replace several 'fromJust's with 'expectJust's
[ghc-hetmet.git] / ghc / compiler / typecheck / TcBinds.lhs
index cd132e9..cffcb9c 100644 (file)
@@ -4,66 +4,68 @@
 \section[TcBinds]{TcBinds}
 
 \begin{code}
 \section[TcBinds]{TcBinds}
 
 \begin{code}
-module TcBinds ( tcBindsAndThen, tcTopBindsAndThen,
-                tcSpecSigs, tcBindWithSigs ) where
+module TcBinds ( tcLocalBinds, tcTopBinds, 
+                tcHsBootSigs, tcMonoBinds, 
+                TcPragFun, tcSpecPrag, tcPrags, mkPragFun,
+                TcSigInfo(..),
+                badBootDeclErr ) where
 
 #include "HsVersions.h"
 
 
 #include "HsVersions.h"
 
-import {-# SOURCE #-} TcMatches ( tcGRHSs, tcMatchesFun )
-import {-# SOURCE #-} TcExpr  ( tcExpr )
-
-import HsSyn           ( HsExpr(..), HsBinds(..), MonoBinds(..), Sig(..), InPat(..), StmtCtxt(..),
-                         collectMonoBinders, andMonoBindList, andMonoBinds
-                       )
-import RnHsSyn         ( RenamedHsBinds, RenamedSig, RenamedMonoBinds )
-import TcHsSyn         ( TcHsBinds, TcMonoBinds, TcId, zonkId, mkHsLet )
-
-import TcMonad
-import Inst            ( Inst, LIE, emptyLIE, mkLIE, plusLIE, plusLIEs, InstOrigin(..),
-                         newDicts, tyVarsOfInst, instToId,
-                         getAllFunDepsOfLIE, getIPsOfLIE, zonkFunDeps
+import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
+import {-# SOURCE #-} TcExpr  ( tcMonoExpr )
+
+import DynFlags                ( DynFlag(Opt_MonomorphismRestriction, Opt_GlasgowExts) )
+import HsSyn           ( HsExpr(..), HsBind(..), LHsBinds, LHsBind, Sig(..),
+                         HsLocalBinds(..), HsValBinds(..), HsIPBinds(..),
+                         LSig, Match(..), IPBind(..), Prag(..),
+                         HsType(..), LHsType, HsExplicitForAll(..), hsLTyVarNames, 
+                         isVanillaLSig, sigName, placeHolderNames, isPragLSig,
+                         LPat, GRHSs, MatchGroup(..), pprLHsBinds, mkHsCoerce,
+                         collectHsBindBinders, collectPatBinders, pprPatBind, isBangHsBind
                        )
                        )
-import TcEnv           ( tcExtendLocalValEnv,
-                         newSpecPragmaId, newLocalId,
-                         tcLookupTyCon, 
-                         tcGetGlobalTyVars, tcExtendGlobalTyVars
-                       )
-import TcSimplify      ( tcSimplify, tcSimplifyAndCheck, tcSimplifyToDicts )
-import TcImprove       ( tcImprove )
-import TcMonoType      ( tcHsSigType, checkSigTyVars,
-                         TcSigInfo(..), tcTySig, maybeSig, sigCtxt
-                       )
-import TcPat           ( tcPat )
+import TcHsSyn         ( zonkId )
+
+import TcRnMonad
+import Inst            ( newDictsAtLoc, newIPDict, instToId )
+import TcEnv           ( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
+                         pprBinders, tcLookupLocalId_maybe, tcLookupId,
+                         tcGetGlobalTyVars )
+import TcUnify         ( tcInfer, tcSubExp, unifyTheta, 
+                         bleatEscapedTvs, sigCtxt )
+import TcSimplify      ( tcSimplifyInfer, tcSimplifyInferCheck, 
