1 /* -----------------------------------------------------------------------------
3 * (c) The GHC Team, 1998-2004
5 * Code for starting, stopping and restarting threads.
7 * This file is written in a subset of C--, extended with various
8 * features specific to GHC. It is compiled by GHC directly. For the
9 * syntax of .cmm files, see the parser in ghc/compiler/cmm/CmmParse.y.
11 * ---------------------------------------------------------------------------*/
16 * This module contains the two entry points and the final exit point
17 * to/from the Haskell world. We can enter either by:
19 * a) returning to the address on the top of the stack, or
20 * b) entering the closure on the top of the stack
22 * the function stg_stop_thread_entry is the final exit for a
23 * thread: it is the last return address on the stack. It returns
24 * to the scheduler marking the thread as finished.
27 #define CHECK_SENSIBLE_REGS() \
32 ASSERT(SpLim - WDS(RESERVED_STACK_WORDS) <= Sp); \
35 /* -----------------------------------------------------------------------------
36 Returning from the STG world.
37 -------------------------------------------------------------------------- */
39 INFO_TABLE_RET( stg_stop_thread, STOP_FRAME,
40 #if defined(PROFILING)
49 The top-top-level closures (e.g., "main") are of type "IO a".
50 When entered, they perform an IO action and return an 'a' in R1.
52 We save R1 on top of the stack where the scheduler can find it,
53 tidy up the registers and return to the scheduler.
55 We Leave the stack looking like this:
58 | -------------------> return value
63 The stg_enter_info is just a dummy info table so that the
64 garbage collector can understand the stack (there must always
65 be an info table on top of the stack).
68 Sp = Sp + SIZEOF_StgStopFrame - WDS(2);
70 Sp(0) = stg_enter_info;
72 StgTSO_what_next(CurrentTSO) = ThreadComplete::I16;
76 /* The return code goes in BaseReg->rRet, and BaseReg is returned in R1 */
77 StgRegTable_rRet(BaseReg) = ThreadFinished;
83 /* -----------------------------------------------------------------------------
84 Start a thread from the scheduler by returning to the address on
85 the top of the stack. This is used for all entries to STG code
88 On the way back, we (usually) pass through stg_returnToSched which saves
89 the thread's state away nicely.
90 -------------------------------------------------------------------------- */
95 CHECK_SENSIBLE_REGS();
96 jump %ENTRY_CODE(Sp(0));
102 foreign "C" threadPaused(MyCapability() "ptr", CurrentTSO);
106 // A variant of stg_returntToSched that doesn't call threadPaused() on the
107 // current thread. This is used for switching from compiled execution to the
108 // interpreter, where calling threadPaused() on every switch would be too
110 stg_returnToSchedNotPaused
116 // A variant of stg_returnToSched, but instead of returning directly to the
117 // scheduler, we jump to the code fragment pointed to by R2. This lets us
118 // perform some final actions after making the thread safe, such as unlocking
119 // the MVar on which we are about to block in SMP mode.
120 stg_returnToSchedButFirst
123 foreign "C" threadPaused(MyCapability() "ptr", CurrentTSO);
129 StgRegTable_rRet(BaseReg) = ThreadFinished;
134 /* -----------------------------------------------------------------------------
135 Strict IO application - performing an IO action and entering its result.
137 rts_evalIO() lets you perform Haskell IO actions from outside of
138 Haskell-land, returning back to you their result. Want this result
139 to be evaluated to WHNF by that time, so that we can easily get at
140 the int/char/whatever using the various get{Ty} functions provided
143 forceIO takes care of this, performing the IO action and entering the
144 results that comes back.
146 ------------------------------------------------------------------------- */
148 INFO_TABLE_RET( stg_forceIO, RET_SMALL)
163 /* -----------------------------------------------------------------------------
164 Non-strict IO application.
166 This stack frame works like stg_forceIO_info except that it
167 doesn't evaluate the return value. We need the layer because the
168 return convention for an IO action differs depending on whether R1
169 is a register or not.
170 ------------------------------------------------------------------------- */
172 INFO_TABLE_RET( stg_noforceIO, RET_SMALL )
177 jump %ENTRY_CODE(Sp(0));
183 jump %ENTRY_CODE(Sp(0));
187 /* -----------------------------------------------------------------------------
188 Special STG entry points for module registration.
189 -------------------------------------------------------------------------- */
196 /* On entry to stg_init:
197 * init_stack[0] = &stg_init_ret;
198 * init_stack[1] = __stginit_Something;
203 Sp = W_[BaseReg + OFFSET_StgRegTable_rSp];