[project @ 2003-03-11 09:08:38 by simonpj]
[ghc-hetmet.git] / ghc / docs / users_guide / glasgow_exts.sgml
1 <para>
2 <indexterm><primary>language, GHC</primary></indexterm>
3 <indexterm><primary>extensions, GHC</primary></indexterm>
4 As with all known Haskell systems, GHC implements some extensions to
5 the language.  To use them, you'll need to give a <option>-fglasgow-exts</option>
6 <indexterm><primary>-fglasgow-exts option</primary></indexterm> option.
7 </para>
8
9 <para>
10 Virtually all of the Glasgow extensions serve to give you access to
11 the underlying facilities with which we implement Haskell.  Thus, you
12 can get at the Raw Iron, if you are willing to write some non-standard
13 code at a more primitive level.  You need not be &ldquo;stuck&rdquo; on
14 performance because of the implementation costs of Haskell's
15 &ldquo;high-level&rdquo; features&mdash;you can always code &ldquo;under&rdquo; them.  In an extreme case, you can write all your time-critical code in C, and then just glue it together with Haskell!
16 </para>
17
18 <para>
19 Before you get too carried away working at the lowest level (e.g.,
20 sloshing <literal>MutableByteArray&num;</literal>s around your
21 program), you may wish to check if there are libraries that provide a
22 &ldquo;Haskellised veneer&rdquo; over the features you want.  The
23 separate libraries documentation describes all the libraries that come
24 with GHC.
25 </para>
26
27 <!-- LANGUAGE OPTIONS -->
28   <sect1 id="options-language">
29     <title>Language options</title>
30
31     <indexterm><primary>language</primary><secondary>option</secondary>
32     </indexterm>
33     <indexterm><primary>options</primary><secondary>language</secondary>
34     </indexterm>
35     <indexterm><primary>extensions</primary><secondary>options controlling</secondary>
36     </indexterm>
37
38     <para> These flags control what variation of the language are
39     permitted.  Leaving out all of them gives you standard Haskell
40     98.</para>
41
42     <variablelist>
43
44       <varlistentry>
45         <term><option>-fglasgow-exts</option>:</term>
46         <indexterm><primary><option>-fglasgow-exts</option></primary></indexterm>
47         <listitem>
48           <para>This simultaneously enables all of the extensions to
49           Haskell 98 described in <xref
50           linkend="ghc-language-features">, except where otherwise
51           noted. </para>
52         </listitem>
53       </varlistentry>
54
55       <varlistentry>
56         <term><option>-ffi</option> and <option>-fffi</option>:</term>
57         <indexterm><primary><option>-ffi</option></primary></indexterm>
58         <indexterm><primary><option>-fffi</option></primary></indexterm>
59         <listitem>
60           <para>This option enables the language extension defined in the
61           Haskell 98 Foreign Function Interface Addendum plus deprecated
62           syntax of previous versions of the FFI for backwards
63           compatibility.</para> 
64         </listitem>
65       </varlistentry>
66
67       <varlistentry>
68         <term><option>-fwith</option>:</term>
69         <indexterm><primary><option>-fwith</option></primary></indexterm>
70         <listitem>
71           <para>This option enables the deprecated <literal>with</literal>
72           keyword for implicit parameters; it is merely provided for backwards
73           compatibility.
74           It is independent of the <option>-fglasgow-exts</option>
75           flag. </para>
76         </listitem>
77       </varlistentry>
78
79       <varlistentry>
80         <term><option>-fno-monomorphism-restriction</option>:</term>
81         <indexterm><primary><option>-fno-monomorphism-restriction</option></primary></indexterm>
82         <listitem>
83           <para> Switch off the Haskell 98 monomorphism restriction.
84           Independent of the <option>-fglasgow-exts</option>
85           flag. </para>
86         </listitem>
87       </varlistentry>
88
89       <varlistentry>
90         <term><option>-fallow-overlapping-instances</option></term>
91         <term><option>-fallow-undecidable-instances</option></term>
92         <term><option>-fallow-incoherent-instances</option></term>
93         <term><option>-fcontext-stack</option></term>
94         <indexterm><primary><option>-fallow-overlapping-instances</option></primary></indexterm>
95         <indexterm><primary><option>-fallow-undecidable-instances</option></primary></indexterm>
96         <indexterm><primary><option>-fcontext-stack</option></primary></indexterm>
97         <listitem>
98           <para> See <xref LinkEnd="instance-decls">.  Only relevant
99           if you also use <option>-fglasgow-exts</option>.</para>
100         </listitem>
101       </varlistentry>
102
103       <varlistentry>
104         <term><option>-finline-phase</option></term>
105         <indexterm><primary><option>-finline-phase</option></primary></indexterm>
106         <listitem>
107           <para>See <xref LinkEnd="rewrite-rules">.  Only relevant if
108           you also use <option>-fglasgow-exts</option>.</para>
109         </listitem>
110       </varlistentry>
111
112       <varlistentry>
113         <term><option>-fgenerics</option></term>
114         <indexterm><primary><option>-fgenerics</option></primary></indexterm>
115         <listitem>
116           <para>See <xref LinkEnd="generic-classes">.  Independent of
117           <option>-fglasgow-exts</option>.</para>
118         </listitem>
119       </varlistentry>
120
121         <varlistentry>
122           <term><option>-fno-implicit-prelude</option></term>
123           <listitem>
124             <para><indexterm><primary>-fno-implicit-prelude
125             option</primary></indexterm> GHC normally imports
126             <filename>Prelude.hi</filename> files for you.  If you'd
127             rather it didn't, then give it a
128             <option>-fno-implicit-prelude</option> option.  The idea
129             is that you can then import a Prelude of your own.  (But
130             don't call it <literal>Prelude</literal>; the Haskell
131             module namespace is flat, and you must not conflict with
132             any Prelude module.)</para>
133
134             <para>Even though you have not imported the Prelude, most of
135             the built-in syntax still refers to the built-in Haskell
136             Prelude types and values, as specified by the Haskell
137             Report.  For example, the type <literal>[Int]</literal>
138             still means <literal>Prelude.[] Int</literal>; tuples
139             continue to refer to the standard Prelude tuples; the
140             translation for list comprehensions continues to use
141             <literal>Prelude.map</literal> etc.</para>
142
143             <para>However, <option>-fno-implicit-prelude</option> does
144             change the handling of certain built-in syntax: see
145             <xref LinkEnd="rebindable-syntax">.</para>
146
147           </listitem>
148         </varlistentry>
149
150     </variablelist>
151   </sect1>
152
153 <!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
154 <!--    included from primitives.sgml  -->
155 <!-- &primitives; -->
156 <sect1 id="primitives">
157   <title>Unboxed types and primitive operations</title>
158
159 <para>GHC is built on a raft of primitive data types and operations.
160 While you really can use this stuff to write fast code,
161   we generally find it a lot less painful, and more satisfying in the
162   long run, to use higher-level language features and libraries.  With
163   any luck, the code you write will be optimised to the efficient
164   unboxed version in any case.  And if it isn't, we'd like to know
165   about it.</para>
166
167 <para>We do not currently have good, up-to-date documentation about the
168 primitives, perhaps because they are mainly intended for internal use.
169 There used to be a long section about them here in the User Guide, but it
170 became out of date, and wrong information is worse than none.</para>
171
172 <para>The Real Truth about what primitive types there are, and what operations
173 work over those types, is held in the file
174 <filename>fptools/ghc/compiler/prelude/primops.txt</filename>.
175 This file is used directly to generate GHC's primitive-operation definitions, so
176 it is always correct!  It is also intended for processing into text.</para>
177
178 <para> Indeed,
179 the result of such processing is part of the description of the 
180  <ulink
181       url="http://haskell.cs.yale.edu/ghc/docs/papers/core.ps.gz">External
182          Core language</ulink>.
183 So that document is a good place to look for a type-set version.
184 We would be very happy if someone wanted to volunteer to produce an SGML
185 back end to the program that processes <filename>primops.txt</filename> so that
186 we could include the results here in the User Guide.</para>
187
188 <para>What follows here is a brief summary of some main points.</para>
189   
190 <sect2 id="glasgow-unboxed">
191 <title>Unboxed types
192 </title>
193
194 <para>
195 <indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
196 </para>
197
198 <para>Most types in GHC are <firstterm>boxed</firstterm>, which means
199 that values of that type are represented by a pointer to a heap
200 object.  The representation of a Haskell <literal>Int</literal>, for
201 example, is a two-word heap object.  An <firstterm>unboxed</firstterm>
202 type, however, is represented by the value itself, no pointers or heap
203 allocation are involved.
204 </para>
205
206 <para>
207 Unboxed types correspond to the &ldquo;raw machine&rdquo; types you
208 would use in C: <literal>Int&num;</literal> (long int),
209 <literal>Double&num;</literal> (double), <literal>Addr&num;</literal>
210 (void *), etc.  The <emphasis>primitive operations</emphasis>
211 (PrimOps) on these types are what you might expect; e.g.,
212 <literal>(+&num;)</literal> is addition on
213 <literal>Int&num;</literal>s, and is the machine-addition that we all
214 know and love&mdash;usually one instruction.
215 </para>
216
217 <para>
218 Primitive (unboxed) types cannot be defined in Haskell, and are
219 therefore built into the language and compiler.  Primitive types are
220 always unlifted; that is, a value of a primitive type cannot be
221 bottom.  We use the convention that primitive types, values, and
222 operations have a <literal>&num;</literal> suffix.
223 </para>
224
225 <para>
226 Primitive values are often represented by a simple bit-pattern, such
227 as <literal>Int&num;</literal>, <literal>Float&num;</literal>,
228 <literal>Double&num;</literal>.  But this is not necessarily the case:
229 a primitive value might be represented by a pointer to a
230 heap-allocated object.  Examples include
231 <literal>Array&num;</literal>, the type of primitive arrays.  A
232 primitive array is heap-allocated because it is too big a value to fit
233 in a register, and would be too expensive to copy around; in a sense,
234 it is accidental that it is represented by a pointer.  If a pointer
235 represents a primitive value, then it really does point to that value:
236 no unevaluated thunks, no indirections&hellip;nothing can be at the
237 other end of the pointer than the primitive value.
238 </para>
239
240 <para>
241 There are some restrictions on the use of primitive types, the main
242 one being that you can't pass a primitive value to a polymorphic
243 function or store one in a polymorphic data type.  This rules out
244 things like <literal>[Int&num;]</literal> (i.e. lists of primitive
245 integers).  The reason for this restriction is that polymorphic
246 arguments and constructor fields are assumed to be pointers: if an
247 unboxed integer is stored in one of these, the garbage collector would
248 attempt to follow it, leading to unpredictable space leaks.  Or a
249 <function>seq</function> operation on the polymorphic component may
250 attempt to dereference the pointer, with disastrous results.  Even
251 worse, the unboxed value might be larger than a pointer
252 (<literal>Double&num;</literal> for instance).
253 </para>
254
255 <para>
256 Nevertheless, A numerically-intensive program using unboxed types can
257 go a <emphasis>lot</emphasis> faster than its &ldquo;standard&rdquo;
258 counterpart&mdash;we saw a threefold speedup on one example.
259 </para>
260
261 </sect2>
262
263 <sect2 id="unboxed-tuples">
264 <title>Unboxed Tuples
265 </title>
266
267 <para>
268 Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>,
269 they're available by default with <option>-fglasgow-exts</option>.  An
270 unboxed tuple looks like this:
271 </para>
272
273 <para>
274
275 <programlisting>
276 (# e_1, ..., e_n #)
277 </programlisting>
278
279 </para>
280
281 <para>
282 where <literal>e&lowbar;1..e&lowbar;n</literal> are expressions of any
283 type (primitive or non-primitive).  The type of an unboxed tuple looks
284 the same.
285 </para>
286
287 <para>
288 Unboxed tuples are used for functions that need to return multiple
289 values, but they avoid the heap allocation normally associated with
290 using fully-fledged tuples.  When an unboxed tuple is returned, the
291 components are put directly into registers or on the stack; the
292 unboxed tuple itself does not have a composite representation.  Many
293 of the primitive operations listed in this section return unboxed
294 tuples.
295 </para>
296
297 <para>
298 There are some pretty stringent restrictions on the use of unboxed tuples:
299 </para>
300
301 <para>
302
303 <itemizedlist>
304 <listitem>
305
306 <para>
307  Unboxed tuple types are subject to the same restrictions as
308 other unboxed types; i.e. they may not be stored in polymorphic data
309 structures or passed to polymorphic functions.
310
311 </para>
312 </listitem>
313 <listitem>
314
315 <para>
316  Unboxed tuples may only be constructed as the direct result of
317 a function, and may only be deconstructed with a <literal>case</literal> expression.
318 eg. the following are valid:
319
320
321 <programlisting>
322 f x y = (# x+1, y-1 #)
323 g x = case f x x of { (# a, b #) -&#62; a + b }
324 </programlisting>
325
326
327 but the following are invalid:
328
329
330 <programlisting>
331 f x y = g (# x, y #)
332 g (# x, y #) = x + y
333 </programlisting>
334
335
336 </para>
337 </listitem>
338 <listitem>
339
340 <para>
341  No variable can have an unboxed tuple type.  This is illegal:
342
343
344 <programlisting>
345 f :: (# Int, Int #) -&#62; (# Int, Int #)
346 f x = x
347 </programlisting>
348
349
350 because <literal>x</literal> has an unboxed tuple type.
351
352 </para>
353 </listitem>
354
355 </itemizedlist>
356
357 </para>
358
359 <para>
360 Note: we may relax some of these restrictions in the future.
361 </para>
362
363 <para>
364 The <literal>IO</literal> and <literal>ST</literal> monads use unboxed
365 tuples to avoid unnecessary allocation during sequences of operations.
366 </para>
367
368 </sect2>
369 </sect1>
370
371
372 <!-- ====================== SYNTACTIC EXTENSIONS =======================  -->
373
374 <sect1 id="syntax-extns">
375 <title>Syntactic extensions</title>
376  
377     <!-- ====================== HIERARCHICAL MODULES =======================  -->
378
379     <sect2 id="hierarchical-modules">
380       <title>Hierarchical Modules</title>
381
382       <para>GHC supports a small extension to the syntax of module
383       names: a module name is allowed to contain a dot
384       <literal>&lsquo;.&rsquo;</literal>.  This is also known as the
385       &ldquo;hierarchical module namespace&rdquo; extension, because
386       it extends the normally flat Haskell module namespace into a
387       more flexible hierarchy of modules.</para>
388
389       <para>This extension has very little impact on the language
390       itself; modules names are <emphasis>always</emphasis> fully
391       qualified, so you can just think of the fully qualified module
392       name as <quote>the module name</quote>.  In particular, this
393       means that the full module name must be given after the
394       <literal>module</literal> keyword at the beginning of the
395       module; for example, the module <literal>A.B.C</literal> must
396       begin</para>
397
398 <programlisting>module A.B.C</programlisting>
399
400
401       <para>It is a common strategy to use the <literal>as</literal>
402       keyword to save some typing when using qualified names with
403       hierarchical modules.  For example:</para>
404
405 <programlisting>
406 import qualified Control.Monad.ST.Strict as ST
407 </programlisting>
408
409       <para>Hierarchical modules have an impact on the way that GHC
410       searches for files.  For a description, see <xref
411       linkend="finding-hierarchical-modules">.</para>
412
413       <para>GHC comes with a large collection of libraries arranged
414       hierarchically; see the accompanying library documentation.
415       There is an ongoing project to create and maintain a stable set
416       of <quote>core</quote> libraries used by several Haskell
417       compilers, and the libraries that GHC comes with represent the
418       current status of that project.  For more details, see <ulink
419       url="http://www.haskell.org/~simonmar/libraries/libraries.html">Haskell
420       Libraries</ulink>.</para>
421
422     </sect2>
423
424     <!-- ====================== PATTERN GUARDS =======================  -->
425
426 <sect2 id="pattern-guards">
427 <title>Pattern guards</title>
428
429 <para>
430 <indexterm><primary>Pattern guards (Glasgow extension)</primary></indexterm>
431 The discussion that follows is an abbreviated version of Simon Peyton Jones's original <ULink URL="http://research.microsoft.com/~simonpj/Haskell/guards.html">proposal</ULink>. (Note that the proposal was written before pattern guards were implemented, so refers to them as unimplemented.)
432 </para>
433
434 <para>
435 Suppose we have an abstract data type of finite maps, with a
436 lookup operation:
437
438 <programlisting>
439 lookup :: FiniteMap -> Int -> Maybe Int
440 </programlisting>
441
442 The lookup returns <function>Nothing</function> if the supplied key is not in the domain of the mapping, and <function>(Just v)</function> otherwise,
443 where <VarName>v</VarName> is the value that the key maps to.  Now consider the following definition:
444 </para>
445
446 <programlisting>
447 clunky env var1 var2 | ok1 && ok2 = val1 + val2
448 | otherwise  = var1 + var2
449 where
450   m1 = lookup env var1
451   m2 = lookup env var2
452   ok1 = maybeToBool m1
453   ok2 = maybeToBool m2
454   val1 = expectJust m1
455   val2 = expectJust m2
456 </programlisting>
457
458 <para>
459 The auxiliary functions are 
460 </para>
461
462 <programlisting>
463 maybeToBool :: Maybe a -&gt; Bool
464 maybeToBool (Just x) = True
465 maybeToBool Nothing  = False
466
467 expectJust :: Maybe a -&gt; a
468 expectJust (Just x) = x
469 expectJust Nothing  = error "Unexpected Nothing"
470 </programlisting>
471
472 <para>
473 What is <function>clunky</function> doing? The guard <literal>ok1 &&
474 ok2</literal> checks that both lookups succeed, using
475 <function>maybeToBool</function> to convert the <function>Maybe</function>
476 types to booleans. The (lazily evaluated) <function>expectJust</function>
477 calls extract the values from the results of the lookups, and binds the
478 returned values to <VarName>val1</VarName> and <VarName>val2</VarName>
479 respectively.  If either lookup fails, then clunky takes the
480 <literal>otherwise</literal> case and returns the sum of its arguments.
481 </para>
482
483 <para>
484 This is certainly legal Haskell, but it is a tremendously verbose and
485 un-obvious way to achieve the desired effect.  Arguably, a more direct way
486 to write clunky would be to use case expressions:
487 </para>
488
489 <programlisting>
490 clunky env var1 var1 = case lookup env var1 of
491   Nothing -&gt; fail
492   Just val1 -&gt; case lookup env var2 of
493     Nothing -&gt; fail
494     Just val2 -&gt; val1 + val2
495 where
496   fail = val1 + val2
497 </programlisting>
498
499 <para>
500 This is a bit shorter, but hardly better.  Of course, we can rewrite any set
501 of pattern-matching, guarded equations as case expressions; that is
502 precisely what the compiler does when compiling equations! The reason that
503 Haskell provides guarded equations is because they allow us to write down
504 the cases we want to consider, one at a time, independently of each other. 
505 This structure is hidden in the case version.  Two of the right-hand sides
506 are really the same (<function>fail</function>), and the whole expression
507 tends to become more and more indented. 
508 </para>
509
510 <para>
511 Here is how I would write clunky:
512 </para>
513
514 <programlisting>
515 clunky env var1 var1
516   | Just val1 &lt;- lookup env var1
517   , Just val2 &lt;- lookup env var2
518   = val1 + val2
519 ...other equations for clunky...
520 </programlisting>
521
522 <para>
523 The semantics should be clear enough.  The qualifers are matched in order. 
524 For a <literal>&lt;-</literal> qualifier, which I call a pattern guard, the
525 right hand side is evaluated and matched against the pattern on the left. 
526 If the match fails then the whole guard fails and the next equation is
527 tried.  If it succeeds, then the appropriate binding takes place, and the
528 next qualifier is matched, in the augmented environment.  Unlike list
529 comprehensions, however, the type of the expression to the right of the
530 <literal>&lt;-</literal> is the same as the type of the pattern to its
531 left.  The bindings introduced by pattern guards scope over all the
532 remaining guard qualifiers, and over the right hand side of the equation.
533 </para>
534
535 <para>
536 Just as with list comprehensions, boolean expressions can be freely mixed
537 with among the pattern guards.  For example:
538 </para>
539
540 <programlisting>
541 f x | [y] <- x
542     , y > 3
543     , Just z <- h y
544     = ...
