1 /* -----------------------------------------------------------------------------
3 * (c) The GHC Team, 1998-2002
5 * Stable names and stable pointers.
7 * ---------------------------------------------------------------------------*/
9 #include "PosixSource.h"
13 #include "OSThreads.h"
17 #include "OSThreads.h"
21 /* Comment from ADR's implementation in old RTS:
23 This files (together with @ghc/runtime/storage/PerformIO.lhc@ and a
24 small change in @HpOverflow.lc@) consists of the changes in the
25 runtime system required to implement "Stable Pointers". But we're
26 getting a bit ahead of ourselves --- what is a stable pointer and what
29 When Haskell calls C, it normally just passes over primitive integers,
30 floats, bools, strings, etc. This doesn't cause any problems at all
31 for garbage collection because the act of passing them makes a copy
32 from the heap, stack or wherever they are onto the C-world stack.
33 However, if we were to pass a heap object such as a (Haskell) @String@
34 and a garbage collection occured before we finished using it, we'd run
35 into problems since the heap object might have been moved or even
38 So, if a C call is able to cause a garbage collection or we want to
39 store a pointer to a heap object between C calls, we must be careful
40 when passing heap objects. Our solution is to keep a table of all
41 objects we've given to the C-world and to make sure that the garbage
42 collector collects these objects --- updating the table as required to
43 make sure we can still find the object.
46 Of course, all this rather begs the question: why would we want to
49 One very good reason is to preserve laziness across the language
50 interface. Rather than evaluating an integer or a string because it
51 {\em might\/} be required by the C function, we can wait until the C
52 function actually wants the value and then force an evaluation.
54 Another very good reason (the motivating reason!) is that the C code
55 might want to execute an object of sort $IO ()$ for the side-effects
56 it will produce. For example, this is used when interfacing to an X
57 widgets library to allow a direct implementation of callbacks.
60 The @makeStablePointer :: a -> IO (StablePtr a)@ function
61 converts a value into a stable pointer. It is part of the @PrimIO@
62 monad, because we want to be sure we don't allocate one twice by
63 accident, and then only free one of the copies.
66 makeStablePtr# :: a -> State# RealWorld -> (# RealWorld, a #)
67 freeStablePtr# :: StablePtr# a -> State# RealWorld -> State# RealWorld
68 deRefStablePtr# :: StablePtr# a -> State# RealWorld ->
69 (# State# RealWorld, a #)
72 There may be additional functions on the C side to allow evaluation,
73 application, etc of a stable pointer.
77 snEntry *stable_ptr_table = NULL;
78 static snEntry *stable_ptr_free = NULL;
80 static unsigned int SPT_size = 0;
83 static Mutex stable_mutex;
86 /* This hash table maps Haskell objects to stable names, so that every
87 * call to lookupStableName on a given object will return the same
90 * OLD COMMENTS about reference counting follow. The reference count
91 * in a stable name entry is now just a counter.
95 * A plain stable name entry has a zero reference count, which means
96 * the entry will dissappear when the object it points to is
97 * unreachable. For stable pointers, we need an entry that sticks
98 * around and keeps the object it points to alive, so each stable name
99 * entry has an associated reference count.
101 * A stable pointer has a weighted reference count N attached to it
102 * (actually in its upper 5 bits), which represents the weight
103 * 2^(N-1). The stable name entry keeps a 32-bit reference count, which
104 * represents any weight between 1 and 2^32 (represented as zero).
105 * When the weight is 2^32, the stable name table owns "all" of the
106 * stable pointers to this object, and the entry can be garbage
107 * collected if the object isn't reachable.
109 * A new stable pointer is given the weight log2(W/2), where W is the
110 * weight stored in the table entry. The new weight in the table is W
113 * A stable pointer can be "split" into two stable pointers, by
114 * dividing the weight by 2 and giving each pointer half.
115 * When freeing a stable pointer, the weight of the pointer is added
116 * to the weight stored in the table entry.
119 static HashTable *addrToStableHash = NULL;
121 #define INIT_SPT_SIZE 64
124 initFreeList(snEntry *table, nat n, snEntry *free)
128 for (p = table + n - 1; p >= table; p--) {
135 stable_ptr_free = table;
139 initStablePtrTable(void)
144 SPT_size = INIT_SPT_SIZE;
145 stable_ptr_table = stgMallocBytes(SPT_size * sizeof(snEntry),
146 "initStablePtrTable");
148 /* we don't use index 0 in the stable name table, because that
149 * would conflict with the hash table lookup operations which
150 * return NULL if an entry isn't found in the hash table.
