// ----------------------------------------------------------------------------- // Apply.hc // // (c) The University of Glasgow 2002 // // Application-related bits. // // ----------------------------------------------------------------------------- #include "Stg.h" #include "Rts.h" #include "RtsFlags.h" #include "Storage.h" #include "RtsUtils.h" #include "Printer.h" #include "Sanity.h" #include "Apply.h" #include // ---------------------------------------------------------------------------- // Evaluate a closure and return it. // // stg_ap_0_info <--- Sp // // NOTE: this needs to be a polymorphic return point, because we can't // be sure that the thing being evaluated is not a function. // These names are just to keep VEC_POLY_INFO_TABLE() happy - all the // entry points in the polymorphic info table point to the same code. #define stg_ap_0_0_ret stg_ap_0_ret #define stg_ap_0_1_ret stg_ap_0_ret #define stg_ap_0_2_ret stg_ap_0_ret #define stg_ap_0_3_ret stg_ap_0_ret #define stg_ap_0_4_ret stg_ap_0_ret #define stg_ap_0_5_ret stg_ap_0_ret #define stg_ap_0_6_ret stg_ap_0_ret #define stg_ap_0_7_ret stg_ap_0_ret VEC_POLY_INFO_TABLE(stg_ap_0, MK_SMALL_BITMAP(0/*framsize*/, 0/*bitmap*/), 0,0,0,RET_SMALL,,EF_); F_ stg_ap_0_ret(void) { // fn is in R1, no args on the stack StgInfoTable *info; nat arity; FB_; IF_DEBUG(apply,fprintf(stderr, "stg_ap_0_ret... "); printClosure(R1.cl)); IF_DEBUG(sanity,checkStackChunk(Sp+1,CurrentTSO->stack + CurrentTSO->stack_size)); Sp++; ENTER(); FE_ } /* ----------------------------------------------------------------------------- Entry Code for a PAP. This entry code is *only* called by one of the stg_ap functions. On entry: Sp points to the remaining arguments on the stack. If the stack check fails, we can just push the PAP on the stack and return to the scheduler. On entry: R1 points to the PAP. The rest of the function's arguments (*all* of 'em) are on the stack, starting at Sp[0]. The idea is to copy the chunk of stack from the PAP object onto the stack / into registers, and enter the function. -------------------------------------------------------------------------- */ INFO_TABLE(stg_PAP_info,stg_PAP_entry,/*special layout*/0,0,PAP,,EF_,"PAP","PAP"); STGFUN(stg_PAP_entry) { nat Words; StgPtr p; nat i; StgPAP *pap; FB_ pap = (StgPAP *) R1.p; Words = pap->n_args; // Check for stack overflow and bump the stack pointer. // We have a hand-rolled stack check fragment here, because none of // the canned ones suit this situation. if ((Sp - Words) < SpLim) { // there is a return address on the stack in the event of a // stack check failure. The various stg_apply functions arrange // this before calling stg_PAP_entry. JMP_(stg_gc_unpt_r1); } // Sp is already pointing one word below the arguments... Sp -= Words-1; // profiling TICK_ENT_PAP(pap); LDV_ENTER(pap); // Enter PAP cost centre -- lexical scoping only ENTER_CCS_PAP_CL(pap); R1.cl = pap->fun; p = (P_)(pap->payload); // Reload the stack for (i=0; ifun_type == ARG_GEN || info->fun_type == ARG_GEN_BIG) { JMP_(info->slow_apply); } else if (info->fun_type == ARG_BCO) { Sp -= 2; Sp[1] = R1.w; Sp[0] = (W_)&stg_apply_interp_info; JMP_(stg_yield_to_interpreter); } else { JMP_(stg_ap_stack_entries[info->fun_type]); } } #endif FE_ } /* ----------------------------------------------------------------------------- Entry Code for an AP (a PAP with arity zero). The entry code is very similar to a PAP, except there are no further arguments on the stack to worry about, so the stack check is simpler. We must also push an update frame on the stack before applying the function. -------------------------------------------------------------------------- */ INFO_TABLE(stg_AP_info,stg_AP_entry,/*special layout*/0,0,AP,,EF_,"AP","AP"); STGFUN(stg_AP_entry) { nat Words; P_ p; nat i; StgAP *ap; FB_ ap = (StgAP *) R1.p; Words = ap->n_args; // Check for stack overflow. STK_CHK_GEN(Words+sizeofW(StgUpdateFrame), R1_PTR, stg_AP_entry); PUSH_UPD_FRAME(R1.p, 0); Sp -= sizeofW(StgUpdateFrame) + Words; TICK_ENT_AP(ap); LDV_ENTER(ap); // Enter PAP cost centre -- lexical scoping only ENTER_CCS_PAP_CL(ap); /* ToDo: ENTER_CC_AP_CL */ R1.cl = ap->fun; p = (P_)(ap->payload); // Reload the stack for (i=0; ifun_type == ARG_GEN || info->fun_type == ARG_GEN_BIG) { JMP_(info->slow_apply); } else if (info->fun_type == ARG_BCO) { Sp -= 2; Sp[1] = R1.w; Sp[0] = (W_)&stg_apply_interp_info; JMP_(stg_yield_to_interpreter); } else { JMP_(stg_ap_stack_entries[info->fun_type]); } } #endif FE_ } /* ----------------------------------------------------------------------------- Entry Code for an AP_STACK. Very similar to a PAP and AP. The layout is the same as PAP and AP, except that the payload is a chunk of stack instead of being described by the function's info table. Like an AP, there are no further arguments on the stack to worry about. However, the function closure (ap->fun) does not necessarily point directly to a function, so we have to enter it using stg_ap_0. -------------------------------------------------------------------------- */ INFO_TABLE(stg_AP_STACK_info,stg_AP_STACK_entry,/*special layout*/0,0,AP_STACK,,EF_,"AP_STACK","AP_STACK"); STGFUN(stg_AP_STACK_entry) { nat Words; P_ p; nat i; StgAP_STACK *ap; FB_ ap = (StgAP_STACK *) R1.p; Words = ap->size; // Check for stack overflow. STK_CHK_GEN(Words+sizeofW(StgUpdateFrame), R1_PTR, stg_AP_STACK_entry); PUSH_UPD_FRAME(R1.p, 0); Sp -= sizeofW(StgUpdateFrame) + Words; TICK_ENT_AP(ap); LDV_ENTER(ap); // Enter PAP cost centre -- lexical scoping only */ ENTER_CCS_PAP_CL(ap); /* ToDo: ENTER_CC_AP_STACK_CL */ R1.cl = ap->fun; p = (P_)(ap->payload); // Reload the stack for (i=0; i