545 </programlisting>
546
547 <para>
548 Haskell's current guards therefore emerge as a special case, in which the
549 qualifier list has just one element, a boolean expression.
550 </para>
551 </sect2>
552
553     <!-- ===================== Recursive do-notation ===================  -->
554
555 <sect2 id="mdo-notation">
556 <title>The recursive do-notation
557 </title>
558
559 <para> The recursive do-notation (also known as mdo-notation) is implemented as described in
560 "A recursive do for Haskell",
561 Levent Erkok, John Launchbury",
562 Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
563 </para>
564 <para>
565 The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
566 that is, the variables bound in a do-expression are visible only in the textually following 
567 code block. Compare this to a let-expression, where bound variables are visible in the entire binding
568 group. It turns out that several applications can benefit from recursive bindings in
569 the do-notation, and this extension provides the necessary syntactic support.
570 </para>
571 <para>
572 Here is a simple (yet contrived) example:
573 </para>
574 <programlisting>
575 import Control.Monad.Fix
576
577 justOnes = mdo xs <- Just (1:xs)
578                return xs
579 </programlisting>
580 <para>
581 As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [1,1,1,...</literal>.
582 </para>
583
584 <para>
585 The Control.Monad.Fix library introduces the <literal>MonadFix</literal> class. It's definition is:
586 </para>
587 <programlisting>
588 class Monad m => MonadFix m where
589    mfix :: (a -> m a) -> m a
590 </programlisting>
591 <para>
592 The function <literal>mfix</literal>
593 dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
594 then that monad must be declared an instance of the <literal>MonadFix</literal> class.
595 For details, see the above mentioned reference.
596 </para>
597 <para>
598 The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO. 
599 Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class 
600 for Haskell's internal state monad (strict and lazy, respectively).
601 </para>
602 <para>
603 There are three important points in using the recursive-do notation:
604 <itemizedlist>
605 <listitem><para>
606 The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
607 than <literal>do</literal>).
608 </para></listitem>
609
610 <listitem><para>
611 You should <literal>import Control.Monad.Fix</literal>.
612 (Note: Strictly speaking, this import is required only when you need to refer to the name
613 <literal>MonadFix</literal> in your program, but the import is always safe, and the programmers
614 are encouraged to always import this module when using the mdo-notation.)
615 </para></listitem>
616
617 <listitem><para>
618 As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
619 </para></listitem>
620 </itemizedlist>
621 </para>
622
623 <para>
624 The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb">http://www.cse.ogi.edu/PacSoft/projects/rmb</ulink>
625 contains up to date information on recursive monadic bindings.
626 </para>
627
628 <para>
629 Historical note: The old implementation of the mdo-notation (and most
630 of the existing documents) used the name
631 <literal>MonadRec</literal> for the class and the corresponding library.
632 This name is not supported by GHC.
633 </para>
634
635 </sect2>
636
637
638 <sect2> <title> Infix type constructors </title>
639
640 <para>GHC supports infix type constructors, much as it supports infix data constructors.  For example:
641 <programlisting>
642   infixl 5 :+:
643
644   data a :+: b = Inl a | Inr b
645
646   f :: a `Either` b -> a :+: b
647   f (Left x) = Inl x
648 </programlisting>
649 </para>
650 <para>The lexical 
651 syntax of an infix type constructor is just like that of an infix data constructor: either
652 it's an operator beginning with ":", or it is an ordinary (alphabetic) type constructor enclosed in
653 back-quotes.</para>
654
655 <para>
656 When you give a fixity declaration, the fixity applies to both the data constructor and the
657 type constructor with the specified name.  You cannot give different fixities to the type constructor T
658 and the data constructor T.
659 </para>
660
661
662 </sect2>
663
664    <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->
665
666   <sect2 id="parallel-list-comprehensions">
667     <title>Parallel List Comprehensions</title>
668     <indexterm><primary>list comprehensions</primary><secondary>parallel</secondary>
669     </indexterm>
670     <indexterm><primary>parallel list comprehensions</primary>
671     </indexterm>
672
673     <para>Parallel list comprehensions are a natural extension to list
674     comprehensions.  List comprehensions can be thought of as a nice
675     syntax for writing maps and filters.  Parallel comprehensions
676     extend this to include the zipWith family.</para>
677
678     <para>A parallel list comprehension has multiple independent
679     branches of qualifier lists, each separated by a `|' symbol.  For
680     example, the following zips together two lists:</para>
681
682 <programlisting>
683    [ (x, y) | x <- xs | y <- ys ] 
684 </programlisting>
685
686     <para>The behavior of parallel list comprehensions follows that of
687     zip, in that the resulting list will have the same length as the
688     shortest branch.</para>
689
690     <para>We can define parallel list comprehensions by translation to
691     regular comprehensions.  Here's the basic idea:</para>
692
693     <para>Given a parallel comprehension of the form: </para>
694
695 <programlisting>
696    [ e | p1 <- e11, p2 <- e12, ... 
697        | q1 <- e21, q2 <- e22, ... 
698        ... 
699    ] 
700 </programlisting>
701
702     <para>This will be translated to: </para>
703
704 <programlisting>
705    [ e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...] 
706                                          [(q1,q2) | q1 <- e21, q2 <- e22, ...] 
707                                          ... 
708    ] 
709 </programlisting>
710
711     <para>where `zipN' is the appropriate zip for the given number of
712     branches.</para>
713
714   </sect2>
715
716 <sect2 id="rebindable-syntax">
717 <title>Rebindable syntax</title>
718
719
720       <para>GHC allows most kinds of built-in syntax to be rebound by
721       the user, to facilitate replacing the <literal>Prelude</literal>
722       with a home-grown version, for example.</para>
723
724             <para>You may want to define your own numeric class
725             hierarchy.  It completely defeats that purpose if the
726             literal "1" means "<literal>Prelude.fromInteger
727             1</literal>", which is what the Haskell Report specifies.
728             So the <option>-fno-implicit-prelude</option> flag causes
729             the following pieces of built-in syntax to refer to
730             <emphasis>whatever is in scope</emphasis>, not the Prelude
731             versions:</para>
732
733             <itemizedlist>
734               <listitem>
735                 <para>Integer and fractional literals mean
736                 "<literal>fromInteger 1</literal>" and
737                 "<literal>fromRational 3.2</literal>", not the
738                 Prelude-qualified versions; both in expressions and in
739                 patterns. </para>
740                 <para>However, the standard Prelude <literal>Eq</literal> class
741                 is still used for the equality test necessary for literal patterns.</para>
742               </listitem>
743
744               <listitem>
745                 <para>Negation (e.g. "<literal>- (f x)</literal>")
746                 means "<literal>negate (f x)</literal>" (not
747                 <literal>Prelude.negate</literal>).</para>
748               </listitem>
749
750               <listitem>
751                 <para>In an n+k pattern, the standard Prelude
752                 <literal>Ord</literal> class is still used for comparison,
753                 but the necessary subtraction uses whatever
754                 "<literal>(-)</literal>" is in scope (not
755                 "<literal>Prelude.(-)</literal>").</para>
756               </listitem>
757
758               <listitem>
759           <para>"Do" notation is translated using whatever
760               functions <literal>(>>=)</literal>,
761               <literal>(>>)</literal>, <literal>fail</literal>, and
762               <literal>return</literal>, are in scope (not the Prelude
763               versions).  List comprehensions, and parallel array
764               comprehensions, are unaffected.  </para></listitem>
765             </itemizedlist>
766
767              <para>Be warned: this is an experimental facility, with fewer checks than
768              usual.  In particular, it is essential that the functions GHC finds in scope
769              must have the appropriate types, namely:
770              <screen>
771                 fromInteger  :: forall a. (...) => Integer  -> a
772                 fromRational :: forall a. (...) => Rational -> a
773                 negate       :: forall a. (...) => a -> a
774                 (-)          :: forall a. (...) => a -> a -> a
775                 (>>=)        :: forall m a. (...) => m a -> (a -> m b) -> m b
776                 (>>)         :: forall m a. (...) => m a -> m b -> m b
777                 return       :: forall m a. (...) => a      -> m a
778                 fail         :: forall m a. (...) => String -> m a
779              </screen>
780              (The (...) part can be any context including the empty context; that part 
781              is up to you.)
782              If the functions don't have the right type, very peculiar things may 
783              happen.  Use <literal>-dcore-lint</literal> to
784              typecheck the desugared program.  If Core Lint is happy you should be all right.</para>
785
786 </sect2>
787 </sect1>
788
789
790 <!-- TYPE SYSTEM EXTENSIONS -->
791 <sect1 id="type-extensions">
792 <title>Type system extensions</title>
793
794 <sect2 id="nullary-types">
795 <title>Data types with no constructors</title>
796
797 <para>With the <option>-fglasgow-exts</option> flag, GHC lets you declare
798 a data type with no constructors.  For example:</para>
799
800 <programlisting>
801   data S      -- S :: *
802   data T a    -- T :: * -> *
803 </programlisting>
804
805 <para>Syntactically, the declaration lacks the "= constrs" part.  The 
806 type can be parameterised over types of any kind, but if the kind is
807 not <literal>*</literal> then an explicit kind annotation must be used
808 (see <xref linkend="sec-kinding">).</para>
809
810 <para>Such data types have only one value, namely bottom.
811 Nevertheless, they can be useful when defining "phantom types".</para>
812 </sect2>
813
814 <sect2 id="infix-tycons">
815 <title>Infix type constructors</title>
816
817 <para>
818 GHC allows type constructors to be operators, and to be written infix, very much 
819 like expressions.  More specifically:
820 <itemizedlist>
821 <listitem><para>
822   A type constructor can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
823   The lexical syntax is the same as that for data constructors.
824   </para></listitem>
825 <listitem><para>
826   Types can be written infix.  For example <literal>Int :*: Bool</literal>.  
827   </para></listitem>
828 <listitem><para>
829   Back-quotes work
830   as for expressions, both for type constructors and type variables;  e.g. <literal>Int `Either` Bool</literal>, or
831   <literal>Int `a` Bool</literal>.  Similarly, parentheses work the same; e.g.  <literal>(:*:) Int Bool</literal>.
832   </para></listitem>
833 <listitem><para>
834   Fixities may be declared for type constructors just as for data constructors.  However,
835   one cannot distinguish between the two in a fixity declaration; a fixity declaration
836   sets the fixity for a data constructor and the corresponding type constructor.  For example:
837 <screen>
838   infixl 7 T, :*:
839 </screen>
840   sets the fixity for both type constructor <literal>T</literal> and data constructor <literal>T</literal>,
841   and similarly for <literal>:*:</literal>.
842   <literal>Int `a` Bool</literal>.
843   </para></listitem>
844 <listitem><para>
845   Function arrow is <literal>infixr</literal> with fixity 0.  (This might change; I'm not sure what it should be.)
846   </para></listitem>
847 <listitem><para>
848   Data type and type-synonym declarations can be written infix.  E.g.
849 <screen>
850   data a :*: b = Foo a b
851   type a :+: b = Either a b
852 </screen>
853   </para></listitem>
854 <listitem><para>
855   The only thing that differs between operators in types and operators in expressions is that
856   ordinary non-constructor operators, such as <literal>+</literal> and <literal>*</literal>
857   are not allowed in types. Reason: the uniform thing to do would be to make them type
858   variables, but that's not very useful.  A less uniform but more useful thing would be to
859   allow them to be type <emphasis>constructors</emphasis>.  But that gives trouble in export
860   lists.  So for now we just exclude them.
861   </para></listitem>
862
863 </itemizedlist>
864 </para>
865 </sect2>
866
867 <sect2 id="sec-kinding">
868 <title>Explicitly-kinded quantification</title>
869
870 <para>
871 Haskell infers the kind of each type variable.  Sometimes it is nice to be able
872 to give the kind explicitly as (machine-checked) documentation, 
873 just as it is nice to give a type signature for a function.  On some occasions,
874 it is essential to do so.  For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999)
875 John Hughes had to define the data type:
876 <Screen>
877      data Set cxt a = Set [a]
878                     | Unused (cxt a -> ())
879 </Screen>
880 The only use for the <literal>Unused</literal> constructor was to force the correct
881 kind for the type variable <literal>cxt</literal>.
882 </para>
883 <para>
884 GHC now instead allows you to specify the kind of a type variable directly, wherever
885 a type variable is explicitly bound.  Namely:
886 <itemizedlist>
887 <listitem><para><literal>data</literal> declarations:
888 <Screen>
889   data Set (cxt :: * -> *) a = Set [a]
890 </Screen></para></listitem>
891 <listitem><para><literal>type</literal> declarations:
892 <Screen>
893   type T (f :: * -> *) = f Int
894 </Screen></para></listitem>
895 <listitem><para><literal>class</literal> declarations:
896 <Screen>
897   class (Eq a) => C (f :: * -> *) a where ...
898 </Screen></para></listitem>
899 <listitem><para><literal>forall</literal>'s in type signatures:
900 <Screen>
901   f :: forall (cxt :: * -> *). Set cxt Int
902 </Screen></para></listitem>
903 </itemizedlist>
904 </para>
905
906 <para>
907 The parentheses are required.  Some of the spaces are required too, to
908 separate the lexemes.  If you write <literal>(f::*->*)</literal> you
909 will get a parse error, because "<literal>::*->*</literal>" is a
910 single lexeme in Haskell.
911 </para>
912
913 <para>
914 As part of the same extension, you can put kind annotations in types
915 as well.  Thus:
916 <Screen>
917    f :: (Int :: *) -> Int
918    g :: forall a. a -> (a :: *)
919 </Screen>
920 The syntax is
921 <Screen>
922    atype ::= '(' ctype '::' kind ')
923 </Screen>
924 The parentheses are required.
925 </para>
926 </sect2>
927
928
929 <sect2 id="class-method-types">
930 <title>Class method types
931 </title>
932 <para>
933 Haskell 98 prohibits class method types to mention constraints on the
934 class type variable, thus:
935 <programlisting>
936   class Seq s a where
937     fromList :: [a] -> s a
938     elem     :: Eq a => a -> s a -> Bool
939 </programlisting>
940 The type of <literal>elem</literal> is illegal in Haskell 98, because it
941 contains the constraint <literal>Eq a</literal>, constrains only the 
942 class type variable (in this case <literal>a</literal>).
943 </para>
944 <para>
945 With the <option>-fglasgow-exts</option> GHC lifts this restriction.
946 </para>
947
948 </sect2>
949
950 <sect2 id="multi-param-type-classes">
951 <title>Multi-parameter type classes
952 </title>
953
954 <para>
955 This section documents GHC's implementation of multi-parameter type
956 classes.  There's lots of background in the paper <ULink
957 URL="http://research.microsoft.com/~simonpj/multi.ps.gz" >Type
958 classes: exploring the design space</ULink > (Simon Peyton Jones, Mark
959 Jones, Erik Meijer).
960 </para>
961
962
963 <sect3 id="type-restrictions">
964 <title>Types</title>
965
966 <para>
967 GHC imposes the following restrictions on the form of a qualified
968 type, whether declared in a type signature
969 or inferred. Consider the type:
970
971 <programlisting>
972   forall tv1..tvn (c1, ...,cn) => type
973 </programlisting>
974
975 (Here, I write the "foralls" explicitly, although the Haskell source
976 language omits them; in Haskell 1.4, all the free type variables of an
977 explicit source-language type signature are universally quantified,
978 except for the class type variables in a class declaration.  However,
979 in GHC, you can give the foralls if you want.  See <xref LinkEnd="universal-quantification">).
980 </para>
981
982 <para>
983
984 <OrderedList>
985 <listitem>
986
987 <para>
988  <emphasis>Each universally quantified type variable
989 <literal>tvi</literal> must be reachable from <literal>type</literal></emphasis>.
990
991 A type variable is "reachable" if it it is functionally dependent
992 (see <xref linkend="functional-dependencies">)
993 on the type variables free in <literal>type</literal>.
994 The reason for this is that a value with a type that does not obey
995 this restriction could not be used without introducing
996 ambiguity. 
997 Here, for example, is an illegal type:
998
999
1000 <programlisting>
1001   forall a. Eq a => Int
1002 </programlisting>
1003
1004
1005 When a value with this type was used, the constraint <literal>Eq tv</literal>
1006 would be introduced where <literal>tv</literal> is a fresh type variable, and
1007 (in the dictionary-translation implementation) the value would be
1008 applied to a dictionary for <literal>Eq tv</literal>.  The difficulty is that we
1009 can never know which instance of <literal>Eq</literal> to use because we never
1010 get any more information about <literal>tv</literal>.
1011
1012 </para>
1013 </listitem>
1014 <listitem>
1015
1016 <para>
1017  <emphasis>Every constraint <literal>ci</literal> must mention at least one of the
1018 universally quantified type variables <literal>tvi</literal></emphasis>.
1019
1020 For example, this type is OK because <literal>C a b</literal> mentions the
1021 universally quantified type variable <literal>b</literal>:
1022
1023
1024 <programlisting>
1025   forall a. C a b => burble
1026 </programlisting>
1027
1028
1029 The next type is illegal because the constraint <literal>Eq b</literal> does not
1030 mention <literal>a</literal>:
1031
1032
1033 <programlisting>
1034   forall a. Eq b => burble
1035 </programlisting>
1036
1037
1038 The reason for this restriction is milder than the other one.  The
1039 excluded types are never useful or necessary (because the offending
1040 context doesn't need to be witnessed at this point; it can be floated
1041 out).  Furthermore, floating them out increases sharing. Lastly,
1042 excluding them is a conservative choice; it leaves a patch of
1043 territory free in case we need it later.
1044
1045 </para>
1046 </listitem>
1047
1048 </OrderedList>
1049
1050 </para>
1051
1052
1053 <para>
1054 Unlike Haskell 1.4, constraints in types do <emphasis>not</emphasis> have to be of
1055 the form <emphasis>(class type-variables)</emphasis>.  Thus, these type signatures
1056 are perfectly OK
1057 </para>
1058
1059 <para>
1060
1061 <programlisting>
1062   f :: Eq (m a) => [m a] -> [m a]
1063   g :: Eq [a] => ...
1064 </programlisting>
1065
1066 </para>
1067
1068 <para>
1069 This choice recovers principal types, a property that Haskell 1.4 does not have.
1070 </para>
1071
1072 </sect3>
1073
1074 <sect3>
1075 <title>Class declarations</title>
1076
1077 <para>
1078
1079 <OrderedList>
1080 <listitem>
1081
1082 <para>
1083  <emphasis>Multi-parameter type classes are permitted</emphasis>. For example:
1084
1085
1086 <programlisting>
1087   class Collection c a where
1088     union :: c a -> c a -> c a
1089     ...etc.
1090 </programlisting>
1091
1092
1093
1094 </para>
1095 </listitem>
1096 <listitem>
1097
1098 <para>
1099  <emphasis>The class hierarchy must be acyclic</emphasis>.  However, the definition
1100 of "acyclic" involves only the superclass relationships.  For example,
1101 this is OK:
1102
1103
1104 <programlisting>
1105   class C a where {
1106     op :: D b => a -> b -> b
1107   }
1108
1109   class C a => D a where { ... }
1110 </programlisting>
1111
1112
1113 Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
1114 class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>.  (It
1115 would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
1116
1117 </para>
1118 </listitem>
1119 <listitem>
1120
1121 <para>
1122  <emphasis>There are no restrictions on the context in a class declaration
1123 (which introduces superclasses), except that the class hierarchy must
1124 be acyclic</emphasis>.  So these class declarations are OK:
1125
1126
1127 <programlisting>
1128   class Functor (m k) => FiniteMap m k where
1129     ...
1130
1131   class (Monad m, Monad (t m)) => Transform t m where
1132     lift :: m a -> (t m) a
1133 </programlisting>
1134
1135
1136 </para>
1137 </listitem>
1138
1139 <listitem>
1140
1141 <para>
1142  <emphasis>All of the class type variables must be reachable (in the sense 
1143 mentioned in <xref linkend="type-restrictions">)
1144 from the free varibles of each method type
1145 </emphasis>.  For example:
1146
1147
1148 <programlisting>
1149   class Coll s a where
1150     empty  :: s
1151     insert :: s -> a -> s
1152 </programlisting>
1153
1154
1155 is not OK, because the type of <literal>empty</literal> doesn't mention
1156 <literal>a</literal>.  This rule is a consequence of Rule 1(a), above, for
1157 types, and has the same motivation.