+                         tcSimplifyRestricted, tcSimplifyIPs )
+import TcHsType                ( tcHsSigType, UserTypeCtxt(..) )
+import TcPat           ( tcPat, PatCtxt(..) )
 import TcSimplify      ( bindInstsOfLocalFuns )
 import TcSimplify      ( bindInstsOfLocalFuns )
-import TcType          ( TcType, TcThetaType,
-                         TcTyVar,
-                         newTyVarTy, newTyVar, newTyVarTy_OpenKind, tcInstTcType,
-                         zonkTcType, zonkTcTypes, zonkTcThetaType, zonkTcTyVarToTyVar
-                       )
-import TcUnify         ( unifyTauTy, unifyTauTyLists )
-
-import PrelInfo                ( main_NAME, ioTyCon_NAME )
-
-import Id              ( Id, mkVanillaId, setInlinePragma, idFreeTyVars )
-import Var             ( idType, idName )
-import IdInfo          ( setInlinePragInfo, InlinePragInfo(..) )
-import Name            ( Name, getName, getOccName, getSrcLoc )
+import TcMType         ( newFlexiTyVarTy, zonkQuantifiedTyVar, zonkSigTyVar,
+                         tcInstSigTyVars, tcInstSkolTyVars, tcInstType, 
+                         zonkTcType, zonkTcTypes, zonkTcTyVars )
+import TcType          ( TcType, TcTyVar, TcThetaType, 
+                         SkolemInfo(SigSkol), UserTypeCtxt(FunSigCtxt), 
+                         TcTauType, TcSigmaType, isUnboxedTupleType,
+                         mkTyVarTy, mkForAllTys, mkFunTys, exactTyVarsOfType, 
+                         mkForAllTy, isUnLiftedType, tcGetTyVar, 
+                         mkTyVarTys, tidyOpenTyVar )
+import Kind            ( argTypeKind )
+import VarEnv          ( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv ) 
+import TysWiredIn      ( unitTy )
+import TysPrim         ( alphaTyVar )
+import Id              ( Id, mkLocalId, mkVanillaGlobal )
+import IdInfo          ( vanillaIdInfo )
+import Var             ( TyVar, idType, idName )
+import Name            ( Name )
 import NameSet
 import NameSet
-import Type            ( mkTyVarTy, tyVarsOfTypes, mkTyConApp,
-                         splitSigmaTy, mkForAllTys, mkFunTys, getTyVar, 
-                         mkPredTy, splitRhoTy, mkForAllTy, isUnLiftedType, 
-                         isUnboxedType, unboxedTypeKind, boxedTypeKind
-                       )
-import PprType          ( {- instance Outputable Type -} )
-import FunDeps         ( tyVarFunDep, oclose )
-import Var             ( TyVar, tyVarKind )
+import NameEnv
 import VarSet
 import VarSet
+import SrcLoc          ( Located(..), unLoc, getLoc )
 import Bag
 import Bag
-import Util            ( isIn )
-import Maybes          ( maybeToBool )
-import BasicTypes      ( TopLevelFlag(..), RecFlag(..), isNotTopLevel )
-import FiniteMap       ( listToFM, lookupFM )
-import SrcLoc           ( SrcLoc )
+import ErrUtils                ( Message )
+import Digraph         ( SCC(..), stronglyConnComp )
+import Maybes          ( expectJust, isJust, isNothing, orElse )
+import Util            ( singleton )
+import BasicTypes      ( TopLevelFlag(..), isTopLevel, isNotTopLevel,
+                         RecFlag(..), isNonRec, InlineSpec, defaultInlineSpec )
 import Outputable
 \end{code}
 
