPrimOp op) args' res_ty
533 FCallId (CCall (CCallSpec (StaticTarget lbl) PrimCallConv _))
534 -- prim calls are represented as FCalls in core,
535 -- but in stg we distinguish them
536 -> ASSERT( saturated )
537 StgOpApp (StgPrimCallOp (PrimCall lbl)) args' res_ty
538 FCallId call -> ASSERT( saturated )
539 StgOpApp (StgFCallOp call (idUnique f)) args' res_ty
540 TickBoxOpId {} -> pprPanic "coreToStg TickBox" $ ppr (f,args')
541 _other -> StgApp f args'
545 fun_fvs `unionFVInfo` args_fvs,
546 fun_escs `unionVarSet` (getFVSet args_fvs)
547 -- All the free vars of the args are disqualified
548 -- from being let-no-escaped.
553 -- ---------------------------------------------------------------------------
555 -- This is the guy that turns applications into A-normal form
556 -- ---------------------------------------------------------------------------
558 coreToStgArgs :: [CoreArg] -> LneM ([StgArg], FreeVarsInfo)
560 = return ([], emptyFVInfo)
562 coreToStgArgs (Type _ : args) = do -- Type argument
563 (args', fvs) <- coreToStgArgs args
566 coreToStgArgs (arg : args) = do -- Non-type argument
567 (stg_args, args_fvs) <- coreToStgArgs args
568 (arg', arg_fvs, _escs) <- coreToStgExpr arg
570 fvs = args_fvs `unionFVInfo` arg_fvs
571 stg_arg = case arg' of
572 StgApp v [] -> StgVarArg v
573 StgConApp con [] -> StgVarArg (dataConWorkId con)
574 StgLit lit -> StgLitArg lit
575 _ -> pprPanic "coreToStgArgs" (ppr arg)
577 -- WARNING: what if we have an argument like (v `cast` co)
578 -- where 'co' changes the representation type?
579 -- (This really only happens if co is unsafe.)
580 -- Then all the getArgAmode stuff in CgBindery will set the
581 -- cg_rep of the CgIdInfo based on the type of v, rather
582 -- than the type of 'co'.
583 -- This matters particularly when the function is a primop
585 -- Wanted: a better solution than this hacky warning
587 arg_ty = exprType arg
588 stg_arg_ty = stgArgType stg_arg
589 bad_args = (isUnLiftedType arg_ty && not (isUnLiftedType stg_arg_ty))
590 || (typePrimRep arg_ty /= typePrimRep stg_arg_ty)
591 -- In GHCi we coerce an argument of type BCO# (unlifted) to HValue (lifted),
592 -- and pass it to a function expecting an HValue (arg_ty). This is ok because
593 -- we can treat an unlifted value as lifted. But the other way round
595 -- We also want to check if a pointer is cast to a non-ptr etc
597 WARN( bad_args, ptext (sLit "Dangerous-looking argument. Probable cause: bad unsafeCoerce#") $$ ppr arg )
598 return (stg_arg : stg_args, fvs)
601 -- ---------------------------------------------------------------------------
602 -- The magic for lets:
603 -- ---------------------------------------------------------------------------
606 :: Bool -- True <=> yes, we are let-no-escaping this let
607 -> CoreBind -- bindings
609 -> LneM (StgExpr, -- new let
610 FreeVarsInfo, -- variables free in the whole let
611 EscVarsSet, -- variables that escape from the whole let
612 Bool) -- True <=> none of the binders in the bindings
613 -- is among the escaping vars
615 coreToStgLet let_no_escape bind body = do