1158
1159 Sometimes, offending class declarations exhibit misunderstandings.  For
1160 example, <literal>Coll</literal> might be rewritten
1161
1162
1163 <programlisting>
1164   class Coll s a where
1165     empty  :: s a
1166     insert :: s a -> a -> s a
1167 </programlisting>
1168
1169
1170 which makes the connection between the type of a collection of
1171 <literal>a</literal>'s (namely <literal>(s a)</literal>) and the element type <literal>a</literal>.
1172 Occasionally this really doesn't work, in which case you can split the
1173 class like this:
1174
1175
1176 <programlisting>
1177   class CollE s where
1178     empty  :: s
1179
1180   class CollE s => Coll s a where
1181     insert :: s -> a -> s
1182 </programlisting>
1183
1184
1185 </para>
1186 </listitem>
1187
1188 </OrderedList>
1189
1190 </para>
1191
1192 </sect3>
1193
1194 <sect3 id="instance-decls">
1195 <title>Instance declarations</title>
1196
1197 <para>
1198
1199 <OrderedList>
1200 <listitem>
1201
1202 <para>
1203  <emphasis>Instance declarations may not overlap</emphasis>.  The two instance
1204 declarations
1205
1206
1207 <programlisting>
1208   instance context1 => C type1 where ...
1209   instance context2 => C type2 where ...
1210 </programlisting>
1211
1212
1213 "overlap" if <literal>type1</literal> and <literal>type2</literal> unify
1214
1215 However, if you give the command line option
1216 <option>-fallow-overlapping-instances</option><indexterm><primary>-fallow-overlapping-instances
1217 option</primary></indexterm> then overlapping instance declarations are permitted.
1218 However, GHC arranges never to commit to using an instance declaration
1219 if another instance declaration also applies, either now or later.
1220
1221 <itemizedlist>
1222 <listitem>
1223
1224 <para>
1225  EITHER <literal>type1</literal> and <literal>type2</literal> do not unify
1226 </para>
1227 </listitem>
1228 <listitem>
1229
1230 <para>
1231  OR <literal>type2</literal> is a substitution instance of <literal>type1</literal>
1232 (but not identical to <literal>type1</literal>), or vice versa.
1233 </para>
1234 </listitem>
1235 </itemizedlist>
1236 Notice that these rules
1237 <itemizedlist>
1238 <listitem>
1239
1240 <para>
1241  make it clear which instance decl to use
1242 (pick the most specific one that matches)
1243
1244 </para>
1245 </listitem>
1246 <listitem>
1247
1248 <para>
1249  do not mention the contexts <literal>context1</literal>, <literal>context2</literal>
1250 Reason: you can pick which instance decl
1251 "matches" based on the type.
1252 </para>
1253 </listitem>
1254
1255 </itemizedlist>
1256 However the rules are over-conservative.  Two instance declarations can overlap,
1257 but it can still be clear in particular situations which to use.  For example:
1258 <programlisting>
1259   instance C (Int,a) where ...
1260   instance C (a,Bool) where ...
1261 </programlisting>
1262 These are rejected by GHC's rules, but it is clear what to do when trying
1263 to solve the constraint <literal>C (Int,Int)</literal> because the second instance
1264 cannot apply.  Yell if this restriction bites you.
1265 </para>
1266 <para>
1267 GHC is also conservative about committing to an overlapping instance.  For example:
1268 <programlisting>
1269   class C a where { op :: a -> a }
1270   instance C [Int] where ...
1271   instance C a => C [a] where ...
1272   
1273   f :: C b => [b] -> [b]
1274   f x = op x
1275 </programlisting>
1276 From the RHS of f we get the constraint <literal>C [b]</literal>.  But
1277 GHC does not commit to the second instance declaration, because in a paricular
1278 call of f, b might be instantiate to Int, so the first instance declaration
1279 would be appropriate.  So GHC rejects the program.  If you add <option>-fallow-incoherent-instances</option>
1280 GHC will instead silently pick the second instance, without complaining about 
1281 the problem of subsequent instantiations.
1282 </para>
1283 <para>
1284 Regrettably, GHC doesn't guarantee to detect overlapping instance
1285 declarations if they appear in different modules.  GHC can "see" the
1286 instance declarations in the transitive closure of all the modules
1287 imported by the one being compiled, so it can "see" all instance decls
1288 when it is compiling <literal>Main</literal>.  However, it currently chooses not
1289 to look at ones that can't possibly be of use in the module currently
1290 being compiled, in the interests of efficiency.  (Perhaps we should
1291 change that decision, at least for <literal>Main</literal>.)
1292
1293 </para>
1294 </listitem>
1295 <listitem>
1296
1297 <para>
1298  <emphasis>There are no restrictions on the type in an instance
1299 <emphasis>head</emphasis>, except that at least one must not be a type variable</emphasis>.
1300 The instance "head" is the bit after the "=>" in an instance decl. For
1301 example, these are OK:
1302
1303
1304 <programlisting>
1305   instance C Int a where ...
1306
1307   instance D (Int, Int) where ...
1308
1309   instance E [[a]] where ...
1310 </programlisting>
1311
1312
1313 Note that instance heads <emphasis>may</emphasis> contain repeated type variables.
1314 For example, this is OK:
1315
1316
1317 <programlisting>
1318   instance Stateful (ST s) (MutVar s) where ...
1319 </programlisting>
1320
1321 See <xref linkend="undecidable-instances"> for an experimental
1322 extension to lift this restriction.
1323 </para>
1324 </listitem>
1325 <listitem>
1326
1327 <para>
1328  <emphasis>Unlike Haskell 1.4, instance heads may use type
1329 synonyms</emphasis>.  As always, using a type synonym is just shorthand for
1330 writing the RHS of the type synonym definition.  For example:
1331
1332
1333 <programlisting>
1334   type Point = (Int,Int)
1335   instance C Point   where ...
1336   instance C [Point] where ...
1337 </programlisting>
1338
1339
1340 is legal.  However, if you added
1341
1342
1343 <programlisting>
1344   instance C (Int,Int) where ...
1345 </programlisting>
1346
1347
1348 as well, then the compiler will complain about the overlapping
1349 (actually, identical) instance declarations.  As always, type synonyms
1350 must be fully applied.  You cannot, for example, write:
1351
1352
1353 <programlisting>
1354   type P a = [[a]]
1355   instance Monad P where ...
1356 </programlisting>
1357
1358
1359 This design decision is independent of all the others, and easily
1360 reversed, but it makes sense to me.
1361
1362 </para>
1363 </listitem>
1364 <listitem>
1365
1366 <para>
1367 <emphasis>The types in an instance-declaration <emphasis>context</emphasis> must all
1368 be type variables</emphasis>. Thus
1369
1370
1371 <programlisting>
1372 instance C a b => Eq (a,b) where ...
1373 </programlisting>
1374
1375
1376 is OK, but
1377
1378
1379 <programlisting>
1380 instance C Int b => Foo b where ...
1381 </programlisting>
1382
1383
1384 is not OK.  See <xref linkend="undecidable-instances"> for an experimental
1385 extension to lift this restriction.
1386
1387
1388
1389 </para>
1390 </listitem>
1391
1392 </OrderedList>
1393
1394 </para>
1395
1396 </sect3>
1397
1398 </sect2>
1399
1400 <sect2 id="undecidable-instances">
1401 <title>Undecidable instances</title>
1402
1403 <para>The rules for instance declarations state that:
1404 <itemizedlist>
1405 <listitem><para>At least one of the types in the <emphasis>head</emphasis> of
1406 an instance declaration <emphasis>must not</emphasis> be a type variable.
1407 </para></listitem>
1408 <listitem><para>All of the types in the <emphasis>context</emphasis> of
1409 an instance declaration <emphasis>must</emphasis> be type variables.
1410 </para></listitem>
1411 </itemizedlist>
1412 These restrictions ensure that 
1413 context reduction terminates: each reduction step removes one type
1414 constructor.  For example, the following would make the type checker
1415 loop if it wasn't excluded:
1416 <programlisting>
1417   instance C a => C a where ...
1418 </programlisting>
1419 There are two situations in which the rule is a bit of a pain. First,
1420 if one allows overlapping instance declarations then it's quite
1421 convenient to have a "default instance" declaration that applies if
1422 something more specific does not:
1423
1424
1425 <programlisting>
1426   instance C a where
1427     op = ... -- Default
1428 </programlisting>
1429
1430
1431 Second, sometimes you might want to use the following to get the
1432 effect of a "class synonym":
1433
1434
1435 <programlisting>
1436   class (C1 a, C2 a, C3 a) => C a where { }
1437
1438   instance (C1 a, C2 a, C3 a) => C a where { }
1439 </programlisting>
1440
1441
1442 This allows you to write shorter signatures:
1443
1444
1445 <programlisting>
1446   f :: C a => ...
1447 </programlisting>
1448
1449
1450 instead of
1451
1452
1453 <programlisting>
1454   f :: (C1 a, C2 a, C3 a) => ...
1455 </programlisting>
1456
1457
1458 Voluminous correspondence on the Haskell mailing list has convinced me
1459 that it's worth experimenting with more liberal rules.  If you use
1460 the experimental flag <option>-fallow-undecidable-instances</option>
1461 <indexterm><primary>-fallow-undecidable-instances
1462 option</primary></indexterm>, you can use arbitrary
1463 types in both an instance context and instance head.  Termination is ensured by having a
1464 fixed-depth recursion stack.  If you exceed the stack depth you get a
1465 sort of backtrace, and the opportunity to increase the stack depth
1466 with <option>-fcontext-stack</option><emphasis>N</emphasis>.
1467 </para>
1468 <para>
1469 I'm on the lookout for a less brutal solution: a simple rule that preserves decidability while
1470 allowing these idioms interesting idioms.  
1471 </para>
1472 </sect2>
1473
1474 <sect2 id="implicit-parameters">
1475 <title>Implicit parameters
1476 </title>
1477
1478 <para> Implicit paramters are implemented as described in 
1479 "Implicit parameters: dynamic scoping with static types", 
1480 J Lewis, MB Shields, E Meijer, J Launchbury,
1481 27th ACM Symposium on Principles of Programming Languages (POPL'00),
1482 Boston, Jan 2000.
1483 </para>
1484 <para>(Most of the following, stil rather incomplete, documentation is due to Jeff Lewis.)</para>
1485 <para>
1486 A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
1487 context of a function and <emphasis>statically bound</emphasis> when bound by the callee's
1488 context. In Haskell, all variables are statically bound. Dynamic
1489 binding of variables is a notion that goes back to Lisp, but was later
1490 discarded in more modern incarnations, such as Scheme. Dynamic binding
1491 can be very confusing in an untyped language, and unfortunately, typed
1492 languages, in particular Hindley-Milner typed languages like Haskell,
1493 only support static scoping of variables.
1494 </para>
1495 <para>
1496 However, by a simple extension to the type class system of Haskell, we
1497 can support dynamic binding. Basically, we express the use of a
1498 dynamically bound variable as a constraint on the type. These
1499 constraints lead to types of the form <literal>(?x::t') => t</literal>, which says "this
1500 function uses a dynamically-bound variable <literal>?x</literal> 
1501 of type <literal>t'</literal>". For
1502 example, the following expresses the type of a sort function,
1503 implicitly parameterized by a comparison function named <literal>cmp</literal>.
1504 <programlisting>
1505   sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
1506 </programlisting>
1507 The dynamic binding constraints are just a new form of predicate in the type class system.
1508 </para>
1509 <para>
1510 An implicit parameter occurs in an expression using the special form <literal>?x</literal>, 
1511 where <literal>x</literal> is
1512 any valid identifier (e.g. <literal>ord ?x</literal> is a valid expression). 
1513 Use of this construct also introduces a new
1514 dynamic-binding constraint in the type of the expression. 
1515 For example, the following definition
1516 shows how we can define an implicitly parameterized sort function in
1517 terms of an explicitly parameterized <literal>sortBy</literal> function:
1518 <programlisting>
1519   sortBy :: (a -> a -> Bool) -> [a] -> [a]
1520
1521   sort   :: (?cmp :: a -> a -> Bool) => [a] -> [a]
1522   sort    = sortBy ?cmp
1523 </programlisting>
1524 </para>
1525
1526 <sect3>
1527 <title>Implicit-parameter type constraints</title>
1528 <para>
1529 Dynamic binding constraints behave just like other type class
1530 constraints in that they are automatically propagated. Thus, when a
1531 function is used, its implicit parameters are inherited by the
1532 function that called it. For example, our <literal>sort</literal> function might be used
1533 to pick out the least value in a list:
1534 <programlisting>
1535   least   :: (?cmp :: a -> a -> Bool) => [a] -> a
1536   least xs = fst (sort xs)
1537 </programlisting>
1538 Without lifting a finger, the <literal>?cmp</literal> parameter is
1539 propagated to become a parameter of <literal>least</literal> as well. With explicit
1540 parameters, the default is that parameters must always be explicit
1541 propagated. With implicit parameters, the default is to always
1542 propagate them.
1543 </para>
1544 <para>
1545 An implicit-parameter type constraint differs from other type class constraints in the
1546 following way: All uses of a particular implicit parameter must have
1547 the same type. This means that the type of <literal>(?x, ?x)</literal> 
1548 is <literal>(?x::a) => (a,a)</literal>, and not 
1549 <literal>(?x::a, ?x::b) => (a, b)</literal>, as would be the case for type
1550 class constraints.
1551 </para>
1552
1553 <para> You can't have an implicit parameter in the context of a class or instance
1554 declaration.  For example, both these declarations are illegal:
1555 <programlisting>
1556   class (?x::Int) => C a where ...
1557   instance (?x::a) => Foo [a] where ...
1558 </programlisting>
1559 Reason: exactly which implicit parameter you pick up depends on exactly where
1560 you invoke a function. But the ``invocation'' of instance declarations is done
1561 behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
1562 Easiest thing is to outlaw the offending types.</para>
1563 <para>
1564 Implicit-parameter constraints do not cause ambiguity.  For example, consider:
1565 <programlisting>
1566    f :: (?x :: [a]) => Int -> Int
1567    f n = n + length ?x
1568
1569    g :: (Read a, Show a) => String -> String
1570    g s = show (read s)
1571 </programlisting>
1572 Here, <literal>g</literal> has an ambiguous type, and is rejected, but <literal>f</literal>
1573 is fine.  The binding for <literal>?x</literal> at <literal>f</literal>'s call site is 
1574 quite unambiguous, and fixes the type <literal>a</literal>.
1575 </para>
1576 </sect3>
1577
1578 <sect3>
1579 <title>Implicit-parameter bindings</title>
1580
1581 <para>
1582 An implicit parameter is <emphasis>bound</emphasis> using the standard
1583 <literal>let</literal> or <literal>where</literal> binding forms.
1584 For example, we define the <literal>min</literal> function by binding
1585 <literal>cmp</literal>.
1586 <programlisting>
1587   min :: [a] -> a
1588   min  = let ?cmp = (<=) in least
1589 </programlisting>
1590 </para>
1591 <para>
1592 A group of implicit-parameter bindings may occur anywhere a normal group of Haskell
1593 bindings can occur, except at top level.  That is, they can occur in a <literal>let</literal> 
1594 (including in a list comprehension, or do-notation, or pattern guards), 
1595 or a <literal>where</literal> clause.
1596 Note the following points:
1597 <itemizedlist>
1598 <listitem><para>
1599 An implicit-parameter binding group must be a
1600 collection of simple bindings to implicit-style variables (no
1601 function-style bindings, and no type signatures); these bindings are
1602 neither polymorphic or recursive.  
1603 </para></listitem>
1604 <listitem><para>
1605 You may not mix implicit-parameter bindings with ordinary bindings in a 
1606 single <literal>let</literal>
1607 expression; use two nested <literal>let</literal>s instead.
1608 (In the case of <literal>where</literal> you are stuck, since you can't nest <literal>where</literal> clauses.)
1609 </para></listitem>
1610
1611 <listitem><para>
1612 You may put multiple implicit-parameter bindings in a
1613 single binding group; but they are <emphasis>not</emphasis> treated
1614 as a mutually recursive group (as ordinary <literal>let</literal> bindings are).
1615 Instead they are treated as a non-recursive group, simultaneously binding all the implicit
1616 parameter.  The bindings are not nested, and may be re-ordered without changing
1617 the meaning of the program.
1618 For example, consider:
1619 <programlisting>
1620   f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y
1621 </programlisting>
1622 The use of <literal>?x</literal> in the binding for <literal>?y</literal> does not "see"
1623 the binding for <literal>?x</literal>, so the type of <literal>f</literal> is
1624 <programlisting>
1625   f :: (?x::Int) => Int -> Int
1626 </programlisting>
1627 </para></listitem>
1628 </itemizedlist>
1629 </para>
1630
1631 </sect3>
1632 </sect2>
1633
1634 <sect2 id="linear-implicit-parameters">
1635 <title>Linear implicit parameters
1636 </title>
1637 <para>
1638 Linear implicit parameters are an idea developed by Koen Claessen,
1639 Mark Shields, and Simon PJ.  They address the long-standing
1640 problem that monads seem over-kill for certain sorts of problem, notably:
1641 </para>
1642 <itemizedlist>
1643 <listitem> <para> distributing a supply of unique names </para> </listitem>
1644 <listitem> <para> distributing a suppply of random numbers </para> </listitem>
1645 <listitem> <para> distributing an oracle (as in QuickCheck) </para> </listitem>
1646 </itemizedlist>
1647
1648 <para>
1649 Linear implicit parameters are just like ordinary implicit parameters,
1650 except that they are "linear" -- that is, they cannot be copied, and
1651 must be explicitly "split" instead.  Linear implicit parameters are
1652 written '<literal>%x</literal>' instead of '<literal>?x</literal>'.  
1653 (The '/' in the '%' suggests the split!)
1654 </para>
1655 <para>
1656 For example:
1657 <programlisting>
1658     import GHC.Exts( Splittable )
1659
1660     data NameSupply = ...
1661     
1662     splitNS :: NameSupply -> (NameSupply, NameSupply)
1663     newName :: NameSupply -> Name
1664
1665     instance Splittable NameSupply where
1666         split = splitNS
1667
1668
1669     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
1670     f env (Lam x e) = Lam x' (f env e)
1671                     where
1672                       x'   = newName %ns
1673                       env' = extend env x x'
1674     ...more equations for f...
1675 </programlisting>
1676 Notice that the implicit parameter %ns is consumed 
1677 <itemizedlist>
1678 <listitem> <para> once by the call to <literal>newName</literal> </para> </listitem>
1679 <listitem> <para> once by the recursive call to <literal>f</literal> </para></listitem>
1680 </itemizedlist>
1681 </para>
1682 <para>
1683 So the translation done by the type checker makes
1684 the parameter explicit:
1685 <programlisting>
1686     f :: NameSupply -> Env -> Expr -> Expr
1687     f ns env (Lam x e) = Lam x' (f ns1 env e)
1688                        where
1689                          (ns1,ns2) = splitNS ns
1690                          x' = newName ns2
1691                          env = extend env x x'
1692 </programlisting>
1693 Notice the call to 'split' introduced by the type checker.
1694 How did it know to use 'splitNS'?  Because what it really did
1695 was to introduce a call to the overloaded function 'split',
1696 defined by the class <literal>Splittable</literal>:
1697 <programlisting>
1698         class Splittable a where
1699           split :: a -> (a,a)
1700 </programlisting>
1701 The instance for <literal>Splittable NameSupply</literal> tells GHC how to implement
1702 split for name supplies.  But we can simply write
1703 <programlisting>
1704         g x = (x, %ns, %ns)
1705 </programlisting>
1706 and GHC will infer
1707 <programlisting>
1708         g :: (Splittable a, %ns :: a) => b -> (b,a,a)
1709 </programlisting>
1710 The <literal>Splittable</literal> class is built into GHC.  It's exported by module 
1711 <literal>GHC.Exts</literal>.