 import Outputable
 \end{code}
 
@@ -100,402 +102,735 @@ At the top-level the LIE is sure to contain nothing but constant
 dictionaries, which we resolve at the module level.
 
 \begin{code}
 dictionaries, which we resolve at the module level.
 
 \begin{code}
-tcTopBindsAndThen, tcBindsAndThen
-       :: (RecFlag -> TcMonoBinds -> thing -> thing)           -- Combinator
-       -> RenamedHsBinds
-       -> TcM s (thing, LIE)
-       -> TcM s (thing, LIE)
-
-tcTopBindsAndThen = tc_binds_and_then TopLevel
-tcBindsAndThen    = tc_binds_and_then NotTopLevel
-
-tc_binds_and_then top_lvl combiner EmptyBinds do_next
-  = do_next
-tc_binds_and_then top_lvl combiner (MonoBind EmptyMonoBinds sigs is_rec) do_next
-  = do_next
-
-tc_binds_and_then top_lvl combiner (ThenBinds b1 b2) do_next
-  = tc_binds_and_then top_lvl combiner b1      $
-    tc_binds_and_then top_lvl combiner b2      $
-    do_next
-
-tc_binds_and_then top_lvl combiner (MonoBind bind sigs is_rec) do_next
-  =    -- TYPECHECK THE SIGNATURES
-      mapTc tcTySig [sig | sig@(Sig name _ _) <- sigs] `thenTc` \ tc_ty_sigs ->
-  
-      tcBindWithSigs top_lvl bind tc_ty_sigs
-                    sigs is_rec                        `thenTc` \ (poly_binds, poly_lie, poly_ids) ->
-  
-         -- Extend the environment to bind the new polymorphic Ids
-      tcExtendLocalValEnv [(idName poly_id, poly_id) | poly_id <- poly_ids] $
-  
-         -- Build bindings and IdInfos corresponding to user pragmas
-      tcSpecSigs sigs          `thenTc` \ (prag_binds, prag_lie) ->
-
-       -- Now do whatever happens next, in the augmented envt
-      do_next                  `thenTc` \ (thing, thing_lie) ->
-
-       -- Create specialisations of functions bound here
-       -- We want to keep non-recursive things non-recursive
-       -- so that we desugar unboxed bindings correctly
-      case (top_lvl, is_rec) of
-
-               -- For the top level don't bother will all this bindInstsOfLocalFuns stuff
-               -- All the top level things are rec'd together anyway, so it's fine to
-               -- leave them to the tcSimplifyTop, and quite a bit faster too
-       (TopLevel, _)
-               -> returnTc (combiner Recursive (poly_binds `andMonoBinds` prag_binds) thing,
-                            thing_lie `plusLIE` prag_lie `plusLIE` poly_lie)
-
-       (NotTopLevel, NonRecursive) 
-               -> bindInstsOfLocalFuns 
-                               (thing_lie `plusLIE` prag_lie)
-                               poly_ids                        `thenTc` \ (thing_lie', lie_binds) ->
-
-                  returnTc (
-                       combiner NonRecursive poly_binds $
-                       combiner NonRecursive prag_binds $
-                       combiner Recursive lie_binds  $
-                               -- NB: the binds returned by tcSimplify and bindInstsOfLocalFuns
-                               -- aren't guaranteed in dependency order (though we could change
-                               -- that); hence the Recursive marker.
-                       thing,
-
-                       thing_lie' `plusLIE` poly_lie
-                  )
-
-       (NotTopLevel, Recursive)
-               -> bindInstsOfLocalFuns 
-                               (thing_lie `plusLIE` poly_lie `plusLIE` prag_lie) 
-                               poly_ids                        `thenTc` \ (final_lie, lie_binds) ->
-
-                  returnTc (
-                       combiner Recursive (
-                               poly_binds `andMonoBinds`
-                               lie_binds  `andMonoBinds`
-                               prag_binds) thing,
-                       final_lie
-                  )
-\end{code}
+tcTopBinds :: HsValBinds Name -> TcM (LHsBinds TcId, TcLclEnv)
+       -- Note: returning the TcLclEnv is more than we really
+       --       want.  The bit we care about is the local bindings
+       --       and the free type variables thereof
+tcTopBinds binds
+  = do { (ValBindsOut prs _, env) <- tcValBinds TopLevel binds getLclEnv
+       ; return (foldr (unionBags . snd) emptyBag prs, env) }
+       -- The top level bindings are flattened into a giant 
+       -- implicitly-mutually-recursive LHsBinds
+
+tcHsBootSigs :: HsValBinds Name -> TcM [Id]
+-- A hs-boot file has only one BindGroup, and it only has type
+-- signatures in it.  The renamer checked all this
+tcHsBootSigs (ValBindsOut binds sigs)
+  = do { checkTc (null binds) badBootDeclErr
+       ; mapM (addLocM tc_boot_sig) (filter isVanillaLSig sigs) }
+  where
+    tc_boot_sig (TypeSig (L _ name) ty)
+      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
+          ; return (mkVanillaGlobal name sigma_ty vanillaIdInfo) }