152 initFreeList(stable_ptr_table+1,INIT_SPT_SIZE-1,NULL);
153 addrToStableHash = allocHashTable();
156 initMutex(&stable_mutex);
161 exitStablePtrTable(void)
163 if (addrToStableHash)
164 freeHashTable(addrToStableHash, NULL);
165 addrToStableHash = NULL;
166 if (stable_ptr_table)
167 stgFree(stable_ptr_table);
168 stable_ptr_table = NULL;
171 closeMutex(&stable_mutex);
176 * get at the real stuff...remove indirections.
177 * It untags pointers before dereferencing and
178 * retags the real stuff with its tag (if there
179 * is any) when returning.
181 * ToDo: move to a better home.
185 removeIndirections(StgClosure* p)
187 StgWord tag = GET_CLOSURE_TAG(p);
188 StgClosure* q = UNTAG_CLOSURE(p);
190 while (get_itbl(q)->type == IND ||
191 get_itbl(q)->type == IND_STATIC ||
192 get_itbl(q)->type == IND_OLDGEN ||
193 get_itbl(q)->type == IND_PERM ||
194 get_itbl(q)->type == IND_OLDGEN_PERM ) {
195 q = ((StgInd *)q)->indirectee;
196 tag = GET_CLOSURE_TAG(q);
197 q = UNTAG_CLOSURE(q);
200 return TAG_CLOSURE(tag,q);
204 lookupStableName_(StgPtr p)
209 if (stable_ptr_free == NULL) {
210 enlargeStablePtrTable();
213 /* removing indirections increases the likelihood
214 * of finding a match in the stable name hash table.
216 p = (StgPtr)removeIndirections((StgClosure*)p);
218 // register the untagged pointer. This just makes things simpler.
219 p = (StgPtr)UNTAG_CLOSURE((StgClosure*)p);
221 sn_tmp = lookupHashTable(addrToStableHash,(W_)p);
222 sn = (StgWord)sn_tmp;
225 ASSERT(stable_ptr_table[sn].addr == p);
226 debugTrace(DEBUG_stable, "cached stable name %ld at %p",sn,p);
229 sn = stable_ptr_free - stable_ptr_table;
230 stable_ptr_free = (snEntry*)(stable_ptr_free->addr);
231 stable_ptr_table[sn].ref = 0;
232 stable_ptr_table[sn].addr = p;
233 stable_ptr_table[sn].sn_obj = NULL;
234 /* debugTrace(DEBUG_stable, "new stable name %d at %p\n",sn,p); */
236 /* add the new stable name to the hash table */
237 insertHashTable(addrToStableHash, (W_)p, (void *)sn);
244 lookupStableName(StgPtr p)
248 initStablePtrTable();
249 ACQUIRE_LOCK(&stable_mutex);
250 res = lookupStableName_(p);
251 RELEASE_LOCK(&stable_mutex);
256 freeStableName(snEntry *sn)
258 ASSERT(sn->sn_obj == NULL);
259 if (sn->addr != NULL) {
260 removeHashTable(addrToStableHash, (W_)sn->addr, NULL);
262 sn->addr = (P_)stable_ptr_free;
263 stable_ptr_free = sn;
267 getStablePtr(StgPtr p)
271 initStablePtrTable();
272 ACQUIRE_LOCK(&stable_mutex);
273 sn = lookupStableName_(p);
274 stable_ptr_table[sn].ref++;
275 RELEASE_LOCK(&stable_mutex);
276 return (StgStablePtr)(sn);
280 freeStablePtr(StgStablePtr sp)
284 initStablePtrTable();
285 ACQUIRE_LOCK(&stable_mutex);
287 sn = &stable_ptr_table[(StgWord)sp];
289 ASSERT((StgWord)sp < SPT_size && sn->addr != NULL && sn->ref > 0);
293 // If this entry has no StableName attached, then just free it
294 // immediately. This is important; it might be a while before the
295 // next major GC which actually collects the entry.
296 if (sn->sn_obj == NULL && sn->ref == 0) {
300 RELEASE_LOCK(&stable_mutex);
304 enlargeStablePtrTable(void)
306 nat old_SPT_size = SPT_size;
308 // 2nd and subsequent times
311 stgReallocBytes(stable_ptr_table,
312 SPT_size * sizeof(snEntry),
313 "enlargeStablePtrTable");
315 initFreeList(stable_ptr_table + old_SPT_size, old_SPT_size, NULL);
318 /* -----------------------------------------------------------------------------
319 * We must lock the StablePtr table during GC, to prevent simultaneous
320 * calls to freeStablePtr().