1712 </para>
1713 <para>
1714 Other points:
1715 <itemizedlist>
1716 <listitem> <para> '<literal>?x</literal>' and '<literal>%x</literal>' 
1717 are entirely distinct implicit parameters: you 
1718   can use them together and they won't intefere with each other. </para>
1719 </listitem>
1720
1721 <listitem> <para> You can bind linear implicit parameters in 'with' clauses. </para> </listitem>
1722
1723 <listitem> <para>You cannot have implicit parameters (whether linear or not)
1724   in the context of a class or instance declaration. </para></listitem>
1725 </itemizedlist>
1726 </para>
1727
1728 <sect3><title>Warnings</title>
1729
1730 <para>
1731 The monomorphism restriction is even more important than usual.
1732 Consider the example above:
1733 <programlisting>
1734     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
1735     f env (Lam x e) = Lam x' (f env e)
1736                     where
1737                       x'   = newName %ns
1738                       env' = extend env x x'
1739 </programlisting>
1740 If we replaced the two occurrences of x' by (newName %ns), which is
1741 usually a harmless thing to do, we get:
1742 <programlisting>
1743     f :: (%ns :: NameSupply) => Env -> Expr -> Expr
1744     f env (Lam x e) = Lam (newName %ns) (f env e)
1745                     where
1746                       env' = extend env x (newName %ns)
1747 </programlisting>
1748 But now the name supply is consumed in <emphasis>three</emphasis> places
1749 (the two calls to newName,and the recursive call to f), so
1750 the result is utterly different.  Urk!  We don't even have 
1751 the beta rule.
1752 </para>
1753 <para>
1754 Well, this is an experimental change.  With implicit
1755 parameters we have already lost beta reduction anyway, and
1756 (as John Launchbury puts it) we can't sensibly reason about
1757 Haskell programs without knowing their typing.
1758 </para>
1759
1760 </sect3>
1761
1762 <sect3><title>Recursive functions</title>
1763 <para>Linear implicit parameters can be particularly tricky when you have a recursive function
1764 Consider
1765 <programlisting>
1766         foo :: %x::T => Int -> [Int]
1767         foo 0 = []
1768         foo n = %x : foo (n-1)
1769 </programlisting>
1770 where T is some type in class Splittable.</para>
1771 <para>
1772 Do you get a list of all the same T's or all different T's
1773 (assuming that split gives two distinct T's back)?
1774 </para><para>
1775 If you supply the type signature, taking advantage of polymorphic
1776 recursion, you get what you'd probably expect.  Here's the
1777 translated term, where the implicit param is made explicit:
1778 <programlisting>
1779         foo x 0 = []
1780         foo x n = let (x1,x2) = split x
1781                   in x1 : foo x2 (n-1)
1782 </programlisting>
1783 But if you don't supply a type signature, GHC uses the Hindley
1784 Milner trick of using a single monomorphic instance of the function
1785 for the recursive calls. That is what makes Hindley Milner type inference
1786 work.  So the translation becomes
1787 <programlisting>
1788         foo x = let
1789                   foom 0 = []
1790                   foom n = x : foom (n-1)
1791                 in
1792                 foom
1793 </programlisting>
1794 Result: 'x' is not split, and you get a list of identical T's.  So the
1795 semantics of the program depends on whether or not foo has a type signature.
1796 Yikes!
1797 </para><para>
1798 You may say that this is a good reason to dislike linear implicit parameters
1799 and you'd be right.  That is why they are an experimental feature. 
1800 </para>
1801 </sect3>
1802
1803 </sect2>
1804
1805 <sect2 id="functional-dependencies">
1806 <title>Functional dependencies
1807 </title>
1808
1809 <para> Functional dependencies are implemented as described by Mark Jones
1810 in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
1811 In Proceedings of the 9th European Symposium on Programming, 
1812 ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
1813 .
1814 </para>
1815
1816 <para>
1817 There should be more documentation, but there isn't (yet).  Yell if you need it.
1818 </para>
1819 </sect2>
1820
1821
1822 <sect2 id="universal-quantification">
1823 <title>Arbitrary-rank polymorphism
1824 </title>
1825
1826 <para>
1827 Haskell type signatures are implicitly quantified.  The new keyword <literal>forall</literal>
1828 allows us to say exactly what this means.  For example:
1829 </para>
1830 <para>
1831 <programlisting>
1832         g :: b -> b
1833 </programlisting>
1834 means this:
1835 <programlisting>
1836         g :: forall b. (b -> b)
1837 </programlisting>
1838 The two are treated identically.
1839 </para>
1840
1841 <para>
1842 However, GHC's type system supports <emphasis>arbitrary-rank</emphasis> 
1843 explicit universal quantification in
1844 types. 
1845 For example, all the following types are legal:
1846 <programlisting>
1847     f1 :: forall a b. a -> b -> a
1848     g1 :: forall a b. (Ord a, Eq  b) => a -> b -> a
1849
1850     f2 :: (forall a. a->a) -> Int -> Int
1851     g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int
1852
1853     f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
1854 </programlisting>
1855 Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
1856 can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
1857 The <literal>forall</literal> makes explicit the universal quantification that
1858 is implicitly added by Haskell.
1859 </para>
1860 <para>
1861 The functions <literal>f2</literal> and <literal>g2</literal> have rank-2 types;
1862 the <literal>forall</literal> is on the left of a function arrrow.  As <literal>g2</literal>
1863 shows, the polymorphic type on the left of the function arrow can be overloaded.
1864 </para>
1865 <para>
1866 The functions <literal>f3</literal> and <literal>g3</literal> have rank-3 types;
1867 they have rank-2 types on the left of a function arrow.
1868 </para>
1869 <para>
1870 GHC allows types of arbitrary rank; you can nest <literal>forall</literal>s
1871 arbitrarily deep in function arrows.   (GHC used to be restricted to rank 2, but
1872 that restriction has now been lifted.)
1873 In particular, a forall-type (also called a "type scheme"),
1874 including an operational type class context, is legal:
1875 <itemizedlist>
1876 <listitem> <para> On the left of a function arrow </para> </listitem>
1877 <listitem> <para> On the right of a function arrow (see <xref linkend="hoist">) </para> </listitem>
1878 <listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
1879 example, any of the <literal>f1,f2,f3,g1,g2,g3</literal> above would be valid
1880 field type signatures.</para> </listitem>
1881 <listitem> <para> As the type of an implicit parameter </para> </listitem>
1882 <listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables">) </para> </listitem>
1883 </itemizedlist>
1884 There is one place you cannot put a <literal>forall</literal>:
1885 you cannot instantiate a type variable with a forall-type.  So you cannot 
1886 make a forall-type the argument of a type constructor.  So these types are illegal:
1887 <programlisting>
1888     x1 :: [forall a. a->a]
1889     x2 :: (forall a. a->a, Int)
1890     x3 :: Maybe (forall a. a->a)
1891 </programlisting>
1892 Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
1893 a type variable any more!
1894 </para>
1895
1896
1897 <sect3 id="univ">
1898 <title>Examples
1899 </title>
1900
1901 <para>
1902 In a <literal>data</literal> or <literal>newtype</literal> declaration one can quantify
1903 the types of the constructor arguments.  Here are several examples:
1904 </para>
1905
1906 <para>
1907
1908 <programlisting>
1909 data T a = T1 (forall b. b -> b -> b) a
1910
1911 data MonadT m = MkMonad { return :: forall a. a -> m a,
1912                           bind   :: forall a b. m a -> (a -> m b) -> m b
1913                         }
1914
1915 newtype Swizzle = MkSwizzle (Ord a => [a] -> [a])
1916 </programlisting>
1917
1918 </para>
1919
1920 <para>
1921 The constructors have rank-2 types:
1922 </para>
1923
1924 <para>
1925
1926 <programlisting>
1927 T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
1928 MkMonad :: forall m. (forall a. a -> m a)
1929                   -> (forall a b. m a -> (a -> m b) -> m b)
1930                   -> MonadT m
1931 MkSwizzle :: (Ord a => [a] -> [a]) -> Swizzle
1932 </programlisting>
1933
1934 </para>
1935
1936 <para>
1937 Notice that you don't need to use a <literal>forall</literal> if there's an
1938 explicit context.  For example in the first argument of the
1939 constructor <function>MkSwizzle</function>, an implicit "<literal>forall a.</literal>" is
1940 prefixed to the argument type.  The implicit <literal>forall</literal>
1941 quantifies all type variables that are not already in scope, and are
1942 mentioned in the type quantified over.
1943 </para>
1944
1945 <para>
1946 As for type signatures, implicit quantification happens for non-overloaded
1947 types too.  So if you write this:
1948
1949 <programlisting>
1950   data T a = MkT (Either a b) (b -> b)
1951 </programlisting>
1952
1953 it's just as if you had written this:
1954
1955 <programlisting>
1956   data T a = MkT (forall b. Either a b) (forall b. b -> b)
1957 </programlisting>
1958
1959 That is, since the type variable <literal>b</literal> isn't in scope, it's
1960 implicitly universally quantified.  (Arguably, it would be better
1961 to <emphasis>require</emphasis> explicit quantification on constructor arguments
1962 where that is what is wanted.  Feedback welcomed.)
1963 </para>
1964
1965 <para>
1966 You construct values of types <literal>T1, MonadT, Swizzle</literal> by applying
1967 the constructor to suitable values, just as usual.  For example,
1968 </para>
1969
1970 <para>
1971
1972 <programlisting>
1973     a1 :: T Int
1974     a1 = T1 (\xy->x) 3
1975     
1976     a2, a3 :: Swizzle
1977     a2 = MkSwizzle sort
1978     a3 = MkSwizzle reverse
1979     
1980     a4 :: MonadT Maybe
1981     a4 = let r x = Just x
1982              b m k = case m of
1983                        Just y -> k y
1984                        Nothing -> Nothing
1985          in
1986          MkMonad r b
1987
1988     mkTs :: (forall b. b -> b -> b) -> a -> [T a]
1989     mkTs f x y = [T1 f x, T1 f y]
1990 </programlisting>
1991
1992 </para>
1993
1994 <para>
1995 The type of the argument can, as usual, be more general than the type
1996 required, as <literal>(MkSwizzle reverse)</literal> shows.  (<function>reverse</function>
1997 does not need the <literal>Ord</literal> constraint.)
1998 </para>
1999
2000 <para>
2001 When you use pattern matching, the bound variables may now have
2002 polymorphic types.  For example:
2003 </para>
2004
2005 <para>
2006
2007 <programlisting>
2008     f :: T a -> a -> (a, Char)
2009     f (T1 w k) x = (w k x, w 'c' 'd')
2010
2011     g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
2012     g (MkSwizzle s) xs f = s (map f (s xs))
2013
2014     h :: MonadT m -> [m a] -> m [a]
2015     h m [] = return m []
2016     h m (x:xs) = bind m x          $ \y ->
2017                  bind m (h m xs)   $ \ys ->
2018                  return m (y:ys)
2019 </programlisting>
2020
2021 </para>
2022
2023 <para>
2024 In the function <function>h</function> we use the record selectors <literal>return</literal>
2025 and <literal>bind</literal> to extract the polymorphic bind and return functions
2026 from the <literal>MonadT</literal> data structure, rather than using pattern
2027 matching.
2028 </para>
2029 </sect3>
2030
2031 <sect3>
2032 <title>Type inference</title>
2033
2034 <para>
2035 In general, type inference for arbitrary-rank types is undecideable.
2036 GHC uses an algorithm proposed by Odersky and Laufer ("Putting type annotations to work", POPL'96)
2037 to get a decidable algorithm by requiring some help from the programmer.
2038 We do not yet have a formal specification of "some help" but the rule is this:
2039 </para>
2040 <para>
2041 <emphasis>For a lambda-bound or case-bound variable, x, either the programmer
2042 provides an explicit polymorphic type for x, or GHC's type inference will assume
2043 that x's type has no foralls in it</emphasis>.
2044 </para>
2045 <para>
2046 What does it mean to "provide" an explicit type for x?  You can do that by 
2047 giving a type signature for x directly, using a pattern type signature
2048 (<xref linkend="scoped-type-variables">), thus:
2049 <programlisting>
2050      \ f :: (forall a. a->a) -> (f True, f 'c')
2051 </programlisting>
2052 Alternatively, you can give a type signature to the enclosing
2053 context, which GHC can "push down" to find the type for the variable:
2054 <programlisting>
2055      (\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)
2056 </programlisting>
2057 Here the type signature on the expression can be pushed inwards
2058 to give a type signature for f.  Similarly, and more commonly,
2059 one can give a type signature for the function itself:
2060 <programlisting>
2061      h :: (forall a. a->a) -> (Bool,Char)
2062      h f = (f True, f 'c')
2063 </programlisting>
2064 You don't need to give a type signature if the lambda bound variable
2065 is a constructor argument.  Here is an example we saw earlier:
2066 <programlisting>
2067     f :: T a -> a -> (a, Char)
2068     f (T1 w k) x = (w k x, w 'c' 'd')
2069 </programlisting>
2070 Here we do not need to give a type signature to <literal>w</literal>, because
2071 it is an argument of constructor <literal>T1</literal> and that tells GHC all
2072 it needs to know.
2073 </para>
2074
2075 </sect3>
2076
2077
2078 <sect3 id="implicit-quant">
2079 <title>Implicit quantification</title>
2080
2081 <para>
2082 GHC performs implicit quantification as follows.  <emphasis>At the top level (only) of 
2083 user-written types, if and only if there is no explicit <literal>forall</literal>,
2084 GHC finds all the type variables mentioned in the type that are not already
2085 in scope, and universally quantifies them.</emphasis>  For example, the following pairs are 
2086 equivalent:
2087 <programlisting>
2088   f :: a -> a
2089   f :: forall a. a -> a
2090
2091   g (x::a) = let
2092                 h :: a -> b -> b
2093                 h x y = y
2094              in ...
2095   g (x::a) = let
2096                 h :: forall b. a -> b -> b
2097                 h x y = y
2098              in ...
2099 </programlisting>
2100 </para>
2101 <para>
2102 Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
2103 point.  For example:
2104 <programlisting>
2105   f :: (a -> a) -> Int
2106            -- MEANS
2107   f :: forall a. (a -> a) -> Int
2108            -- NOT
2109   f :: (forall a. a -> a) -> Int
2110
2111
2112   g :: (Ord a => a -> a) -> Int
2113            -- MEANS the illegal type
2114   g :: forall a. (Ord a => a -> a) -> Int
2115            -- NOT
2116   g :: (forall a. Ord a => a -> a) -> Int
2117 </programlisting>
2118 The latter produces an illegal type, which you might think is silly,
2119 but at least the rule is simple.  If you want the latter type, you
2120 can write your for-alls explicitly.  Indeed, doing so is strongly advised
2121 for rank-2 types.
2122 </para>
2123 </sect3>
2124 </sect2>
2125
2126 <sect2 id="type-synonyms">
2127 <title>Liberalised type synonyms 
2128 </title>
2129
2130 <para>
2131 Type synonmys are like macros at the type level, and
2132 GHC does validity checking on types <emphasis>only after expanding type synonyms</emphasis>.
2133 That means that GHC can be very much more liberal about type synonyms than Haskell 98:
2134 <itemizedlist>
2135 <listitem> <para>You can write a <literal>forall</literal> (including overloading)
2136 in a type synonym, thus:
2137 <programlisting>
2138   type Discard a = forall b. Show b => a -> b -> (a, String)
2139
2140   f :: Discard a
2141   f x y = (x, show y)
2142
2143   g :: Discard Int -> (Int,Bool)    -- A rank-2 type
2144   g f = f Int True
2145 </programlisting>
2146 </para>
2147 </listitem>
2148
2149 <listitem><para>
2150 You can write an unboxed tuple in a type synonym:
2151 <programlisting>
2152   type Pr = (# Int, Int #)
2153
2154   h :: Int -> Pr
2155   h x = (# x, x #)
2156 </programlisting>
2157 </para></listitem>
2158
2159 <listitem><para>
2160 You can apply a type synonym to a forall type:
2161 <programlisting>
2162   type Foo a = a -> a -> Bool
2163  
2164   f :: Foo (forall b. b->b)
2165 </programlisting>
2166 After expanding the synonym, <literal>f</literal> has the legal (in GHC) type:
2167 <programlisting>
2168   f :: (forall b. b->b) -> (forall b. b->b) -> Bool
2169 </programlisting>
2170 </para></listitem>
2171
2172 <listitem><para>
2173 You can apply a type synonym to a partially applied type synonym:
2174 <programlisting>
2175   type Generic i o = forall x. i x -> o x
2176   type Id x = x
2177   
2178   foo :: Generic Id []
2179 </programlisting>
2180 After epxanding the synonym, <literal>foo</literal> has the legal (in GHC) type:
2181 <programlisting>
2182   foo :: forall x. x -> [x]
2183 </programlisting>
2184 </para></listitem>
2185
2186 </itemizedlist>
2187 </para>
2188
2189 <para>
2190 GHC currently does kind checking before expanding synonyms (though even that
2191 could be changed.)
2192 </para>
2193 <para>
2194 After expanding type synonyms, GHC does validity checking on types, looking for
2195 the following mal-formedness which isn't detected simply by kind checking:
2196 <itemizedlist>
2197 <listitem><para>
2198 Type constructor applied to a type involving for-alls.
2199 </para></listitem>
2200 <listitem><para>
2201 Unboxed tuple on left of an arrow.
2202 </para></listitem>
2203 <listitem><para>
2204 Partially-applied type synonym.
2205 </para></listitem>
2206 </itemizedlist>
2207 So, for example,
2208 this will be rejected:
2209 <programlisting>
2210   type Pr = (# Int, Int #)
2211
2212   h :: Pr -> Int
2213   h x = ...
2214 </programlisting>
2215 because GHC does not allow  unboxed tuples on the left of a function arrow.
2216 </para>
2217 </sect2>
2218
2219 <sect2 id="hoist">
2220 <title>For-all hoisting</title>
2221 <para>
2222 It is often convenient to use generalised type synonyms at the right hand
2223 end of an arrow, thus:
2224 <programlisting>
2225   type Discard a = forall b. a -> b -> a
2226
2227   g :: Int -> Discard Int
2228   g x y z = x+y
2229 </programlisting>
2230 Simply expanding the type synonym would give
2231 <programlisting>
2232   g :: Int -> (forall b. Int -> b -> Int)
2233 </programlisting>
2234 but GHC "hoists" the <literal>forall</literal> to give the isomorphic type
2235 <programlisting>
2236   g :: forall b. Int -> Int -> b -> Int
2237 </programlisting>
2238 In general, the rule is this: <emphasis>to determine the type specified by any explicit
2239 user-written type (e.g. in a type signature), GHC expands type synonyms and then repeatedly
2240 performs the transformation:</emphasis>
2241 <programlisting>
2242   <emphasis>type1</emphasis> -> forall a1..an. <emphasis>context2</emphasis> => <emphasis>type2</emphasis>
2243 ==>
2244   forall a1..an. <emphasis>context2</emphasis> => <emphasis>type1</emphasis> -> <emphasis>type2</emphasis>
2245 </programlisting>
2246 (In fact, GHC tries to retain as much synonym information as possible for use in
2247 error messages, but that is a usability issue.)  This rule applies, of course, whether
2248 or not the <literal>forall</literal> comes from a synonym. For example, here is another
2249 valid way to write <literal>g</literal>'s type signature:
2250 <programlisting>
2251   g :: Int -> Int -> forall b. b -> Int
2252 </programlisting>
2253 </para>
2254 <para>
2255 When doing this hoisting operation, GHC eliminates duplicate constraints.  For
2256 example:
2257 <programlisting>
2258   type Foo a = (?x::Int) => Bool -> a
2259   g :: Foo (Foo Int)
2260 </programlisting>
2261 means
2262 <programlisting>
2263   g :: (?x::Int) => Bool -> Bool -> Int
2264 </programlisting>
2265 </para>
2266 </sect2>
2267
2268
2269 <sect2 id="existential-quantification">
2270 <title>Existentially quantified data constructors
2271 </title>
2272
2273 <para>
2274 The idea of using existential quantification in data type declarations
2275 was suggested by Laufer (I believe, thought doubtless someone will
2276 correct me), and implemented in Hope+. It's been in Lennart
2277 Augustsson's <Command>hbc</Command> Haskell compiler for several years, and
2278 proved very useful.  Here's the idea.  Consider the declaration:
2279 </para>
2280
2281 <para>
2282
2283 <programlisting>
2284   data Foo = forall a. MkFoo a (a -> Bool)
2285            | Nil
2286 </programlisting>
2287
2288 </para>
2289
2290 <para>
2291 The data type <literal>Foo</literal> has two constructors with types:
2292 </para>
2293
2294 <para>
2295
2296 <programlisting>
2297   MkFoo :: forall a. a -> (a -> Bool) -> Foo
2298   Nil   :: Foo
2299 </programlisting>
2300
2301 </para>
2302
2303 <para>
2304 Notice that the type variable <literal>a</literal> in the type of <function>MkFoo</function>
2305 does not appear in the data type itself, which is plain <literal>Foo</literal>.