616 (bind2, bind_fvs, bind_escs, bind_lvs,
617 body2, body_fvs, body_escs, body_lvs)
618 <- mfix $ \ ~(_, _, _, _, _, rec_body_fvs, _, _) -> do
620 -- Do the bindings, setting live_in_cont to empty if
621 -- we ain't in a let-no-escape world
622 live_in_cont <- getVarsLiveInCont
623 ( bind2, bind_fvs, bind_escs, bind_lv_info, env_ext)
624 <- setVarsLiveInCont (if let_no_escape
627 (vars_bind rec_body_fvs bind)
630 extendVarEnvLne env_ext $ do
631 (body2, body_fvs, body_escs) <- coreToStgExpr body
632 body_lv_info <- freeVarsToLiveVars body_fvs
634 return (bind2, bind_fvs, bind_escs, getLiveVars bind_lv_info,
635 body2, body_fvs, body_escs, getLiveVars body_lv_info)
638 -- Compute the new let-expression
640 new_let | let_no_escape = StgLetNoEscape live_in_whole_let bind_lvs bind2 body2
641 | otherwise = StgLet bind2 body2
644 = binders `minusFVBinders` (bind_fvs `unionFVInfo` body_fvs)
647 = bind_lvs `unionVarSet` (body_lvs `delVarSetList` binders)
649 real_bind_escs = if let_no_escape then
653 -- Everything escapes which is free in the bindings
655 let_escs = (real_bind_escs `unionVarSet` body_escs) `delVarSetList` binders
657 all_escs = bind_escs `unionVarSet` body_escs -- Still includes binders of
660 no_binder_escapes = isEmptyVarSet (set_of_binders `intersectVarSet` all_escs)
662 -- Debugging code as requested by Andrew Kennedy
663 checked_no_binder_escapes
664 | debugIsOn && not no_binder_escapes && any is_join_var binders
665 = pprTrace "Interesting! A join var that isn't let-no-escaped" (ppr binders)
667 | otherwise = no_binder_escapes
669 -- Mustn't depend on the passed-in let_no_escape flag, since
670 -- no_binder_escapes is used by the caller to derive the flag!
675 checked_no_binder_escapes
678 set_of_binders = mkVarSet binders
679 binders = bindersOf bind
681 mk_binding bind_lv_info binder rhs
682 = (binder, LetBound (NestedLet live_vars) (manifestArity rhs))
684 live_vars | let_no_escape = addLiveVar bind_lv_info binder
685 | otherwise = unitLiveVar binder
686 -- c.f. the invariant on NestedLet
688 vars_bind :: FreeVarsInfo -- Free var info for body of binding
692 EscVarsSet, -- free vars; escapee vars
693 LiveInfo, -- Vars and CAFs live in binding
694 [(Id, HowBound)]) -- extension to environment
697 vars_bind body_fvs (NonRec binder rhs) = do
698 (rhs2, bind_fvs, bind_lv_info, escs) <- coreToStgRhs body_fvs [] (binder,rhs)
700 env_ext_item = mk_binding bind_lv_info binder rhs
702 return (StgNonRec binder rhs2,
703 bind_fvs, escs, bind_lv_info, [env_ext_item])
706 vars_bind body_fvs (Rec pairs)
707 = mfix $ \ ~(_, rec_rhs_fvs, _, bind_lv_info, _) ->
709 rec_scope_fvs = unionFVInfo body_fvs rec_rhs_fvs
710 binders = map fst pairs
711 env_ext = [ mk_binding bind_lv_info b rhs
714 extendVarEnvLne env_ext $ do
715 (rhss2, fvss, lv_infos, escss)
716 <- mapAndUnzip4M (coreToStgRhs rec_scope_fvs binders) pairs
718 bind_fvs = unionFVInfos fvss
719 bind_lv_info = foldr unionLiveInfo emptyLiveInfo lv_infos
720 escs = unionVarSets escss
722 return (StgRec (binders `zip` rhss2),