+       -- Notice that we make GlobalIds, not LocalIds
+tcHsBootSigs groups = pprPanic "tcHsBootSigs" (ppr groups)
+
+badBootDeclErr :: Message
+badBootDeclErr = ptext SLIT("Illegal declarations in an hs-boot file")
+
+------------------------
+tcLocalBinds :: HsLocalBinds Name -> TcM thing
+            -> TcM (HsLocalBinds TcId, thing)
+
+tcLocalBinds EmptyLocalBinds thing_inside 
+  = do { thing <- thing_inside
+       ; return (EmptyLocalBinds, thing) }
+
+tcLocalBinds (HsValBinds binds) thing_inside
+  = do { (binds', thing) <- tcValBinds NotTopLevel binds thing_inside
+       ; return (HsValBinds binds', thing) }
+
+tcLocalBinds (HsIPBinds (IPBinds ip_binds _)) thing_inside
+  = do { (thing, lie) <- getLIE thing_inside
+       ; (avail_ips, ip_binds') <- mapAndUnzipM (wrapLocSndM tc_ip_bind) ip_binds
+
+       -- If the binding binds ?x = E, we  must now 
+       -- discharge any ?x constraints in expr_lie
+       ; dict_binds <- tcSimplifyIPs avail_ips lie
+       ; return (HsIPBinds (IPBinds ip_binds' dict_binds), thing) }
+  where
+       -- I wonder if we should do these one at at time
+       -- Consider     ?x = 4
+       --              ?y = ?x + 1
+    tc_ip_bind (IPBind ip expr)
+      = newFlexiTyVarTy argTypeKind            `thenM` \ ty ->
+       newIPDict (IPBindOrigin ip) ip ty       `thenM` \ (ip', ip_inst) ->
+       tcMonoExpr expr ty                      `thenM` \ expr' ->
+       returnM (ip_inst, (IPBind ip' expr'))
+
+------------------------
+tcValBinds :: TopLevelFlag 
+          -> HsValBinds Name -> TcM thing
+          -> TcM (HsValBinds TcId, thing) 
+
+tcValBinds top_lvl (ValBindsIn binds sigs) thing_inside
+  = pprPanic "tcValBinds" (ppr binds)
+
+tcValBinds top_lvl (ValBindsOut binds sigs) thing_inside
+  = do         {       -- Typecheck the signature
+       ; let { prag_fn = mkPragFun sigs
+             ; ty_sigs = filter isVanillaLSig sigs
+             ; sig_fn  = mkSigFun ty_sigs }
+
+       ; poly_ids <- mapM tcTySig ty_sigs
+
+               -- Extend the envt right away with all 
+               -- the Ids declared with type signatures
+       ; (binds', thing) <- tcExtendIdEnv poly_ids $
+                            tc_val_binds top_lvl sig_fn prag_fn 
+                                         binds thing_inside
+
+       ; return (ValBindsOut binds' sigs, thing) }
+
+------------------------
+tc_val_binds :: TopLevelFlag -> TcSigFun -> TcPragFun
+            -> [(RecFlag, LHsBinds Name)] -> TcM thing
+            -> TcM ([(RecFlag, LHsBinds TcId)], thing)
+-- Typecheck a whole lot of value bindings,
+-- one strongly-connected component at a time
+
+tc_val_binds top_lvl sig_fn prag_fn [] thing_inside
+  = do { thing <- thing_inside
+       ; return ([], thing) }
+
+tc_val_binds top_lvl sig_fn prag_fn (group : groups) thing_inside
+  = do { (group', (groups', thing))
+               <- tc_group top_lvl sig_fn prag_fn group $ 
+                  tc_val_binds top_lvl sig_fn prag_fn groups thing_inside
+       ; return (group' ++ groups', thing) }
+
+------------------------
+tc_group :: TopLevelFlag -> TcSigFun -> TcPragFun
+        -> (RecFlag, LHsBinds Name) -> TcM thing
+        -> TcM ([(RecFlag, LHsBinds TcId)], thing)
+
+-- Typecheck one strongly-connected component of the original program.
+-- We get a list of groups back, because there may 
+-- be specialisations etc as well
+
+tc_group top_lvl sig_fn prag_fn (NonRecursive, binds) thing_inside
+  =    -- A single non-recursive binding
+       -- We want to keep non-recursive things non-recursive
+        -- so that we desugar unlifted bindings correctly
+    do { (binds, thing) <- tcPolyBinds top_lvl NonRecursive NonRecursive
+                                       sig_fn prag_fn binds thing_inside
+       ; return ([(NonRecursive, b) | b <- binds], thing) }
+
+tc_group top_lvl sig_fn prag_fn (Recursive, binds) thing_inside
+  =    -- A recursive strongly-connected component
+       -- To maximise polymorphism (with -fglasgow-exts), we do a new 
+       -- strongly-connected-component analysis, this time omitting 
+       -- any references to variables with type signatures.
+       --
+       -- Then we bring into scope all the variables with type signatures
+    do { traceTc (text "tc_group rec" <+> pprLHsBinds binds)
+       ; gla_exts     <- doptM Opt_GlasgowExts
+       ; (binds,thing) <- if gla_exts 
+                          then go new_sccs
+                          else tc_binds Recursive binds thing_inside
+       ; return ([(Recursive, unionManyBags binds)], thing) }
+               -- Rec them all together
+  where
+    new_sccs :: [SCC (LHsBind Name)]
+    new_sccs = stronglyConnComp (mkEdges sig_fn binds)
 