2306 For example, the following expression is fine:
2307 </para>
2308
2309 <para>
2310
2311 <programlisting>
2312   [MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]
2313 </programlisting>
2314
2315 </para>
2316
2317 <para>
2318 Here, <literal>(MkFoo 3 even)</literal> packages an integer with a function
2319 <function>even</function> that maps an integer to <literal>Bool</literal>; and <function>MkFoo 'c'
2320 isUpper</function> packages a character with a compatible function.  These
2321 two things are each of type <literal>Foo</literal> and can be put in a list.
2322 </para>
2323
2324 <para>
2325 What can we do with a value of type <literal>Foo</literal>?.  In particular,
2326 what happens when we pattern-match on <function>MkFoo</function>?
2327 </para>
2328
2329 <para>
2330
2331 <programlisting>
2332   f (MkFoo val fn) = ???
2333 </programlisting>
2334
2335 </para>
2336
2337 <para>
2338 Since all we know about <literal>val</literal> and <function>fn</function> is that they
2339 are compatible, the only (useful) thing we can do with them is to
2340 apply <function>fn</function> to <literal>val</literal> to get a boolean.  For example:
2341 </para>
2342
2343 <para>
2344
2345 <programlisting>
2346   f :: Foo -> Bool
2347   f (MkFoo val fn) = fn val
2348 </programlisting>
2349
2350 </para>
2351
2352 <para>
2353 What this allows us to do is to package heterogenous values
2354 together with a bunch of functions that manipulate them, and then treat
2355 that collection of packages in a uniform manner.  You can express
2356 quite a bit of object-oriented-like programming this way.
2357 </para>
2358
2359 <sect3 id="existential">
2360 <title>Why existential?
2361 </title>
2362
2363 <para>
2364 What has this to do with <emphasis>existential</emphasis> quantification?
2365 Simply that <function>MkFoo</function> has the (nearly) isomorphic type
2366 </para>
2367
2368 <para>
2369
2370 <programlisting>
2371   MkFoo :: (exists a . (a, a -> Bool)) -> Foo
2372 </programlisting>
2373
2374 </para>
2375
2376 <para>
2377 But Haskell programmers can safely think of the ordinary
2378 <emphasis>universally</emphasis> quantified type given above, thereby avoiding
2379 adding a new existential quantification construct.
2380 </para>
2381
2382 </sect3>
2383
2384 <sect3>
2385 <title>Type classes</title>
2386
2387 <para>
2388 An easy extension (implemented in <Command>hbc</Command>) is to allow
2389 arbitrary contexts before the constructor.  For example:
2390 </para>
2391
2392 <para>
2393
2394 <programlisting>
2395 data Baz = forall a. Eq a => Baz1 a a
2396          | forall b. Show b => Baz2 b (b -> b)
2397 </programlisting>
2398
2399 </para>
2400
2401 <para>
2402 The two constructors have the types you'd expect:
2403 </para>
2404
2405 <para>
2406
2407 <programlisting>
2408 Baz1 :: forall a. Eq a => a -> a -> Baz
2409 Baz2 :: forall b. Show b => b -> (b -> b) -> Baz
2410 </programlisting>
2411
2412 </para>
2413
2414 <para>
2415 But when pattern matching on <function>Baz1</function> the matched values can be compared
2416 for equality, and when pattern matching on <function>Baz2</function> the first matched
2417 value can be converted to a string (as well as applying the function to it).
2418 So this program is legal:
2419 </para>
2420
2421 <para>
2422
2423 <programlisting>
2424   f :: Baz -> String
2425   f (Baz1 p q) | p == q    = "Yes"
2426                | otherwise = "No"
2427   f (Baz2 v fn)            = show (fn v)
2428 </programlisting>
2429
2430 </para>
2431
2432 <para>
2433 Operationally, in a dictionary-passing implementation, the
2434 constructors <function>Baz1</function> and <function>Baz2</function> must store the
2435 dictionaries for <literal>Eq</literal> and <literal>Show</literal> respectively, and
2436 extract it on pattern matching.
2437 </para>
2438
2439 <para>
2440 Notice the way that the syntax fits smoothly with that used for
2441 universal quantification earlier.
2442 </para>
2443
2444 </sect3>
2445
2446 <sect3>
2447 <title>Restrictions</title>
2448
2449 <para>
2450 There are several restrictions on the ways in which existentially-quantified
2451 constructors can be use.
2452 </para>
2453
2454 <para>
2455
2456 <itemizedlist>
2457 <listitem>
2458
2459 <para>
2460  When pattern matching, each pattern match introduces a new,
2461 distinct, type for each existential type variable.  These types cannot
2462 be unified with any other type, nor can they escape from the scope of
2463 the pattern match.  For example, these fragments are incorrect:
2464
2465
2466 <programlisting>
2467 f1 (MkFoo a f) = a
2468 </programlisting>
2469
2470
2471 Here, the type bound by <function>MkFoo</function> "escapes", because <literal>a</literal>
2472 is the result of <function>f1</function>.  One way to see why this is wrong is to
2473 ask what type <function>f1</function> has:
2474
2475
2476 <programlisting>
2477   f1 :: Foo -> a             -- Weird!
2478 </programlisting>
2479
2480
2481 What is this "<literal>a</literal>" in the result type? Clearly we don't mean
2482 this:
2483
2484
2485 <programlisting>
2486   f1 :: forall a. Foo -> a   -- Wrong!
2487 </programlisting>
2488
2489
2490 The original program is just plain wrong.  Here's another sort of error
2491
2492
2493 <programlisting>
2494   f2 (Baz1 a b) (Baz1 p q) = a==q
2495 </programlisting>
2496
2497
2498 It's ok to say <literal>a==b</literal> or <literal>p==q</literal>, but
2499 <literal>a==q</literal> is wrong because it equates the two distinct types arising
2500 from the two <function>Baz1</function> constructors.
2501
2502
2503 </para>
2504 </listitem>
2505 <listitem>
2506
2507 <para>
2508 You can't pattern-match on an existentially quantified
2509 constructor in a <literal>let</literal> or <literal>where</literal> group of
2510 bindings. So this is illegal:
2511
2512
2513 <programlisting>
2514   f3 x = a==b where { Baz1 a b = x }
2515 </programlisting>
2516
2517 Instead, use a <literal>case</literal> expression:
2518
2519 <programlisting>
2520   f3 x = case x of Baz1 a b -> a==b
2521 </programlisting>
2522
2523 In general, you can only pattern-match
2524 on an existentially-quantified constructor in a <literal>case</literal> expression or
2525 in the patterns of a function definition.
2526
2527 The reason for this restriction is really an implementation one.
2528 Type-checking binding groups is already a nightmare without
2529 existentials complicating the picture.  Also an existential pattern
2530 binding at the top level of a module doesn't make sense, because it's
2531 not clear how to prevent the existentially-quantified type "escaping".
2532 So for now, there's a simple-to-state restriction.  We'll see how
2533 annoying it is.
2534
2535 </para>
2536 </listitem>
2537 <listitem>
2538
2539 <para>
2540 You can't use existential quantification for <literal>newtype</literal>
2541 declarations.  So this is illegal:
2542
2543
2544 <programlisting>
2545   newtype T = forall a. Ord a => MkT a
2546 </programlisting>
2547
2548
2549 Reason: a value of type <literal>T</literal> must be represented as a pair
2550 of a dictionary for <literal>Ord t</literal> and a value of type <literal>t</literal>.
2551 That contradicts the idea that <literal>newtype</literal> should have no
2552 concrete representation.  You can get just the same efficiency and effect
2553 by using <literal>data</literal> instead of <literal>newtype</literal>.  If there is no
2554 overloading involved, then there is more of a case for allowing
2555 an existentially-quantified <literal>newtype</literal>, because the <literal>data</literal>
2556 because the <literal>data</literal> version does carry an implementation cost,
2557 but single-field existentially quantified constructors aren't much
2558 use.  So the simple restriction (no existential stuff on <literal>newtype</literal>)
2559 stands, unless there are convincing reasons to change it.
2560
2561
2562 </para>
2563 </listitem>
2564 <listitem>
2565
2566 <para>
2567  You can't use <literal>deriving</literal> to define instances of a
2568 data type with existentially quantified data constructors.
2569
2570 Reason: in most cases it would not make sense. For example:&num;
2571
2572 <programlisting>
2573 data T = forall a. MkT [a] deriving( Eq )
2574 </programlisting>
2575
2576 To derive <literal>Eq</literal> in the standard way we would need to have equality
2577 between the single component of two <function>MkT</function> constructors:
2578
2579 <programlisting>
2580 instance Eq T where
2581   (MkT a) == (MkT b) = ???
2582 </programlisting>
2583
2584 But <VarName>a</VarName> and <VarName>b</VarName> have distinct types, and so can't be compared.
2585 It's just about possible to imagine examples in which the derived instance
2586 would make sense, but it seems altogether simpler simply to prohibit such
2587 declarations.  Define your own instances!
2588 </para>
2589 </listitem>
2590
2591 </itemizedlist>
2592
2593 </para>
2594
2595 </sect3>
2596
2597 </sect2>
2598
2599 <sect2 id="scoped-type-variables">
2600 <title>Scoped type variables
2601 </title>
2602
2603 <para>
2604 A <emphasis>pattern type signature</emphasis> can introduce a <emphasis>scoped type
2605 variable</emphasis>.  For example
2606 </para>
2607
2608 <para>
2609
2610 <programlisting>
2611 f (xs::[a]) = ys ++ ys
2612            where
2613               ys :: [a]
2614               ys = reverse xs
2615 </programlisting>
2616
2617 </para>
2618
2619 <para>
2620 The pattern <literal>(xs::[a])</literal> includes a type signature for <VarName>xs</VarName>.
2621 This brings the type variable <literal>a</literal> into scope; it scopes over
2622 all the patterns and right hand sides for this equation for <function>f</function>.
2623 In particular, it is in scope at the type signature for <VarName>y</VarName>.
2624 </para>
2625
2626 <para>
2627  Pattern type signatures are completely orthogonal to ordinary, separate
2628 type signatures.  The two can be used independently or together.
2629 At ordinary type signatures, such as that for <VarName>ys</VarName>, any type variables
2630 mentioned in the type signature <emphasis>that are not in scope</emphasis> are
2631 implicitly universally quantified.  (If there are no type variables in
2632 scope, all type variables mentioned in the signature are universally
2633 quantified, which is just as in Haskell 98.)  In this case, since <VarName>a</VarName>
2634 is in scope, it is not universally quantified, so the type of <VarName>ys</VarName> is
2635 the same as that of <VarName>xs</VarName>.  In Haskell 98 it is not possible to declare
2636 a type for <VarName>ys</VarName>; a major benefit of scoped type variables is that
2637 it becomes possible to do so.
2638 </para>
2639
2640 <para>
2641 Scoped type variables are implemented in both GHC and Hugs.  Where the
2642 implementations differ from the specification below, those differences
2643 are noted.
2644 </para>
2645
2646 <para>
2647 So much for the basic idea.  Here are the details.
2648 </para>
2649
2650 <sect3>
2651 <title>What a pattern type signature means</title>
2652 <para>
2653 A type variable brought into scope by a pattern type signature is simply
2654 the name for a type.   The restriction they express is that all occurrences
2655 of the same name mean the same type.  For example:
2656 <programlisting>
2657   f :: [Int] -> Int -> Int
2658   f (xs::[a]) (y::a) = (head xs + y) :: a
2659 </programlisting>
2660 The pattern type signatures on the left hand side of
2661 <literal>f</literal> express the fact that <literal>xs</literal>
2662 must be a list of things of some type <literal>a</literal>; and that <literal>y</literal>
2663 must have this same type.  The type signature on the expression <literal>(head xs)</literal>
2664 specifies that this expression must have the same type <literal>a</literal>.
2665 <emphasis>There is no requirement that the type named by "<literal>a</literal>" is
2666 in fact a type variable</emphasis>.  Indeed, in this case, the type named by "<literal>a</literal>" is
2667 <literal>Int</literal>.  (This is a slight liberalisation from the original rather complex
2668 rules, which specified that a pattern-bound type variable should be universally quantified.)
2669 For example, all of these are legal:</para>
2670
2671 <programlisting>
2672   t (x::a) (y::a) = x+y*2
2673
2674   f (x::a) (y::b) = [x,y]       -- a unifies with b
2675
2676   g (x::a) = x + 1::Int         -- a unifies with Int
2677
2678   h x = let k (y::a) = [x,y]    -- a is free in the
2679         in k x                  -- environment
2680
2681   k (x::a) True    = ...        -- a unifies with Int
2682   k (x::Int) False = ...
2683
2684   w :: [b] -> [b]
2685   w (x::a) = x                  -- a unifies with [b]
2686 </programlisting>
2687
2688 </sect3>
2689
2690 <sect3>
2691 <title>Scope and implicit quantification</title>
2692
2693 <para>
2694
2695 <itemizedlist>
2696 <listitem>
2697
2698 <para>
2699 All the type variables mentioned in a pattern,
2700 that are not already in scope,
2701 are brought into scope by the pattern.  We describe this set as
2702 the <emphasis>type variables bound by the pattern</emphasis>.
2703 For example:
2704 <programlisting>
2705   f (x::a) = let g (y::(a,b)) = fst y
2706              in
2707              g (x,True)
2708 </programlisting>
2709 The pattern <literal>(x::a)</literal> brings the type variable
2710 <literal>a</literal> into scope, as well as the term 
2711 variable <literal>x</literal>.  The pattern <literal>(y::(a,b))</literal>
2712 contains an occurrence of the already-in-scope type variable <literal>a</literal>,
2713 and brings into scope the type variable <literal>b</literal>.
2714 </para>
2715 </listitem>
2716
2717 <listitem>
2718 <para>
2719 The type variable(s) bound by the pattern have the same scope
2720 as the term variable(s) bound by the pattern.  For example:
2721 <programlisting>
2722   let
2723     f (x::a) = <...rhs of f...>
2724     (p::b, q::b) = (1,2)
2725   in <...body of let...>
2726 </programlisting>
2727 Here, the type variable <literal>a</literal> scopes over the right hand side of <literal>f</literal>,
2728 just like <literal>x</literal> does; while the type variable <literal>b</literal> scopes over the
2729 body of the <literal>let</literal>, and all the other definitions in the <literal>let</literal>,
2730 just like <literal>p</literal> and <literal>q</literal> do.
2731 Indeed, the newly bound type variables also scope over any ordinary, separate
2732 type signatures in the <literal>let</literal> group.
2733 </para>
2734 </listitem>
2735
2736
2737 <listitem>
2738 <para>
2739 The type variables bound by the pattern may be 
2740 mentioned in ordinary type signatures or pattern 
2741 type signatures anywhere within their scope.
2742
2743 </para>
2744 </listitem>
2745
2746 <listitem>
2747 <para>
2748  In ordinary type signatures, any type variable mentioned in the
2749 signature that is in scope is <emphasis>not</emphasis> universally quantified.
2750
2751 </para>
2752 </listitem>
2753
2754 <listitem>
2755
2756 <para>
2757  Ordinary type signatures do not bring any new type variables
2758 into scope (except in the type signature itself!). So this is illegal:
2759
2760 <programlisting>
2761   f :: a -> a
2762   f x = x::a
2763 </programlisting>
2764
2765 It's illegal because <VarName>a</VarName> is not in scope in the body of <function>f</function>,
2766 so the ordinary signature <literal>x::a</literal> is equivalent to <literal>x::forall a.a</literal>;
2767 and that is an incorrect typing.
2768
2769 </para>
2770 </listitem>
2771
2772 <listitem>
2773 <para>
2774 The pattern type signature is a monotype:
2775 </para>
2776
2777 <itemizedlist>
2778 <listitem> <para> 
2779 A pattern type signature cannot contain any explicit <literal>forall</literal> quantification.
2780 </para> </listitem>
2781
2782 <listitem>  <para> 
2783 The type variables bound by a pattern type signature can only be instantiated to monotypes,
2784 not to type schemes.
2785 </para> </listitem>
2786
2787 <listitem>  <para> 
2788 There is no implicit universal quantification on pattern type signatures (in contrast to
2789 ordinary type signatures).
2790 </para> </listitem>
2791
2792 </itemizedlist>
2793
2794 </listitem>
2795
2796 <listitem>
2797 <para>
2798
2799 The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
2800 scope over the methods defined in the <literal>where</literal> part.  For example:
2801
2802
2803 <programlisting>
2804   class C a where
2805     op :: [a] -> a
2806
2807     op xs = let ys::[a]
2808                 ys = reverse xs
2809             in
2810             head ys
2811 </programlisting>
2812
2813
2814 (Not implemented in Hugs yet, Dec 98).
2815 </para>
2816 </listitem>
2817
2818 </itemizedlist>
2819
2820 </para>
2821
2822 </sect3>
2823
2824 <sect3>
2825 <title>Where a pattern type signature can occur</title>
2826
2827 <para>
2828 A pattern type signature can occur in any pattern.  For example:
2829 <itemizedlist>
2830
2831 <listitem>
2832 <para>
2833 A pattern type signature can be on an arbitrary sub-pattern, not
2834 ust on a variable:
2835
2836
2837 <programlisting>
2838   f ((x,y)::(a,b)) = (y,x) :: (b,a)
2839 </programlisting>
2840
2841
2842 </para>
2843 </listitem>
2844 <listitem>
2845
2846 <para>
2847  Pattern type signatures, including the result part, can be used
2848 in lambda abstractions:
2849
2850 <programlisting>
2851   (\ (x::a, y) :: a -> x)
2852 </programlisting>
2853 </para>
2854 </listitem>
2855 <listitem>
2856
2857 <para>
2858  Pattern type signatures, including the result part, can be used
2859 in <literal>case</literal> expressions:
2860
2861
2862 <programlisting>
2863   case e of { (x::a, y) :: a -> x }
2864 </programlisting>
2865
2866 </para>
2867 </listitem>
2868
2869 <listitem>
2870 <para>
2871 To avoid ambiguity, the type after the &ldquo;<literal>::</literal>&rdquo; in a result
2872 pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
2873 token or a parenthesised type of some sort).  To see why,
2874 consider how one would parse this:
2875
2876
2877 <programlisting>
2878   \ x :: a -> b -> x
2879 </programlisting>
2880
2881
2882 </para>
2883 </listitem>
2884
2885 <listitem>
2886
2887 <para>
2888  Pattern type signatures can bind existential type variables.
2889 For example:
2890
2891
2892 <programlisting>
2893   data T = forall a. MkT [a]
2894
2895   f :: T -> T
2896   f (MkT [t::a]) = MkT t3
2897                  where
2898                    t3::[a] = [t,t,t]
2899 </programlisting>
2900
2901
2902 </para>
2903 </listitem>
2904
2905
2906 <listitem>
2907
2908 <para>
2909 Pattern type signatures 
2910 can be used in pattern bindings:
2911
2912 <programlisting>
2913   f x = let (y, z::a) = x in ...
2914   f1 x                = let (y, z::Int) = x in ...
2915   f2 (x::(Int,a))     = let (y, z::a)   = x in ...
2916   f3 :: (b->b)        = \x -> x
2917 </programlisting>
2918
2919 In all such cases, the binding is not generalised over the pattern-bound
2920 type variables.  Thus <literal>f3</literal> is monomorphic; <literal>f3</literal>
2921 has type <literal>b -&gt; b</literal> for some type <literal>b</literal>, 
2922 and <emphasis>not</emphasis> <literal>forall b. b -&gt; b</literal>.