723 bind_fvs, escs, bind_lv_info, env_ext)
726 is_join_var :: Id -> Bool
727 -- A hack (used only for compiler debuggging) to tell if
728 -- a variable started life as a join point ($j)
729 is_join_var j = occNameString (getOccName j) == "$j"
733 coreToStgRhs :: FreeVarsInfo -- Free var info for the scope of the binding
736 -> LneM (StgRhs, FreeVarsInfo, LiveInfo, EscVarsSet)
738 coreToStgRhs scope_fv_info binders (bndr, rhs) = do
739 (new_rhs, rhs_fvs, rhs_escs) <- coreToStgExpr rhs
740 lv_info <- freeVarsToLiveVars (binders `minusFVBinders` rhs_fvs)
741 return (mkStgRhs rhs_fvs (mkSRT lv_info) bndr_info new_rhs,
742 rhs_fvs, lv_info, rhs_escs)
744 bndr_info = lookupFVInfo scope_fv_info bndr
746 mkStgRhs :: FreeVarsInfo -> SRT -> StgBinderInfo -> StgExpr -> StgRhs
748 mkStgRhs _ _ _ (StgConApp con args) = StgRhsCon noCCS con args
750 mkStgRhs rhs_fvs srt binder_info (StgLam _ bndrs body)
751 = StgRhsClosure noCCS binder_info
756 mkStgRhs rhs_fvs srt binder_info rhs
757 = StgRhsClosure noCCS binder_info
763 SDM: disabled. Eval/Apply can't handle functions with arity zero very
764 well; and making these into simple non-updatable thunks breaks other
765 assumptions (namely that they will be entered only once).
767 upd_flag | isPAP env rhs = ReEntrant
768 | otherwise = Updatable
772 upd = if isOnceDem dem
773 then (if isNotTop toplev
774 then SingleEntry -- HA! Paydirt for "dem"
777 trace "WARNING: SE CAFs unsupported, forcing UPD instead" $
781 -- For now we forbid SingleEntry CAFs; they tickle the
782 -- ASSERT in rts/Storage.c line 215 at newCAF() re mut_link,
783 -- and I don't understand why. There's only one SE_CAF (well,
784 -- only one that tickled a great gaping bug in an earlier attempt
785 -- at ClosureInfo.getEntryConvention) in the whole of nofib,
786 -- specifically Main.lvl6 in spectral/cryptarithm2.
787 -- So no great loss. KSW 2000-07.
791 Detect thunks which will reduce immediately to PAPs, and make them
792 non-updatable. This has several advantages:
794 - the non-updatable thunk behaves exactly like the PAP,
796 - the thunk is more efficient to enter, because it is
797 specialised to the task.
799 - we save one update frame, one stg_update_PAP, one update
800 and lots of PAP_enters.
802 - in the case where the thunk is top-level, we save building
803 a black hole and futhermore the thunk isn't considered to
804 be a CAF any more, so it doesn't appear in any SRTs.
806 We do it here, because the arity information is accurate, and we need
807 to do it before the SRT pass to save the SRT entries associated with
810 isPAP env (StgApp f args) = listLengthCmp args arity == LT -- idArity f > length args
812 arity = stgArity f (lookupBinding env f)
816 %************************************************************************
818 \subsection[LNE-monad]{A little monad for this let-no-escaping pass}
820 %************************************************************************
822 There's a lot of stuff to pass around, so we use this @LneM@ monad to
823 help. All the stuff here is only passed *down*.