321 * -------------------------------------------------------------------------- */
326 ACQUIRE_LOCK(&stable_mutex);
330 stablePtrPostGC(void)
332 RELEASE_LOCK(&stable_mutex);
335 /* -----------------------------------------------------------------------------
336 * Treat stable pointers as roots for the garbage collector.
338 * A stable pointer is any stable name entry with a ref > 0. We'll
339 * take the opportunity to zero the "keep" flags at the same time.
340 * -------------------------------------------------------------------------- */
343 markStablePtrTable(evac_fn evac, void *user)
345 snEntry *p, *end_stable_ptr_table;
348 end_stable_ptr_table = &stable_ptr_table[SPT_size];
350 // Mark all the stable *pointers* (not stable names).
351 // _starting_ at index 1; index 0 is unused.
352 for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
355 // Internal pointers are free slots. If q == NULL, it's a
356 // stable name where the object has been GC'd, but the
357 // StableName object (sn_obj) is still alive.
358 if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
360 // save the current addr away: we need to be able to tell
361 // whether the objects moved in order to be able to update
362 // the hash table later.
365 // if the ref is non-zero, treat addr as a root
367 evac(user, (StgClosure **)&p->addr);
373 /* -----------------------------------------------------------------------------
374 * Thread the stable pointer table for compacting GC.
376 * Here we must call the supplied evac function for each pointer into
377 * the heap from the stable pointer table, because the compacting
378 * collector may move the object it points to.
379 * -------------------------------------------------------------------------- */
382 threadStablePtrTable( evac_fn evac, void *user )
384 snEntry *p, *end_stable_ptr_table;
387 end_stable_ptr_table = &stable_ptr_table[SPT_size];
389 for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
391 if (p->sn_obj != NULL) {
392 evac(user, (StgClosure **)&p->sn_obj);
396 if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
397 evac(user, (StgClosure **)&p->addr);
402 /* -----------------------------------------------------------------------------
403 * Garbage collect any dead entries in the stable pointer table.
407 * - a zero reference count
410 * Both of these conditions must be true in order to re-use the stable
411 * name table entry. We can re-use stable name table entries for live
412 * heap objects, as long as the program has no StableName objects that
413 * refer to the entry.
414 * -------------------------------------------------------------------------- */
417 gcStablePtrTable( void )
419 snEntry *p, *end_stable_ptr_table;
422 end_stable_ptr_table = &stable_ptr_table[SPT_size];
424 // NOTE: _starting_ at index 1; index 0 is unused.
425 for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
427 // Update the pointer to the StableName object, if there is one
428 if (p->sn_obj != NULL) {
429 p->sn_obj = isAlive(p->sn_obj);
432 // Internal pointers are free slots. If q == NULL, it's a
433 // stable name where the object has been GC'd, but the
434 // StableName object (sn_obj) is still alive.
436 if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
440 if (p->sn_obj == NULL) {
441 // StableName object is dead
443 debugTrace(DEBUG_stable, "GC'd Stable name %ld",
444 (long)(p - stable_ptr_table));
448 p->addr = (StgPtr)isAlive((StgClosure *)p->addr);
449 debugTrace(DEBUG_stable,
450 "stable name %ld still alive at %p, ref %ld\n",
451 (long)(p - stable_ptr_table), p->addr, p->ref);
458 /* -----------------------------------------------------------------------------
459 * Update the StablePtr/StableName hash table
461 * The boolean argument 'full' indicates that a major collection is
462 * being done, so we might as well throw away the hash table and build
463 * a new one. For a minor collection, we just re-hash the elements
465 * -------------------------------------------------------------------------- */
468 updateStablePtrTable(rtsBool full)
470 snEntry *p, *end_stable_ptr_table;
472 if (full && addrToStableHash != NULL) {
473 freeHashTable(addrToStableHash,NULL);
474 addrToStableHash = allocHashTable();
477 end_stable_ptr_table = &stable_ptr_table[SPT_size];
479 // NOTE: _starting_ at index 1; index 0 is unused.
480 for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
482 if (p->addr == NULL) {
483 if (p->old != NULL) {
484 // The target has been garbage collected. Remove its
485 // entry from the hash table.
486 removeHashTable(addrToStableHash, (W_)p->old, NULL);
490 else if (p->addr < (P_)stable_ptr_table
491 || p->addr >= (P_)end_stable_ptr_table) {
492 // Target still alive, Re-hash this stable name
494 insertHashTable(addrToStableHash, (W_)p->addr,
495 (void *)(p - stable_ptr_table));
496 } else if (p->addr != p->old) {
497 removeHashTable(addrToStableHash, (W_)p->old, NULL);
498 insertHashTable(addrToStableHash, (W_)p->addr,
499 (void *)(p - stable_ptr_table));