2923 In contrast, the binding
2924 <programlisting>
2925   f4 :: b->b
2926   f4 = \x -> x
2927 </programlisting>
2928 makes a polymorphic function, but <literal>b</literal> is not in scope anywhere
2929 in <literal>f4</literal>'s scope.
2930
2931 </para>
2932 </listitem>
2933 </itemizedlist>
2934 </para>
2935
2936 </sect3>
2937
2938 <sect3>
2939 <title>Result type signatures</title>
2940
2941 <para>
2942 The result type of a function can be given a signature, thus:
2943
2944
2945 <programlisting>
2946   f (x::a) :: [a] = [x,x,x]
2947 </programlisting>
2948
2949
2950 The final <literal>:: [a]</literal> after all the patterns gives a signature to the
2951 result type.  Sometimes this is the only way of naming the type variable
2952 you want:
2953
2954
2955 <programlisting>
2956   f :: Int -> [a] -> [a]
2957   f n :: ([a] -> [a]) = let g (x::a, y::a) = (y,x)
2958                         in \xs -> map g (reverse xs `zip` xs)
2959 </programlisting>
2960
2961 </para>
2962 <para>
2963 The type variables bound in a result type signature scope over the right hand side
2964 of the definition. However, consider this corner-case:
2965 <programlisting>
2966   rev1 :: [a] -> [a] = \xs -> reverse xs
2967
2968   foo ys = rev (ys::[a])
2969 </programlisting>
2970 The signature on <literal>rev1</literal> is considered a pattern type signature, not a result
2971 type signature, and the type variables it binds have the same scope as <literal>rev1</literal>
2972 itself (i.e. the right-hand side of <literal>rev1</literal> and the rest of the module too).
2973 In particular, the expression <literal>(ys::[a])</literal> is OK, because the type variable <literal>a</literal>
2974 is in scope (otherwise it would mean <literal>(ys::forall a.[a])</literal>, which would be rejected).  
2975 </para>
2976 <para>
2977 As mentioned above, <literal>rev1</literal> is made monomorphic by this scoping rule.
2978 For example, the following program would be rejected, because it claims that <literal>rev1</literal>
2979 is polymorphic:
2980 <programlisting>
2981   rev1 :: [b] -> [b]
2982   rev1 :: [a] -> [a] = \xs -> reverse xs
2983 </programlisting>
2984 </para>
2985
2986 <para>
2987 Result type signatures are not yet implemented in Hugs.
2988 </para>
2989
2990 </sect3>
2991
2992 </sect2>
2993
2994 <sect2 id="newtype-deriving">
2995 <title>Generalised derived instances for newtypes</title>
2996
2997 <para>
2998 When you define an abstract type using <literal>newtype</literal>, you may want
2999 the new type to inherit some instances from its representation. In
3000 Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
3001 <literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
3002 other classes you have to write an explicit instance declaration. For
3003 example, if you define
3004
3005 <programlisting> 
3006   newtype Dollars = Dollars Int 
3007 </programlisting> 
3008
3009 and you want to use arithmetic on <literal>Dollars</literal>, you have to
3010 explicitly define an instance of <literal>Num</literal>:
3011
3012 <programlisting> 
3013   instance Num Dollars where
3014     Dollars a + Dollars b = Dollars (a+b)
3015     ...
3016 </programlisting>
3017 All the instance does is apply and remove the <literal>newtype</literal>
3018 constructor. It is particularly galling that, since the constructor
3019 doesn't appear at run-time, this instance declaration defines a
3020 dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
3021 dictionary, only slower!
3022 </para>
3023
3024
3025 <sect3> <title> Generalising the deriving clause </title>
3026 <para>
3027 GHC now permits such instances to be derived instead, so one can write 
3028 <programlisting> 
3029   newtype Dollars = Dollars Int deriving (Eq,Show,Num)
3030 </programlisting> 
3031
3032 and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
3033 for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
3034 derives an instance declaration of the form
3035
3036 <programlisting> 
3037   instance Num Int => Num Dollars
3038 </programlisting> 
3039
3040 which just adds or removes the <literal>newtype</literal> constructor according to the type.
3041 </para>
3042 <para>
3043
3044 We can also derive instances of constructor classes in a similar
3045 way. For example, suppose we have implemented state and failure monad
3046 transformers, such that
3047
3048 <programlisting> 
3049   instance Monad m => Monad (State s m) 
3050   instance Monad m => Monad (Failure m)
3051 </programlisting> 
3052 In Haskell 98, we can define a parsing monad by 
3053 <programlisting> 
3054   type Parser tok m a = State [tok] (Failure m) a
3055 </programlisting> 
3056
3057 which is automatically a monad thanks to the instance declarations
3058 above. With the extension, we can make the parser type abstract,
3059 without needing to write an instance of class <literal>Monad</literal>, via
3060
3061 <programlisting> 
3062   newtype Parser tok m a = Parser (State [tok] (Failure m) a)
3063                          deriving Monad
3064 </programlisting>
3065 In this case the derived instance declaration is of the form 
3066 <programlisting> 
3067   instance Monad (State [tok] (Failure m)) => Monad (Parser tok m) 
3068 </programlisting> 
3069
3070 Notice that, since <literal>Monad</literal> is a constructor class, the
3071 instance is a <emphasis>partial application</emphasis> of the new type, not the
3072 entire left hand side. We can imagine that the type declaration is
3073 ``eta-converted'' to generate the context of the instance
3074 declaration.
3075 </para>
3076 <para>
3077
3078 We can even derive instances of multi-parameter classes, provided the
3079 newtype is the last class parameter. In this case, a ``partial
3080 application'' of the class appears in the <literal>deriving</literal>
3081 clause. For example, given the class
3082
3083 <programlisting> 
3084   class StateMonad s m | m -> s where ... 
3085   instance Monad m => StateMonad s (State s m) where ... 
3086 </programlisting> 
3087 then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by 
3088 <programlisting> 
3089   newtype Parser tok m a = Parser (State [tok] (Failure m) a)
3090                          deriving (Monad, StateMonad [tok])
3091 </programlisting>
3092
3093 The derived instance is obtained by completing the application of the
3094 class to the new type:
3095
3096 <programlisting> 
3097   instance StateMonad [tok] (State [tok] (Failure m)) =>
3098            StateMonad [tok] (Parser tok m)
3099 </programlisting>
3100 </para>
3101 <para>
3102
3103 As a result of this extension, all derived instances in newtype
3104 declarations are treated uniformly (and implemented just by reusing
3105 the dictionary for the representation type), <emphasis>except</emphasis>
3106 <literal>Show</literal> and <literal>Read</literal>, which really behave differently for
3107 the newtype and its representation.
3108 </para>
3109 </sect3>
3110
3111 <sect3> <title> A more precise specification </title>
3112 <para>
3113 Derived instance declarations are constructed as follows. Consider the
3114 declaration (after expansion of any type synonyms)
3115
3116 <programlisting> 
3117   newtype T v1...vn = T' (S t1...tk vk+1...vn) deriving (c1...cm) 
3118 </programlisting> 
3119
3120 where 
3121  <itemizedlist>
3122 <listitem><para>
3123   <literal>S</literal> is a type constructor, 
3124 </para></listitem>
3125 <listitem><para>
3126   <literal>t1...tk</literal> are types,
3127 </para></listitem>
3128 <listitem><para>
3129   <literal>vk+1...vn</literal> are type variables which do not occur in any of
3130   the <literal>ti</literal>, and
3131 </para></listitem>
3132 <listitem><para>
3133   the <literal>ci</literal> are partial applications of
3134   classes of the form <literal>C t1'...tj'</literal>, where the arity of <literal>C</literal>
3135   is exactly <literal>j+1</literal>.  That is, <literal>C</literal> lacks exactly one type argument.
3136 </para></listitem>
3137 </itemizedlist>
3138 Then, for each <literal>ci</literal>, the derived instance
3139 declaration is:
3140 <programlisting> 
3141   instance ci (S t1...tk vk+1...v) => ci (T v1...vp)
3142 </programlisting>
3143 where <literal>p</literal> is chosen so that <literal>T v1...vp</literal> is of the 
3144 right <emphasis>kind</emphasis> for the last parameter of class <literal>Ci</literal>.
3145 </para>
3146 <para>
3147
3148 As an example which does <emphasis>not</emphasis> work, consider 
3149 <programlisting> 
3150   newtype NonMonad m s = NonMonad (State s m s) deriving Monad 
3151 </programlisting> 
3152 Here we cannot derive the instance 
3153 <programlisting> 
3154   instance Monad (State s m) => Monad (NonMonad m) 
3155 </programlisting> 
3156
3157 because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
3158 and so cannot be "eta-converted" away. It is a good thing that this
3159 <literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
3160 not, in fact, a monad --- for the same reason. Try defining
3161 <literal>>>=</literal> with the correct type: you won't be able to.
3162 </para>
3163 <para>
3164
3165 Notice also that the <emphasis>order</emphasis> of class parameters becomes
3166 important, since we can only derive instances for the last one. If the
3167 <literal>StateMonad</literal> class above were instead defined as
3168
3169 <programlisting> 
3170   class StateMonad m s | m -> s where ... 
3171 </programlisting>
3172
3173 then we would not have been able to derive an instance for the
3174 <literal>Parser</literal> type above. We hypothesise that multi-parameter
3175 classes usually have one "main" parameter for which deriving new
3176 instances is most interesting.
3177 </para>
3178 </sect3>
3179
3180 </sect2>
3181
3182
3183 </sect1>
3184 <!-- ==================== End of type system extensions =================  -->
3185   
3186 <!-- ====================== TEMPLATE HASKELL =======================  -->
3187
3188 <sect1 id="template-haskell">
3189 <title>Template Haskell</title>
3190
3191 <para>Template Haskell allows you to do compile-time meta-programming in Haskell.  The background 
3192 the main technical innovations are discussed in "<ulink
3193 url="http://research.microsoft.com/~simonpj/papers/meta-haskell">
3194 Template Meta-programming for Haskell</ulink>", in 
3195 Proc Haskell Workshop 2002.
3196 </para>
3197
3198 <para> The first example from that paper is set out below as a worked example to help get you started. 
3199 </para>
3200
3201 <para>
3202 The documentation here describes the realisation in GHC.  (It's rather sketchy just now;
3203 Tim Sheard is going to expand it.)
3204 </para>
3205
3206 <sect2>  <title> Syntax </title>
3207 <para>
3208     Template Haskell has the following new syntactic constructions.  You need to use the flag  
3209                 <literal>-fglasgow-exts</literal> to switch these syntactic extensions on.
3210
3211         <itemizedlist>
3212               <listitem><para>
3213                   A splice is written <literal>$x</literal>, where <literal>x</literal> is an
3214                   identifier, or <literal>$(...)</literal>, where the "..." is an arbitrary expression.
3215                   There must be no space between the "$" and the identifier or parenthesis.  This use
3216                   of "$" overrides its meaning as an infix operator, just as "M.x" overrides the meaning
3217                   of "." as an infix operator.  If you want the infix operator, put spaces around it.
3218                   </para>
3219               <para> A splice can occur in place of 
3220                   <itemizedlist>
3221                     <listitem><para> an expression; the spliced expression must have type <literal>Expr</literal></para></listitem>
3222                     <listitem><para> a list of top-level declarations; ; the spliced expression must have type <literal>Q [Dec]</literal></para></listitem>
3223                     <listitem><para> a type; the spliced expression must have type <literal>Type</literal>.</para></listitem>
3224                     </itemizedlist>
3225            (Note that the syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>" as in
3226         the paper. Also the type of the enclosed expression must be  <literal>Q [Dec]</literal>, not  <literal>[Q Dec]</literal>
3227         as in the paper.)
3228                 </para></listitem>
3229
3230
3231               <listitem><para>
3232                   A expression quotation is written in Oxford brackets, thus:
3233                   <itemizedlist>
3234                     <listitem><para> <literal>[| ... |]</literal>, where the "..." is an expression; 
3235                              the quotation has type <literal>Expr</literal>.</para></listitem>
3236                     <listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
3237                              the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
3238                     <listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type; 
3239                              the quotation has type <literal>Type</literal>.</para></listitem>
3240                   </itemizedlist></para></listitem>
3241
3242               <listitem><para>
3243                   Reification is written thus:
3244                   <itemizedlist>
3245                     <listitem><para> <literal>reifyDecl T</literal>, where <literal>T</literal> is a type constructor; this expression
3246                       has type <literal>Dec</literal>. </para></listitem>
3247                     <listitem><para> <literal>reifyDecl C</literal>, where <literal>C</literal> is a class; has type <literal>Dec</literal>.</para></listitem>
3248                     <listitem><para> <literal>reifyType f</literal>, where <literal>f</literal> is an identifier; has type <literal>Typ</literal>.</para></listitem>
3249                     <listitem><para> Still to come: fixities </para></listitem>
3250                     
3251                   </itemizedlist></para>
3252                 </listitem>
3253
3254                   
3255         </itemizedlist>
3256 </para>
3257 </sect2>
3258
3259 <sect2>  <title> Using Template Haskell </title>
3260 <para>
3261 <itemizedlist>
3262     <listitem><para>
3263     The data types and monadic constructor functions for Template Haskell are in the library
3264     <literal>Language.Haskell.THSyntax</literal>.
3265     </para></listitem>
3266
3267     <listitem><para>
3268     You can only run a function at compile time if it is imported from another module.  That is,
3269             you can't define a function in a module, and call it from within a splice in the same module.
3270             (It would make sense to do so, but it's hard to implement.)
3271    </para></listitem>
3272
3273     <listitem><para>
3274             The flag <literal>-ddump-splices</literal> shows the expansion of all top-level splices as they happen.
3275    </para></listitem>
3276     <listitem><para>
3277             If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
3278               run Template Haskell.  A stage-1 compiler will reject the TH constructs.  Reason: TH
3279               compiles and runs a program, and then looks at the result.  So it's important that
3280               the program it compiles produces results whose representations are identical to
3281               those of the compiler itself.
3282    </para></listitem>
3283 </itemizedlist>
3284 </para>
3285 <para> Template Haskell works in any mode (<literal>--make</literal>, <literal>--interactive</literal>,
3286         or file-at-a-time).  There used to be a restriction to the former two, but that restriction 
3287         has been lifted.
3288 </para>
3289 </sect2>
3290  
3291 <sect2>  <title> A Template Haskell Worked Example </title>
3292 <para>To help you get over the confidence barrier, try out this skeletal worked example.
3293   First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
3294
3295 <programlisting>
3296 {- Main.hs -}
3297 module Main where
3298
3299 -- Import our template "pr"
3300 import Printf ( pr )
3301
3302 -- The splice operator $ takes the Haskell source code
3303 -- generated at compile time by "pr" and splices it into
3304 -- the argument of "putStrLn".
3305 main = putStrLn ( $(pr "Hello") )
3306 </programlisting>
3307
3308 <programlisting>
3309 {- Printf.hs -}
3310 module Printf where
3311
3312 -- Skeletal printf from the paper.
3313 -- It needs to be in a separate module to the one where
3314 -- you intend to use it.
3315
3316 -- Import some Template Haskell syntax
3317 import Language.Haskell.THSyntax
3318
3319 -- Describe a format string
3320 data Format = D | S | L String
3321
3322 -- Parse a format string.  This is left largely to you
3323 -- as we are here interested in building our first ever
3324 -- Template Haskell program and not in building printf.
3325 parse :: String -> [Format]
3326 parse s   = [ L s ]
3327
3328 -- Generate Haskell source code from a parsed representation
3329 -- of the format string.  This code will be spliced into
3330 -- the module which calls "pr", at compile time.
3331 gen :: [Format] -> Expr
3332 gen [D]   = [| \n -> show n |]
3333 gen [S]   = [| \s -> s |]
3334 gen [L s] = string s
3335
3336 -- Here we generate the Haskell code for the splice
3337 -- from an input format string.
3338 pr :: String -> Expr
3339 pr s      = gen (parse s)
3340 </programlisting>
3341
3342 <para>Now run the compiler (here we are using a "stage three" build of GHC, at a Cygwin prompt on Windows):
3343 </para>
3344 <programlisting>
3345 ghc/compiler/stage3/ghc-inplace --make -fglasgow-exts -package haskell-src main.hs -o main.exe
3346 </programlisting>
3347
3348 <para>Run "main.exe" and here is your output:
3349 </para>
3350
3351 <programlisting>
3352 $ ./main
3353 Hello
3354 </programlisting>
3355
3356 </sect2>
3357  
3358 </sect1>
3359
3360 <!-- ==================== ASSERTIONS =================  -->
3361
3362 <sect1 id="sec-assertions">
3363 <title>Assertions
3364 <indexterm><primary>Assertions</primary></indexterm>
3365 </title>
3366
3367 <para>
3368 If you want to make use of assertions in your standard Haskell code, you
3369 could define a function like the following:
3370 </para>
3371
3372 <para>
3373
3374 <programlisting>
3375 assert :: Bool -> a -> a
3376 assert False x = error "assertion failed!"
3377 assert _     x = x
3378 </programlisting>
3379
3380 </para>
3381
3382 <para>
3383 which works, but gives you back a less than useful error message --
3384 an assertion failed, but which and where?
3385 </para>
3386
3387 <para>
3388 One way out is to define an extended <function>assert</function> function which also
3389 takes a descriptive string to include in the error message and
3390 perhaps combine this with the use of a pre-processor which inserts
3391 the source location where <function>assert</function> was used.
3392 </para>
3393
3394 <para>
3395 Ghc offers a helping hand here, doing all of this for you. For every
3396 use of <function>assert</function> in the user's source:
3397 </para>
3398
3399 <para>
3400
3401 <programlisting>
3402 kelvinToC :: Double -> Double
3403 kelvinToC k = assert (k &gt;= 0.0) (k+273.15)
3404 </programlisting>
3405
3406 </para>
3407
3408 <para>
3409 Ghc will rewrite this to also include the source location where the
3410 assertion was made,
3411 </para>
3412
3413 <para>
3414
3415 <programlisting>
3416 assert pred val ==> assertError "Main.hs|15" pred val
3417 </programlisting>
3418
3419 </para>
3420
3421 <para>
3422 The rewrite is only performed by the compiler when it spots
3423 applications of <function>Control.Exception.assert</function>, so you
3424 can still define and use your own versions of
3425 <function>assert</function>, should you so wish. If not, import
3426 <literal>Control.Exception</literal> to make use
3427 <function>assert</function> in your code.
3428 </para>
3429
3430 <para>
3431 To have the compiler ignore uses of assert, use the compiler option
3432 <option>-fignore-asserts</option>. <indexterm><primary>-fignore-asserts
3433 option</primary></indexterm> That is, expressions of the form
3434 <literal>assert pred e</literal> will be rewritten to
3435 <literal>e</literal>.
3436 </para>
3437
3438 <para>
3439 Assertion failures can be caught, see the documentation for the
3440 <literal>Control.Exception</literal> library for the details.
3441 </para>
3442
3443 </sect1>
3444
3445
3446 <!-- =============================== PRAGMAS ===========================  -->
3447
3448   <sect1 id="pragmas">
3449     <title>Pragmas</title>
3450
3451     <indexterm><primary>pragma</primary></indexterm>
3452
3453     <para>GHC supports several pragmas, or instructions to the
3454     compiler placed in the source code.  Pragmas don't normally affect
3455     the meaning of the program, but they might affect the efficiency
3456     of the generated code.</para>
3457
3458     <para>Pragmas all take the form
3459
3460 <literal>{-# <replaceable>word</replaceable> ... #-}</literal>  
3461
3462     where <replaceable>word</replaceable> indicates the type of
3463     pragma, and is followed optionally by information specific to that
3464     type of pragma.  Case is ignored in
3465     <replaceable>word</replaceable>.  The various values for
3466     <replaceable>word</replaceable> that GHC understands are described
3467     in the following sections; any pragma encountered with an
3468     unrecognised <replaceable>word</replaceable> is (silently)
3469     ignored.</para>
3470
3471 <sect2 id="inline-pragma">
3472 <title>INLINE pragma
3473
3474 <indexterm><primary>INLINE and NOINLINE pragmas</primary></indexterm>
3475 <indexterm><primary>pragma, INLINE</primary></indexterm></title>
3476
3477 <para>
3478 GHC (with <option>-O</option>, as always) tries to inline (or &ldquo;unfold&rdquo;)
3479 functions/values that are &ldquo;small enough,&rdquo; thus avoiding the call
3480 overhead and possibly exposing other more-wonderful optimisations.