 
-An aside.  The original version of @tcBindsAndThen@ which lacks a
-combiner function, appears below.  Though it is perfectly well
-behaved, it cannot be typed by Haskell, because the recursive call is
-at a different type to the definition itself.  There aren't too many
-examples of this, which is why I thought it worth preserving! [SLPJ]
-
-\begin{pseudocode}
-% tcBindsAndThen
-%      :: RenamedHsBinds
-%      -> TcM s (thing, LIE, thing_ty))
-%      -> TcM s ((TcHsBinds, thing), LIE, thing_ty)
-% 
-% tcBindsAndThen EmptyBinds do_next
-%   = do_next          `thenTc` \ (thing, lie, thing_ty) ->
-%     returnTc ((EmptyBinds, thing), lie, thing_ty)
-% 
-% tcBindsAndThen (ThenBinds binds1 binds2) do_next
-%   = tcBindsAndThen binds1 (tcBindsAndThen binds2 do_next)
-%      `thenTc` \ ((binds1', (binds2', thing')), lie1, thing_ty) ->
-% 
-%     returnTc ((binds1' `ThenBinds` binds2', thing'), lie1, thing_ty)
-% 
-% tcBindsAndThen (MonoBind bind sigs is_rec) do_next
-%   = tcBindAndThen bind sigs do_next
-\end{pseudocode}
+--  go :: SCC (LHsBind Name) -> TcM ([LHsBind TcId], thing)
+    go (scc:sccs) = do { (binds1, (binds2, thing)) <- go1 scc (go sccs)
+                       ; return (binds1 ++ binds2, thing) }
+    go []        = do  { thing <- thing_inside; return ([], thing) }
 