826 newtype LneM a = LneM
827 { unLneM :: IdEnv HowBound
828 -> LiveInfo -- Vars and CAFs live in continuation
832 type LiveInfo = (StgLiveVars, -- Dynamic live variables;
833 -- i.e. ones with a nested (non-top-level) binding
834 CafSet) -- Static live variables;
835 -- i.e. top-level variables that are CAFs or refer to them
837 type EscVarsSet = IdSet
841 = ImportBound -- Used only as a response to lookupBinding; never
842 -- exists in the range of the (IdEnv HowBound)
844 | LetBound -- A let(rec) in this module
845 LetInfo -- Whether top level or nested
846 Arity -- Its arity (local Ids don't have arity info at this point)
848 | LambdaBound -- Used for both lambda and case
851 = TopLet -- top level things
852 | NestedLet LiveInfo -- For nested things, what is live if this
853 -- thing is live? Invariant: the binder
854 -- itself is always a member of
855 -- the dynamic set of its own LiveInfo
857 isLetBound :: HowBound -> Bool
858 isLetBound (LetBound _ _) = True
861 topLevelBound :: HowBound -> Bool
862 topLevelBound ImportBound = True
863 topLevelBound (LetBound TopLet _) = True
864 topLevelBound _ = False
867 For a let(rec)-bound variable, x, we record LiveInfo, the set of
868 variables that are live if x is live. This LiveInfo comprises
869 (a) dynamic live variables (ones with a non-top-level binding)
870 (b) static live variabes (CAFs or things that refer to CAFs)
872 For "normal" variables (a) is just x alone. If x is a let-no-escaped
873 variable then x is represented by a code pointer and a stack pointer
874 (well, one for each stack). So all of the variables needed in the
875 execution of x are live if x is, and are therefore recorded in the
876 LetBound constructor; x itself *is* included.
878 The set of dynamic live variables is guaranteed ot have no further let-no-escaped
882 emptyLiveInfo :: LiveInfo
883 emptyLiveInfo = (emptyVarSet,emptyVarSet)
885 unitLiveVar :: Id -> LiveInfo
886 unitLiveVar lv = (unitVarSet lv, emptyVarSet)
888 unitLiveCaf :: Id -> LiveInfo
889 unitLiveCaf caf = (emptyVarSet, unitVarSet caf)
891 addLiveVar :: LiveInfo -> Id -> LiveInfo
892 addLiveVar (lvs, cafs) id = (lvs `extendVarSet` id, cafs)
894 unionLiveInfo :: LiveInfo -> LiveInfo -> LiveInfo
895 unionLiveInfo (lv1,caf1) (lv2,caf2) = (lv1 `unionVarSet` lv2, caf1 `unionVarSet` caf2)
897 mkSRT :: LiveInfo -> SRT
898 mkSRT (_, cafs) = SRTEntries cafs
900 getLiveVars :: LiveInfo -> StgLiveVars
901 getLiveVars (lvs, _) = lvs
905 The std monad functions:
907 initLne :: IdEnv HowBound -> LneM a -> a
908 initLne env m = unLneM m env emptyLiveInfo
912 {-# INLINE thenLne #-}
913 {-# INLINE returnLne #-}
915 returnLne :: a -> LneM a
916 returnLne e = LneM $ \_ _ -> e
918 thenLne :: LneM a -> (a -> LneM b) -> LneM b
919 thenLne m k = LneM $ \env lvs_cont
920 -> unLneM (k (unLneM m env lvs_cont)) env lvs_cont
922 instance Monad LneM where
926 instance MonadFix LneM where
927 mfix expr = LneM $ \env lvs_cont ->
928 let result = unLneM (expr result) env lvs_cont
932 Functions specific to this monad:
935 getVarsLiveInCont :: LneM LiveInfo
936 getVarsLiveInCont = LneM $ \_env lvs_cont -> lvs_cont
938 setVarsLiveInCont :: LiveInfo -> LneM a -> LneM a
939 setVarsLiveInCont new_lvs_cont expr
940 = LneM $ \env _lvs_cont
941 -> unLneM expr env new_lvs_cont
943 extendVarEnvLne :: [(Id, HowBound)] -> LneM a -> LneM a
944 extendVarEnvLne ids_w_howbound expr
945 = LneM $ \env lvs_cont
946 -> unLneM expr (extendVarEnvList env ids_w_howbound) lvs_cont
948 lookupVarLne :: Id -> LneM HowBound
949 lookupVarLne v = LneM $ \env _lvs_cont -> lookupBinding env v
951 lookupBinding :: IdEnv HowBound -> Id -> HowBound
952 lookupBinding env v = case lookupVarEnv env v of
954 Nothing -> ASSERT2( isGlobalId v, ppr v ) ImportBound
957 -- The result of lookupLiveVarsForSet, a set of live variables, is
958 -- only ever tacked onto a decorated expression. It is never used as
959 -- the basis of a control decision, which might give a black hole.