3481 Normally, if GHC decides a function is &ldquo;too expensive&rdquo; to inline, it
3482 will not do so, nor will it export that unfolding for other modules to
3483 use.
3484 </para>
3485
3486 <para>
3487 The sledgehammer you can bring to bear is the
3488 <literal>INLINE</literal><indexterm><primary>INLINE pragma</primary></indexterm> pragma, used thusly:
3489
3490 <programlisting>
3491 key_function :: Int -> String -> (Bool, Double)
3492
3493 #ifdef __GLASGOW_HASKELL__
3494 {-# INLINE key_function #-}
3495 #endif
3496 </programlisting>
3497 (You don't need to do the C pre-processor carry-on unless you're going
3498 to stick the code through HBC&mdash;it doesn't like <literal>INLINE</literal> pragmas.)
3499 </para>
3500
3501 <para>
3502 The major effect of an <literal>INLINE</literal> pragma is to declare a function's
3503 &ldquo;cost&rdquo; to be very low.  The normal unfolding machinery will then be
3504 very keen to inline it.
3505 </para>
3506
3507 <para>
3508 Syntactially, an <literal>INLINE</literal> pragma for a function can be put anywhere its type
3509 signature could be put.
3510 </para>
3511
3512 <para>
3513 <literal>INLINE</literal> pragmas are a particularly good idea for the
3514 <literal>then</literal>/<literal>return</literal> (or <literal>bind</literal>/<literal>unit</literal>) functions in a monad.
3515 For example, in GHC's own <literal>UniqueSupply</literal> monad code, we have:
3516
3517 <programlisting>
3518 #ifdef __GLASGOW_HASKELL__
3519 {-# INLINE thenUs #-}
3520 {-# INLINE returnUs #-}
3521 #endif
3522 </programlisting>
3523
3524 </para>
3525
3526 <sect3 id="noinline-pragma">
3527 <title>The NOINLINE pragma </title>
3528
3529 <indexterm><primary>NOINLINE pragma</primary></indexterm>
3530 <indexterm><primary>pragma</primary><secondary>NOINLINE</secondary></indexterm>
3531 <indexterm><primary>NOTINLINE pragma</primary></indexterm>
3532 <indexterm><primary>pragma</primary><secondary>NOTINLINE</secondary></indexterm>
3533
3534 <para>
3535 The <literal>NOINLINE</literal> pragma does exactly what you'd expect:
3536 it stops the named function from being inlined by the compiler.  You
3537 shouldn't ever need to do this, unless you're very cautious about code
3538 size.
3539 </para>
3540
3541 <para><literal>NOTINLINE</literal> is a synonym for
3542 <literal>NOINLINE</literal> (<literal>NOTINLINE</literal> is specified
3543 by Haskell 98 as the standard way to disable inlining, so it should be
3544 used if you want your code to be portable).</para>
3545 </sect3>
3546
3547
3548 <sect3 id="phase-control">
3549 <title>Phase control</title>
3550
3551 <para> Sometimes you want to control exactly when in GHC's pipeline
3552 the INLINE pragma is switched on.  Inlining happens only during runs of
3553 the <emphasis>simplifier</emphasis>.  Each run of the simplifier has a different
3554 <emphasis>phase number</emphasis>; the phase number decreases towards zero.
3555 If you use <option>-dverbose-core2core</option>
3556 you'll see the sequence of phase numbers for successive runs of the simpifier.
3557 In an INLINE pragma you can optionally specify a phase number, thus:
3558 <itemizedlist>
3559 <listitem> <para>You can say "inline <literal>f</literal> in Phase 2 and all subsequent
3560 phases":
3561 <programlisting>
3562   {-# INLINE [2] f #-}
3563 </programlisting>
3564 </para></listitem>
3565
3566 <listitem> <para>You can say "inline <literal>g</literal> in all phases up to, but
3567 not including, Phase 3":
3568 <programlisting>
3569   {-# INLINE [~3] g #-}
3570 </programlisting>
3571 </para></listitem>
3572
3573 <listitem> <para>If you omit the phase indicator, you mean "inline in all phases".
3574 </para></listitem>
3575 </itemizedlist>
3576 You can use a phase number on a NOINLINE pragma too:
3577 <itemizedlist>
3578 <listitem> <para>You can say "do not inline <literal>f</literal> until Phase 2; in 
3579 Phase 2 and subsequently behave as if there was no pragma at all":
3580 <programlisting>
3581   {-# NOINLINE [2] f #-}
3582 </programlisting>
3583 </para></listitem>
3584
3585 <listitem> <para>You can say "do not inline <literal>g</literal> in Phase 3 or any subsequent phase; 
3586 before that, behave as if there was no pragma":
3587 <programlisting>
3588   {-# NOINLINE [~3] g #-}
3589 </programlisting>
3590 </para></listitem>
3591
3592 <listitem> <para>If you omit the phase indicator, you mean "never inline this function".
3593 </para></listitem>
3594 </itemizedlist>
3595 </para>
3596 <para>The same phase-numbering control is available for RULES (<xref LinkEnd="rewrite-rules">).</para>
3597 </sect3>
3598
3599
3600
3601 </sect2>
3602
3603 <sect2 id="rules">
3604 <title>RULES pragma</title>
3605
3606 <para>
3607 The RULES pragma lets you specify rewrite rules.  It is described in
3608 <xref LinkEnd="rewrite-rules">.
3609 </para>
3610
3611 </sect2>
3612
3613
3614     <sect2 id="specialize-pragma">
3615       <title>SPECIALIZE pragma</title>
3616
3617       <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
3618       <indexterm><primary>pragma, SPECIALIZE</primary></indexterm>
3619       <indexterm><primary>overloading, death to</primary></indexterm>
3620
3621       <para>(UK spelling also accepted.)  For key overloaded
3622       functions, you can create extra versions (NB: more code space)
3623       specialised to particular types.  Thus, if you have an
3624       overloaded function:</para>
3625
3626 <programlisting>
3627 hammeredLookup :: Ord key => [(key, value)] -> key -> value
3628 </programlisting>
3629
3630       <para>If it is heavily used on lists with
3631       <literal>Widget</literal> keys, you could specialise it as
3632       follows:</para>
3633
3634 <programlisting>
3635 {-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
3636 </programlisting>
3637
3638       <para>A <literal>SPECIALIZE</literal> pragma for a function can
3639       be put anywhere its type signature could be put.</para>
3640
3641       <para>To get very fancy, you can also specify a named function
3642       to use for the specialised value, as in:</para>
3643
3644 <programlisting>
3645 {-# RULES "hammeredLookup" hammeredLookup = blah #-}
3646 </programlisting>
3647
3648       <para>where <literal>blah</literal> is an implementation of
3649       <literal>hammerdLookup</literal> written specialy for
3650       <literal>Widget</literal> lookups.  It's <emphasis>Your
3651       Responsibility</emphasis> to make sure that
3652       <function>blah</function> really behaves as a specialised
3653       version of <function>hammeredLookup</function>!!!</para>
3654
3655       <para>Note we use the <literal>RULE</literal> pragma here to
3656       indicate that <literal>hammeredLookup</literal> applied at a
3657       certain type should be replaced by <literal>blah</literal>.  See
3658       <xref linkend="rules"> for more information on
3659       <literal>RULES</literal>.</para>
3660
3661       <para>An example in which using <literal>RULES</literal> for
3662       specialisation will Win Big:
3663
3664 <programlisting>
3665 toDouble :: Real a => a -> Double
3666 toDouble = fromRational . toRational
3667
3668 {-# RULES "toDouble/Int" toDouble = i2d #-}
3669 i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
3670 </programlisting>
3671
3672       The <function>i2d</function> function is virtually one machine
3673       instruction; the default conversion&mdash;via an intermediate
3674       <literal>Rational</literal>&mdash;is obscenely expensive by
3675       comparison.</para>
3676
3677     </sect2>
3678
3679 <sect2 id="specialize-instance-pragma">
3680 <title>SPECIALIZE instance pragma
3681 </title>
3682
3683 <para>
3684 <indexterm><primary>SPECIALIZE pragma</primary></indexterm>
3685 <indexterm><primary>overloading, death to</primary></indexterm>
3686 Same idea, except for instance declarations.  For example:
3687
3688 <programlisting>
3689 instance (Eq a) => Eq (Foo a) where { 
3690    {-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
3691    ... usual stuff ...
3692  }
3693 </programlisting>
3694 The pragma must occur inside the <literal>where</literal> part
3695 of the instance declaration.
3696 </para>
3697 <para>
3698 Compatible with HBC, by the way, except perhaps in the placement
3699 of the pragma.
3700 </para>
3701
3702 </sect2>
3703
3704 <sect2 id="line-pragma">
3705 <title>LINE pragma
3706 </title>
3707
3708 <para>
3709 <indexterm><primary>LINE pragma</primary></indexterm>
3710 <indexterm><primary>pragma, LINE</primary></indexterm>
3711 </para>
3712
3713 <para>
3714 This pragma is similar to C's <literal>&num;line</literal> pragma, and is mainly for use in
3715 automatically generated Haskell code.  It lets you specify the line
3716 number and filename of the original code; for example
3717 </para>
3718
3719 <para>
3720
3721 <programlisting>
3722 {-# LINE 42 "Foo.vhs" #-}
3723 </programlisting>
3724
3725 </para>
3726
3727 <para>
3728 if you'd generated the current file from something called <filename>Foo.vhs</filename>
3729 and this line corresponds to line 42 in the original.  GHC will adjust
3730 its error messages to refer to the line/file named in the <literal>LINE</literal>
3731 pragma.
3732 </para>
3733
3734 </sect2>
3735
3736 <sect2 id="deprecated-pragma">
3737 <title>DEPRECATED pragma</title>
3738
3739 <para>
3740 The DEPRECATED pragma lets you specify that a particular function, class, or type, is deprecated.  
3741 There are two forms.  
3742 </para>
3743 <itemizedlist>
3744 <listitem><para>
3745 You can deprecate an entire module thus:</para>
3746 <programlisting>
3747    module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
3748      ...
3749 </programlisting>
3750 <para>
3751 When you compile any module that import <literal>Wibble</literal>, GHC will print
3752 the specified message.</para>
3753 </listitem>
3754
3755 <listitem>
3756 <para>
3757 You can deprecate a function, class, or type, with the following top-level declaration:
3758 </para>
3759 <programlisting>
3760    {-# DEPRECATED f, C, T "Don't use these" #-}
3761 </programlisting>
3762 <para>
3763 When you compile any module that imports and uses any of the specifed entities, 
3764 GHC will print the specified message.
3765 </para>
3766 </listitem>
3767 </itemizedlist>
3768 <para>You can suppress the warnings with the flag <option>-fno-warn-deprecations</option>.</para>
3769
3770 </sect2>
3771
3772 </sect1>
3773
3774 <!--  ======================= REWRITE RULES ======================== -->
3775
3776 <sect1 id="rewrite-rules">
3777 <title>Rewrite rules
3778
3779 <indexterm><primary>RULES pagma</primary></indexterm>
3780 <indexterm><primary>pragma, RULES</primary></indexterm>
3781 <indexterm><primary>rewrite rules</primary></indexterm></title>
3782
3783 <para>
3784 The programmer can specify rewrite rules as part of the source program
3785 (in a pragma).  GHC applies these rewrite rules wherever it can.
3786 </para>
3787
3788 <para>
3789 Here is an example:
3790
3791 <programlisting>
3792   {-# RULES
3793         "map/map"       forall f g xs. map f (map g xs) = map (f.g) xs
3794   #-}
3795 </programlisting>
3796
3797 </para>
3798
3799 <sect2>
3800 <title>Syntax</title>
3801
3802 <para>
3803 From a syntactic point of view:
3804
3805 <itemizedlist>
3806 <listitem>
3807
3808 <para>
3809  There may be zero or more rules in a <literal>RULES</literal> pragma.
3810 </para>
3811 </listitem>
3812
3813 <listitem>
3814
3815 <para>
3816  Each rule has a name, enclosed in double quotes.  The name itself has
3817 no significance at all.  It is only used when reporting how many times the rule fired.
3818 </para>
3819 </listitem>
3820
3821 <listitem>
3822 <para>
3823 A rule may optionally have a phase-control number (see <xref LinkEnd="phase-control">),
3824 immediately after the name of the rule.  Thus:
3825 <programlisting>
3826   {-# RULES
3827         "map/map" [2]  forall f g xs. map f (map g xs) = map (f.g) xs
3828   #-}
3829 </programlisting>
3830 The "[2]" means that the rule is active in Phase 2 and subsequent phases.  The inverse
3831 notation "[~2]" is also accepted, meaning that the rule is active up to, but not including,
3832 Phase 2.
3833 </para>
3834 </listitem>
3835
3836
3837 <listitem>
3838
3839 <para>
3840  Layout applies in a <literal>RULES</literal> pragma.  Currently no new indentation level
3841 is set, so you must lay out your rules starting in the same column as the
3842 enclosing definitions.
3843 </para>
3844 </listitem>
3845
3846 <listitem>
3847
3848 <para>
3849  Each variable mentioned in a rule must either be in scope (e.g. <function>map</function>),
3850 or bound by the <literal>forall</literal> (e.g. <function>f</function>, <function>g</function>, <function>xs</function>).  The variables bound by
3851 the <literal>forall</literal> are called the <emphasis>pattern</emphasis> variables.  They are separated
3852 by spaces, just like in a type <literal>forall</literal>.
3853 </para>
3854 </listitem>
3855 <listitem>
3856
3857 <para>
3858  A pattern variable may optionally have a type signature.
3859 If the type of the pattern variable is polymorphic, it <emphasis>must</emphasis> have a type signature.
3860 For example, here is the <literal>foldr/build</literal> rule:
3861
3862 <programlisting>
3863 "fold/build"  forall k z (g::forall b. (a->b->b) -> b -> b) .
3864               foldr k z (build g) = g k z
3865 </programlisting>
3866
3867 Since <function>g</function> has a polymorphic type, it must have a type signature.
3868
3869 </para>
3870 </listitem>
3871 <listitem>
3872
3873 <para>
3874 The left hand side of a rule must consist of a top-level variable applied
3875 to arbitrary expressions.  For example, this is <emphasis>not</emphasis> OK:
3876
3877 <programlisting>
3878 "wrong1"   forall e1 e2.  case True of { True -> e1; False -> e2 } = e1
3879 "wrong2"   forall f.      f True = True
3880 </programlisting>
3881
3882 In <literal>"wrong1"</literal>, the LHS is not an application; in <literal>"wrong2"</literal>, the LHS has a pattern variable
3883 in the head.
3884 </para>
3885 </listitem>
3886 <listitem>
3887
3888 <para>
3889  A rule does not need to be in the same module as (any of) the
3890 variables it mentions, though of course they need to be in scope.
3891 </para>
3892 </listitem>
3893 <listitem>
3894
3895 <para>
3896  Rules are automatically exported from a module, just as instance declarations are.
3897 </para>
3898 </listitem>
3899
3900 </itemizedlist>
3901
3902 </para>
3903
3904 </sect2>
3905
3906 <sect2>
3907 <title>Semantics</title>
3908
3909 <para>
3910 From a semantic point of view:
3911
3912 <itemizedlist>
3913 <listitem>
3914
3915 <para>
3916 Rules are only applied if you use the <option>-O</option> flag.
3917 </para>
3918 </listitem>
3919
3920 <listitem>
3921 <para>
3922  Rules are regarded as left-to-right rewrite rules.
3923 When GHC finds an expression that is a substitution instance of the LHS
3924 of a rule, it replaces the expression by the (appropriately-substituted) RHS.
3925 By "a substitution instance" we mean that the LHS can be made equal to the
3926 expression by substituting for the pattern variables.
3927
3928 </para>
3929 </listitem>
3930 <listitem>
3931
3932 <para>
3933  The LHS and RHS of a rule are typechecked, and must have the
3934 same type.
3935
3936 </para>
3937 </listitem>
3938 <listitem>
3939
3940 <para>
3941  GHC makes absolutely no attempt to verify that the LHS and RHS
3942 of a rule have the same meaning.  That is undecideable in general, and
3943 infeasible in most interesting cases.  The responsibility is entirely the programmer's!
3944
3945 </para>
3946 </listitem>
3947 <listitem>
3948
3949 <para>
3950  GHC makes no attempt to make sure that the rules are confluent or
3951 terminating.  For example:
3952
3953 <programlisting>
3954   "loop"        forall x,y.  f x y = f y x
3955 </programlisting>
3956
3957 This rule will cause the compiler to go into an infinite loop.
3958
3959 </para>
3960 </listitem>
3961 <listitem>
3962
3963 <para>
3964  If more than one rule matches a call, GHC will choose one arbitrarily to apply.
3965
3966 </para>
3967 </listitem>
3968 <listitem>
3969 <para>
3970  GHC currently uses a very simple, syntactic, matching algorithm
3971 for matching a rule LHS with an expression.  It seeks a substitution
3972 which makes the LHS and expression syntactically equal modulo alpha
3973 conversion.  The pattern (rule), but not the expression, is eta-expanded if
3974 necessary.  (Eta-expanding the epression can lead to laziness bugs.)
3975 But not beta conversion (that's called higher-order matching).
3976 </para>
3977
3978 <para>
3979 Matching is carried out on GHC's intermediate language, which includes
3980 type abstractions and applications.  So a rule only matches if the
3981 types match too.  See <xref LinkEnd="rule-spec"> below.
3982 </para>
3983 </listitem>
3984 <listitem>
3985
3986 <para>
3987  GHC keeps trying to apply the rules as it optimises the program.
3988 For example, consider:
3989
3990 <programlisting>
3991   let s = map f
3992       t = map g
3993   in
3994   s (t xs)
3995 </programlisting>
3996
3997 The expression <literal>s (t xs)</literal> does not match the rule <literal>"map/map"</literal>, but GHC
3998 will substitute for <VarName>s</VarName> and <VarName>t</VarName>, giving an expression which does match.
3999 If <VarName>s</VarName> or <VarName>t</VarName> was (a) used more than once, and (b) large or a redex, then it would
4000 not be substituted, and the rule would not fire.
4001
4002 </para>
4003 </listitem>
4004 <listitem>
4005
4006 <para>
4007  In the earlier phases of compilation, GHC inlines <emphasis>nothing
4008 that appears on the LHS of a rule</emphasis>, because once you have substituted
4009 for something you can't match against it (given the simple minded
4010 matching).  So if you write the rule
4011
4012 <programlisting>
4013         "map/map"       forall f,g.  map f . map g = map (f.g)
4014 </programlisting>
4015
4016 this <emphasis>won't</emphasis> match the expression <literal>map f (map g xs)</literal>.
4017 It will only match something written with explicit use of ".".
4018 Well, not quite.  It <emphasis>will</emphasis> match the expression
4019
4020 <programlisting>
4021 wibble f g xs
4022 </programlisting>
4023
4024 where <function>wibble</function> is defined:
4025
4026 <programlisting>
4027 wibble f g = map f . map g
4028 </programlisting>
4029
4030 because <function>wibble</function> will be inlined (it's small).
4031
4032 Later on in compilation, GHC starts inlining even things on the
4033 LHS of rules, but still leaves the rules enabled.  This inlining
4034 policy is controlled by the per-simplification-pass flag <option>-finline-phase</option><emphasis>n</emphasis>.
4035
4036 </para>
4037 </listitem>
4038 <listitem>
4039
4040 <para>
4041  All rules are implicitly exported from the module, and are therefore
4042 in force in any module that imports the module that defined the rule, directly
4043 or indirectly.  (That is, if A imports B, which imports C, then C's rules are
4044 in force when compiling A.)  The situation is very similar to that for instance
4045 declarations.