961 freeVarsToLiveVars :: FreeVarsInfo -> LneM LiveInfo
962 freeVarsToLiveVars fvs = LneM freeVarsToLiveVars'
964 freeVarsToLiveVars' _env live_in_cont = live_info
966 live_info = foldr unionLiveInfo live_in_cont lvs_from_fvs
967 lvs_from_fvs = map do_one (allFreeIds fvs)
969 do_one (v, how_bound)
971 ImportBound -> unitLiveCaf v -- Only CAF imports are
974 | mayHaveCafRefs (idCafInfo v) -> unitLiveCaf v
975 | otherwise -> emptyLiveInfo
977 LetBound (NestedLet lvs) _ -> lvs -- lvs already contains v
978 -- (see the invariant on NestedLet)
980 _lambda_or_case_binding -> unitLiveVar v -- Bound by lambda or case
983 %************************************************************************
985 \subsection[Free-var info]{Free variable information}
987 %************************************************************************
990 type FreeVarsInfo = VarEnv (Var, HowBound, StgBinderInfo)
991 -- The Var is so we can gather up the free variables
994 -- The HowBound info just saves repeated lookups;
995 -- we look up just once when we encounter the occurrence.
996 -- INVARIANT: Any ImportBound Ids are HaveCafRef Ids
997 -- Imported Ids without CAF refs are simply
998 -- not put in the FreeVarsInfo for an expression.
999 -- See singletonFVInfo and freeVarsToLiveVars
1001 -- StgBinderInfo records how it occurs; notably, we
1002 -- are interested in whether it only occurs in saturated
1003 -- applications, because then we don't need to build a
1005 -- If f is mapped to noBinderInfo, that means
1006 -- that f *is* mentioned (else it wouldn't be in the
1007 -- IdEnv at all), but perhaps in an unsaturated applications.
1009 -- All case/lambda-bound things are also mapped to
1010 -- noBinderInfo, since we aren't interested in their
1013 -- For ILX we track free var info for type variables too;
1014 -- hence VarEnv not IdEnv
1018 emptyFVInfo :: FreeVarsInfo
1019 emptyFVInfo = emptyVarEnv
1021 singletonFVInfo :: Id -> HowBound -> StgBinderInfo -> FreeVarsInfo
1022 -- Don't record non-CAF imports at all, to keep free-var sets small
1023 singletonFVInfo id ImportBound info
1024 | mayHaveCafRefs (idCafInfo id) = unitVarEnv id (id, ImportBound, info)
1025 | otherwise = emptyVarEnv
1026 singletonFVInfo id how_bound info = unitVarEnv id (id, how_bound, info)
1028 unionFVInfo :: FreeVarsInfo -> FreeVarsInfo -> FreeVarsInfo
1029 unionFVInfo fv1 fv2 = plusVarEnv_C plusFVInfo fv1 fv2
1031 unionFVInfos :: [FreeVarsInfo] -> FreeVarsInfo
1032 unionFVInfos fvs = foldr unionFVInfo emptyFVInfo fvs
1034 minusFVBinders :: [Id] -> FreeVarsInfo -> FreeVarsInfo
1035 minusFVBinders vs fv = foldr minusFVBinder fv vs
1037 minusFVBinder :: Id -> FreeVarsInfo -> FreeVarsInfo
1038 minusFVBinder v fv = fv `delVarEnv` v
1039 -- When removing a binder, remember to add its type variables
1040 -- c.f. CoreFVs.delBinderFV
1042 elementOfFVInfo :: Id -> FreeVarsInfo -> Bool
1043 elementOfFVInfo id fvs = maybeToBool (lookupVarEnv fvs id)
1045 lookupFVInfo :: FreeVarsInfo -> Id -> StgBinderInfo
1046 -- Find how the given Id is used.