4046 </para>
4047 </listitem>
4048
4049 </itemizedlist>
4050
4051 </para>
4052
4053 </sect2>
4054
4055 <sect2>
4056 <title>List fusion</title>
4057
4058 <para>
4059 The RULES mechanism is used to implement fusion (deforestation) of common list functions.
4060 If a "good consumer" consumes an intermediate list constructed by a "good producer", the
4061 intermediate list should be eliminated entirely.
4062 </para>
4063
4064 <para>
4065 The following are good producers:
4066
4067 <itemizedlist>
4068 <listitem>
4069
4070 <para>
4071  List comprehensions
4072 </para>
4073 </listitem>
4074 <listitem>
4075
4076 <para>
4077  Enumerations of <literal>Int</literal> and <literal>Char</literal> (e.g. <literal>['a'..'z']</literal>).
4078 </para>
4079 </listitem>
4080 <listitem>
4081
4082 <para>
4083  Explicit lists (e.g. <literal>[True, False]</literal>)
4084 </para>
4085 </listitem>
4086 <listitem>
4087
4088 <para>
4089  The cons constructor (e.g <literal>3:4:[]</literal>)
4090 </para>
4091 </listitem>
4092 <listitem>
4093
4094 <para>
4095  <function>++</function>
4096 </para>
4097 </listitem>
4098
4099 <listitem>
4100 <para>
4101  <function>map</function>
4102 </para>
4103 </listitem>
4104
4105 <listitem>
4106 <para>
4107  <function>filter</function>
4108 </para>
4109 </listitem>
4110 <listitem>
4111
4112 <para>
4113  <function>iterate</function>, <function>repeat</function>
4114 </para>
4115 </listitem>
4116 <listitem>
4117
4118 <para>
4119  <function>zip</function>, <function>zipWith</function>
4120 </para>
4121 </listitem>
4122
4123 </itemizedlist>
4124
4125 </para>
4126
4127 <para>
4128 The following are good consumers:
4129
4130 <itemizedlist>
4131 <listitem>
4132
4133 <para>
4134  List comprehensions
4135 </para>
4136 </listitem>
4137 <listitem>
4138
4139 <para>
4140  <function>array</function> (on its second argument)
4141 </para>
4142 </listitem>
4143 <listitem>
4144
4145 <para>
4146  <function>length</function>
4147 </para>
4148 </listitem>
4149 <listitem>
4150
4151 <para>
4152  <function>++</function> (on its first argument)
4153 </para>
4154 </listitem>
4155
4156 <listitem>
4157 <para>
4158  <function>foldr</function>
4159 </para>
4160 </listitem>
4161
4162 <listitem>
4163 <para>
4164  <function>map</function>
4165 </para>
4166 </listitem>
4167 <listitem>
4168
4169 <para>
4170  <function>filter</function>
4171 </para>
4172 </listitem>
4173 <listitem>
4174
4175 <para>
4176  <function>concat</function>
4177 </para>
4178 </listitem>
4179 <listitem>
4180
4181 <para>
4182  <function>unzip</function>, <function>unzip2</function>, <function>unzip3</function>, <function>unzip4</function>
4183 </para>
4184 </listitem>
4185 <listitem>
4186
4187 <para>
4188  <function>zip</function>, <function>zipWith</function> (but on one argument only; if both are good producers, <function>zip</function>
4189 will fuse with one but not the other)
4190 </para>
4191 </listitem>
4192 <listitem>
4193
4194 <para>
4195  <function>partition</function>
4196 </para>
4197 </listitem>
4198 <listitem>
4199
4200 <para>
4201  <function>head</function>
4202 </para>
4203 </listitem>
4204 <listitem>
4205
4206 <para>
4207  <function>and</function>, <function>or</function>, <function>any</function>, <function>all</function>
4208 </para>
4209 </listitem>
4210 <listitem>
4211
4212 <para>
4213  <function>sequence&lowbar;</function>
4214 </para>
4215 </listitem>
4216 <listitem>
4217
4218 <para>
4219  <function>msum</function>
4220 </para>
4221 </listitem>
4222 <listitem>
4223
4224 <para>
4225  <function>sortBy</function>
4226 </para>
4227 </listitem>
4228
4229 </itemizedlist>
4230
4231 </para>
4232
4233 <para>
4234 So, for example, the following should generate no intermediate lists:
4235
4236 <programlisting>
4237 array (1,10) [(i,i*i) | i &#60;- map (+ 1) [0..9]]
4238 </programlisting>
4239
4240 </para>
4241
4242 <para>
4243 This list could readily be extended; if there are Prelude functions that you use
4244 a lot which are not included, please tell us.
4245 </para>
4246
4247 <para>
4248 If you want to write your own good consumers or producers, look at the
4249 Prelude definitions of the above functions to see how to do so.
4250 </para>
4251
4252 </sect2>
4253
4254 <sect2 id="rule-spec">
4255 <title>Specialisation
4256 </title>
4257
4258 <para>
4259 Rewrite rules can be used to get the same effect as a feature
4260 present in earlier version of GHC:
4261
4262 <programlisting>
4263   {-# SPECIALIZE fromIntegral :: Int8 -> Int16 = int8ToInt16 #-}
4264 </programlisting>
4265
4266 This told GHC to use <function>int8ToInt16</function> instead of <function>fromIntegral</function> whenever
4267 the latter was called with type <literal>Int8 -&gt; Int16</literal>.  That is, rather than
4268 specialising the original definition of <function>fromIntegral</function> the programmer is
4269 promising that it is safe to use <function>int8ToInt16</function> instead.
4270 </para>
4271
4272 <para>
4273 This feature is no longer in GHC.  But rewrite rules let you do the
4274 same thing:
4275
4276 <programlisting>
4277 {-# RULES
4278   "fromIntegral/Int8/Int16" fromIntegral = int8ToInt16
4279 #-}
4280 </programlisting>
4281
4282 This slightly odd-looking rule instructs GHC to replace <function>fromIntegral</function>
4283 by <function>int8ToInt16</function> <emphasis>whenever the types match</emphasis>.  Speaking more operationally,
4284 GHC adds the type and dictionary applications to get the typed rule
4285
4286 <programlisting>
4287 forall (d1::Integral Int8) (d2::Num Int16) .
4288         fromIntegral Int8 Int16 d1 d2 = int8ToInt16
4289 </programlisting>
4290
4291 What is more,
4292 this rule does not need to be in the same file as fromIntegral,
4293 unlike the <literal>SPECIALISE</literal> pragmas which currently do (so that they
4294 have an original definition available to specialise).
4295 </para>
4296
4297 </sect2>
4298
4299 <sect2>
4300 <title>Controlling what's going on</title>
4301
4302 <para>
4303
4304 <itemizedlist>
4305 <listitem>
4306
4307 <para>
4308  Use <option>-ddump-rules</option> to see what transformation rules GHC is using.
4309 </para>
4310 </listitem>
4311 <listitem>
4312
4313 <para>
4314  Use <option>-ddump-simpl-stats</option> to see what rules are being fired.
4315 If you add <option>-dppr-debug</option> you get a more detailed listing.
4316 </para>
4317 </listitem>
4318 <listitem>
4319
4320 <para>
4321  The defintion of (say) <function>build</function> in <FileName>PrelBase.lhs</FileName> looks llike this:
4322
4323 <programlisting>
4324         build   :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
4325         {-# INLINE build #-}
4326         build g = g (:) []
4327 </programlisting>
4328
4329 Notice the <literal>INLINE</literal>!  That prevents <literal>(:)</literal> from being inlined when compiling
4330 <literal>PrelBase</literal>, so that an importing module will &ldquo;see&rdquo; the <literal>(:)</literal>, and can
4331 match it on the LHS of a rule.  <literal>INLINE</literal> prevents any inlining happening
4332 in the RHS of the <literal>INLINE</literal> thing.  I regret the delicacy of this.
4333
4334 </para>
4335 </listitem>
4336 <listitem>
4337
4338 <para>
4339  In <filename>ghc/lib/std/PrelBase.lhs</filename> look at the rules for <function>map</function> to
4340 see how to write rules that will do fusion and yet give an efficient
4341 program even if fusion doesn't happen.  More rules in <filename>PrelList.lhs</filename>.
4342 </para>
4343 </listitem>
4344
4345 </itemizedlist>
4346
4347 </para>
4348
4349 </sect2>
4350
4351 <sect2 id="core-pragma">
4352   <title>CORE pragma</title>
4353
4354   <indexterm><primary>CORE pragma</primary></indexterm>
4355   <indexterm><primary>pragma, CORE</primary></indexterm>
4356   <indexterm><primary>core, annotation</primary></indexterm>
4357
4358 <para>
4359   The external core format supports <quote>Note</quote> annotations;
4360   the <literal>CORE</literal> pragma gives a way to specify what these
4361   should be in your Haskell source code.  Syntactically, core
4362   annotations are attached to expressions and take a Haskell string
4363   literal as an argument.  The following function definition shows an
4364   example:
4365
4366 <programlisting>
4367 f x = ({-# CORE "foo" #-} show) ({-# CORE "bar" #-} x)
4368 </programlisting>
4369
4370   Sematically, this is equivalent to:
4371
4372 <programlisting>
4373 g x = show x
4374 </programlisting>
4375 </para>
4376
4377 <para>
4378   However, when external for is generated (via
4379   <option>-fext-core</option>), there will be Notes attached to the
4380   expressions <function>show</function> and <VarName>x</VarName>.
4381   The core function declaration for <function>f</function> is:
4382 </para>
4383
4384 <programlisting>
4385   f :: %forall a . GHCziShow.ZCTShow a ->
4386                    a -> GHCziBase.ZMZN GHCziBase.Char =
4387     \ @ a (zddShow::GHCziShow.ZCTShow a) (eta::a) ->
4388         (%note "foo"
4389          %case zddShow %of (tpl::GHCziShow.ZCTShow a)
4390            {GHCziShow.ZCDShow
4391             (tpl1::GHCziBase.Int ->
4392                    a ->
4393                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
4394 r)
4395             (tpl2::a -> GHCziBase.ZMZN GHCziBase.Char)
4396             (tpl3::GHCziBase.ZMZN a ->
4397                    GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha
4398 r) ->
4399               tpl2})
4400         (%note "foo"
4401          eta);
4402 </programlisting>
4403
4404 <para>
4405   Here, we can see that the function <function>show</function> (which
4406   has been expanded out to a case expression over the Show dictionary)
4407   has a <literal>%note</literal> attached to it, as does the
4408   expression <VarName>eta</VarName> (which used to be called
4409   <VarName>x</VarName>).
4410 </para>
4411
4412 </sect2>
4413
4414 </sect1>
4415
4416 <sect1 id="generic-classes">
4417 <title>Generic classes</title>
4418
4419     <para>(Note: support for generic classes is currently broken in
4420     GHC 5.02).</para>
4421
4422 <para>
4423 The ideas behind this extension are described in detail in "Derivable type classes",
4424 Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105.
4425 An example will give the idea:
4426 </para>
4427
4428 <programlisting>
4429   import Generics
4430
4431   class Bin a where
4432     toBin   :: a -> [Int]
4433     fromBin :: [Int] -> (a, [Int])
4434   
4435     toBin {| Unit |}    Unit      = []
4436     toBin {| a :+: b |} (Inl x)   = 0 : toBin x
4437     toBin {| a :+: b |} (Inr y)   = 1 : toBin y
4438     toBin {| a :*: b |} (x :*: y) = toBin x ++ toBin y
4439   
4440     fromBin {| Unit |}    bs      = (Unit, bs)
4441     fromBin {| a :+: b |} (0:bs)  = (Inl x, bs')    where (x,bs') = fromBin bs
4442     fromBin {| a :+: b |} (1:bs)  = (Inr y, bs')    where (y,bs') = fromBin bs
4443     fromBin {| a :*: b |} bs      = (x :*: y, bs'') where (x,bs' ) = fromBin bs
4444                                                           (y,bs'') = fromBin bs'
4445 </programlisting>
4446 <para>
4447 This class declaration explains how <literal>toBin</literal> and <literal>fromBin</literal>
4448 work for arbitrary data types.  They do so by giving cases for unit, product, and sum,
4449 which are defined thus in the library module <literal>Generics</literal>:
4450 </para>
4451 <programlisting>
4452   data Unit    = Unit
4453   data a :+: b = Inl a | Inr b
4454   data a :*: b = a :*: b
4455 </programlisting>
4456 <para>
4457 Now you can make a data type into an instance of Bin like this:
4458 <programlisting>
4459   instance (Bin a, Bin b) => Bin (a,b)
4460   instance Bin a => Bin [a]
4461 </programlisting>
4462 That is, just leave off the "where" clause.  Of course, you can put in the
4463 where clause and over-ride whichever methods you please.
4464 </para>
4465
4466     <sect2>
4467       <title> Using generics </title>
4468       <para>To use generics you need to</para>
4469       <itemizedlist>
4470         <listitem>
4471           <para>Use the flags <option>-fglasgow-exts</option> (to enable the extra syntax), 
4472                 <option>-fgenerics</option> (to generate extra per-data-type code),
4473                 and <option>-package lang</option> (to make the <literal>Generics</literal> library
4474                 available.  </para>
4475         </listitem>
4476         <listitem>
4477           <para>Import the module <literal>Generics</literal> from the
4478           <literal>lang</literal> package.  This import brings into
4479           scope the data types <literal>Unit</literal>,
4480           <literal>:*:</literal>, and <literal>:+:</literal>.  (You
4481           don't need this import if you don't mention these types
4482           explicitly; for example, if you are simply giving instance
4483           declarations.)</para>
4484         </listitem>
4485       </itemizedlist>
4486     </sect2>
4487
4488 <sect2> <title> Changes wrt the paper </title>
4489 <para>
4490 Note that the type constructors <literal>:+:</literal> and <literal>:*:</literal> 
4491 can be written infix (indeed, you can now use
4492 any operator starting in a colon as an infix type constructor).  Also note that
4493 the type constructors are not exactly as in the paper (Unit instead of 1, etc).
4494 Finally, note that the syntax of the type patterns in the class declaration
4495 uses "<literal>{|</literal>" and "<literal>|}</literal>" brackets; curly braces
4496 alone would ambiguous when they appear on right hand sides (an extension we 
4497 anticipate wanting).
4498 </para>
4499 </sect2>
4500
4501 <sect2> <title>Terminology and restrictions</title>
4502 <para>
4503 Terminology.  A "generic default method" in a class declaration
4504 is one that is defined using type patterns as above.
4505 A "polymorphic default method" is a default method defined as in Haskell 98.
4506 A "generic class declaration" is a class declaration with at least one
4507 generic default method.
4508 </para>
4509
4510 <para>
4511 Restrictions:
4512 <itemizedlist>
4513 <listitem>
4514 <para>
4515 Alas, we do not yet implement the stuff about constructor names and 
4516 field labels.
4517 </para>
4518 </listitem>
4519
4520 <listitem>
4521 <para>
4522 A generic class can have only one parameter; you can't have a generic
4523 multi-parameter class.
4524 </para>
4525 </listitem>
4526
4527 <listitem>
4528 <para>
4529 A default method must be defined entirely using type patterns, or entirely
4530 without.  So this is illegal:
4531 <programlisting>
4532   class Foo a where
4533     op :: a -> (a, Bool)
4534     op {| Unit |} Unit = (Unit, True)
4535     op x               = (x,    False)
4536 </programlisting>
4537 However it is perfectly OK for some methods of a generic class to have 
4538 generic default methods and others to have polymorphic default methods.
4539 </para>
4540 </listitem>
4541
4542 <listitem>
4543 <para>
4544 The type variable(s) in the type pattern for a generic method declaration
4545 scope over the right hand side.  So this is legal (note the use of the type variable ``p'' in a type signature on the right hand side:
4546 <programlisting>
4547   class Foo a where
4548     op :: a -> Bool
4549     op {| p :*: q |} (x :*: y) = op (x :: p)
4550     ...
4551 </programlisting>
4552 </para>
4553 </listitem>
4554
4555 <listitem>
4556 <para>
4557 The type patterns in a generic default method must take one of the forms:
4558 <programlisting>
4559        a :+: b
4560        a :*: b
4561        Unit
4562 </programlisting>
4563 where "a" and "b" are type variables.  Furthermore, all the type patterns for
4564 a single type constructor (<literal>:*:</literal>, say) must be identical; they
4565 must use the same type variables.  So this is illegal:
4566 <programlisting>
4567   class Foo a where
4568     op :: a -> Bool
4569     op {| a :+: b |} (Inl x) = True
4570     op {| p :+: q |} (Inr y) = False
4571 </programlisting>
4572 The type patterns must be identical, even in equations for different methods of the class.
4573 So this too is illegal:
4574 <programlisting>
4575   class Foo a where
4576     op1 :: a -> Bool
4577     op1 {| a :*: b |} (x :*: y) = True
4578
4579     op2 :: a -> Bool
4580     op2 {| p :*: q |} (x :*: y) = False
4581 </programlisting>
4582 (The reason for this restriction is that we gather all the equations for a particular type consructor
4583 into a single generic instance declaration.)
4584 </para>
4585 </listitem>
4586
4587 <listitem>
4588 <para>
4589 A generic method declaration must give a case for each of the three type constructors.
4590 </para>
4591 </listitem>
4592
4593 <listitem>
4594 <para>
4595 The type for a generic method can be built only from:
4596   <itemizedlist>
4597   <listitem> <para> Function arrows </para> </listitem>
4598   <listitem> <para> Type variables </para> </listitem>
4599   <listitem> <para> Tuples </para> </listitem>
4600   <listitem> <para> Arbitrary types not involving type variables </para> </listitem>
4601   </itemizedlist>
4602 Here are some example type signatures for generic methods:
4603 <programlisting>
4604     op1 :: a -> Bool
4605     op2 :: Bool -> (a,Bool)
4606     op3 :: [Int] -> a -> a
4607     op4 :: [a] -> Bool
4608 </programlisting>
4609 Here, op1, op2, op3 are OK, but op4 is rejected, because it has a type variable
4610 inside a list.  
4611 </para>
4612 <para>
4613 This restriction is an implementation restriction: we just havn't got around to
4614 implementing the necessary bidirectional maps over arbitrary type constructors.
4615 It would be relatively easy to add specific type constructors, such as Maybe and list,
4616 to the ones that are allowed.</para>
4617 </listitem>
4618
4619 <listitem>
4620 <para>
4621 In an instance declaration for a generic class, the idea is that the compiler
4622 will fill in the methods for you, based on the generic templates.  However it can only
4623 do so if
4624   <itemizedlist>
4625   <listitem>
4626   <para>
4627   The instance type is simple (a type constructor applied to type variables, as in Haskell 98).
4628   </para>
4629   </listitem>
4630   <listitem>
4631   <para>
4632   No constructor of the instance type has unboxed fields.
4633   </para>
4634   </listitem>
4635   </itemizedlist>
4636 (Of course, these things can only arise if you are already using GHC extensions.)
4637 However, you can still give an instance declarations for types which break these rules,
4638 provided you give explicit code to override any generic default methods.
4639 </para>
4640 </listitem>
4641
4642 </itemizedlist>
4643 </para>
4644
4645 <para>
4646 The option <option>-ddump-deriv</option> dumps incomprehensible stuff giving details of 
4647 what the compiler does with generic declarations.
4648 </para>
4649
4650 </sect2>
4651
4652 <sect2> <title> Another example </title>
4653 <para>
4654 Just to finish with, here's another example I rather like:
4655 <programlisting>
4656   class Tag a where
4657     nCons :: a -> Int
4658     nCons {| Unit |}    _ = 1
4659     nCons {| a :*: b |} _ = 1
4660     nCons {| a :+: b |} _ = nCons (bot::a) + nCons (bot::b)
4661   
4662     tag :: a -> Int
4663     tag {| Unit |}    _       = 1
4664     tag {| a :*: b |} _       = 1   
4665     tag {| a :+: b |} (Inl x) = tag x
4666     tag {| a :+: b |} (Inr y) = nCons (bot::a) + tag y
4667 </programlisting>
4668 </para>
4669 </sect2>
4670 </sect1>
4671
4672
4673
4674 <!-- Emacs stuff:
4675      ;;; Local Variables: ***
4676      ;;; mode: sgml ***
4677      ;;; sgml-parent-document: ("users_guide.sgml" "book" "chapter" "sect1") ***
4678      ;;; End: ***
4679  -->