1047 -- Externally visible things may be used any old how
1049 | isExternalName (idName id) = noBinderInfo
1050 | otherwise = case lookupVarEnv fvs id of
1051 Nothing -> noBinderInfo
1052 Just (_,_,info) -> info
1054 allFreeIds :: FreeVarsInfo -> [(Id,HowBound)] -- Both top level and non-top-level Ids
1055 allFreeIds fvs = ASSERT( all (isId . fst) ids ) ids
1057 ids = [(id,how_bound) | (id,how_bound,_) <- varEnvElts fvs]
1059 -- Non-top-level things only, both type variables and ids
1060 getFVs :: FreeVarsInfo -> [Var]
1061 getFVs fvs = [id | (id, how_bound, _) <- varEnvElts fvs,
1062 not (topLevelBound how_bound) ]
1064 getFVSet :: FreeVarsInfo -> VarSet
1065 getFVSet fvs = mkVarSet (getFVs fvs)
1067 plusFVInfo :: (Var, HowBound, StgBinderInfo)
1068 -> (Var, HowBound, StgBinderInfo)
1069 -> (Var, HowBound, StgBinderInfo)
1070 plusFVInfo (id1,hb1,info1) (id2,hb2,info2)
1071 = ASSERT (id1 == id2 && hb1 `check_eq_how_bound` hb2)
1072 (id1, hb1, combineStgBinderInfo info1 info2)
1074 -- The HowBound info for a variable in the FVInfo should be consistent
1075 check_eq_how_bound :: HowBound -> HowBound -> Bool
1076 check_eq_how_bound ImportBound ImportBound = True
1077 check_eq_how_bound LambdaBound LambdaBound = True
1078 check_eq_how_bound (LetBound li1 ar1) (LetBound li2 ar2) = ar1 == ar2 && check_eq_li li1 li2
1079 check_eq_how_bound _ _ = False
1081 check_eq_li :: LetInfo -> LetInfo -> Bool
1082 check_eq_li (NestedLet _) (NestedLet _) = True
1083 check_eq_li TopLet TopLet = True
1084 check_eq_li _ _ = False
1089 filterStgBinders :: [Var] -> [Var]
1090 filterStgBinders bndrs = filter isId bndrs
1095 -- Ignore all notes except SCC
1096 myCollectBinders :: Expr Var -> ([Var], Expr Var)
1097 myCollectBinders expr
1100 go bs (Lam b e) = go (b:bs) e
1101 go bs e@(Note (SCC _) _) = (reverse bs, e)
1102 go bs (Cast e _) = go bs e
1103 go bs (Note _ e) = go bs e
1104 go bs e = (reverse bs, e)
1106 myCollectArgs :: CoreExpr -> (Id, [CoreArg])
1107 -- We assume that we only have variables
1108 -- in the function position by now
1112 go (Var v) as = (v, as)
1113 go (App f a) as = go f (a:as)
1114 go (Note (SCC _) _) _ = pprPanic "CoreToStg.myCollectArgs" (ppr expr)
1115 go (Cast e _) as = go e as
1116 go (Note _ e) as = go e as
1118 | isTyVar b = go e as -- Note [Collect args]
1119 go _ _ = pprPanic "CoreToStg.myCollectArgs" (ppr expr)
1124 This big-lambda case occurred following a rather obscure eta expansion.
1125 It all seems a bit yukky to me.
1128 stgArity :: Id -> HowBound -> Arity
1129 stgArity _ (LetBound _ arity) = arity
1130 stgArity f ImportBound = idArity f
1131 stgArity _ LambdaBound = 0