 
+    go1 (AcyclicSCC bind) = tc_binds NonRecursive (unitBag bind)
+    go1 (CyclicSCC binds) = tc_binds Recursive    (listToBag binds)
 
 
-%************************************************************************
-%*                                                                     *
-\subsection{tcBindWithSigs}
-%*                                                                     *
-%************************************************************************
+    tc_binds rec_tc binds = tcPolyBinds top_lvl Recursive rec_tc sig_fn prag_fn binds
 
 
-@tcBindWithSigs@ deals with a single binding group.  It does generalisation,
-so all the clever stuff is in here.
+------------------------
+mkEdges :: TcSigFun -> LHsBinds Name
+       -> [(LHsBind Name, BKey, [BKey])]
 
 
-* binder_names and mbind must define the same set of Names
+type BKey  = Int -- Just number off the bindings
 
 
-* The Names in tc_ty_sigs must be a subset of binder_names
+mkEdges sig_fn binds
+  = [ (bind, key, [key | n <- nameSetToList (bind_fvs (unLoc bind)),
+                        Just key <- [lookupNameEnv key_map n], no_sig n ])
+    | (bind, key) <- keyd_binds
+    ]
+  where
+    no_sig :: Name -> Bool
+    no_sig n = isNothing (sig_fn n)
+
+    keyd_binds = bagToList binds `zip` [0::BKey ..]
+
+    key_map :: NameEnv BKey    -- Which binding it comes from
+    key_map = mkNameEnv [(bndr, key) | (L _ bind, key) <- keyd_binds
+                                    , bndr <- bindersOfHsBind bind ]
+
+bindersOfHsBind :: HsBind Name -> [Name]
+bindersOfHsBind (PatBind { pat_lhs = pat })  = collectPatBinders pat
+bindersOfHsBind (FunBind { fun_id = L _ f }) = [f]
+
+------------------------
+tcPolyBinds :: TopLevelFlag 
+           -> RecFlag                  -- Whether the group is really recursive
+           -> RecFlag                  -- Whether it's recursive for typechecking purposes
+           -> TcSigFun -> TcPragFun
+           -> LHsBinds Name
+           -> TcM thing
+           -> TcM ([LHsBinds TcId], thing)
+
+-- Typechecks a single bunch of bindings all together, 
+-- and generalises them.  The bunch may be only part of a recursive
+-- group, because we use type signatures to maximise polymorphism
+--
+-- Deals with the bindInstsOfLocalFuns thing too
+--
+-- Returns a list because the input may be a single non-recursive binding,
+-- in which case the dependency order of the resulting bindings is
+-- important.  
+
+tcPolyBinds top_lvl rec_group rec_tc sig_fn prag_fn scc thing_inside
+  =    -- NB: polymorphic recursion means that a function
+       -- may use an instance of itself, we must look at the LIE arising
+       -- from the function's own right hand side.  Hence the getLIE
+       -- encloses the tc_poly_binds. 
+    do { traceTc (text "tcPolyBinds" <+> ppr scc)
+       ; ((binds1, poly_ids, thing), lie) <- getLIE $ 
+               do { (binds1, poly_ids) <- tc_poly_binds top_lvl rec_group rec_tc
+                                                        sig_fn prag_fn scc
+                  ; thing <- tcExtendIdEnv poly_ids thing_inside
+                  ; return (binds1, poly_ids, thing) }
+
+       ; if isTopLevel top_lvl 
+         then          -- For the top level don't bother will all this
+                       -- bindInstsOfLocalFuns stuff. All the top level 
+                       -- things are rec'd together anyway, so it's fine to
+                       -- leave them to the tcSimplifyTop, 
+                       -- and quite a bit faster too
+               do { extendLIEs lie; return (binds1, thing) }
+
+         else do       -- Nested case
+               { lie_binds <- bindInstsOfLocalFuns lie poly_ids
+               ; return (binds1 ++ [lie_binds], thing) }}
+
+------------------------
+tc_poly_binds :: TopLevelFlag          -- See comments on tcPolyBinds
+             -> RecFlag -> RecFlag
+             -> TcSigFun -> TcPragFun
+             -> LHsBinds Name
+             -> TcM ([LHsBinds TcId], [TcId])
+-- Typechecks the bindings themselves
+-- Knows nothing about the scope of the bindings
+
+tc_poly_binds top_lvl rec_group rec_tc sig_fn prag_fn binds
+  = let 
+        binder_names = collectHsBindBinders binds
+       bind_list    = bagToList binds
+
+       loc = getLoc (head bind_list)
+               -- TODO: location a bit awkward, but the mbinds have been
+               --       dependency analysed and may no longer be adjacent
+    in
+       -- SET UP THE MAIN RECOVERY; take advantage of any type sigs
+    setSrcSpan loc                             $
+    recoverM (recoveryCode binder_names)       $ do 
+
+  { traceTc (ptext SLIT("------------------------------------------------"))
+  ; traceTc (ptext SLIT("Bindings for") <+> ppr binder_names)
+
+       -- TYPECHECK THE BINDINGS
+  ; ((binds', mono_bind_infos), lie_req) 
+       <- getLIE (tcMonoBinds bind_list sig_fn rec_tc)
+
+       -- CHECK FOR UNLIFTED BINDINGS
+       -- These must be non-recursive etc, and are not generalised
+       -- They desugar to a case expression in the end
+  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
+  ; is_strict <- checkStrictBinds top_lvl rec_group binds' 
+                                 zonked_mono_tys mono_bind_infos
+  ; if is_strict then
+    do { extendLIEs lie_req
+       ; let exports = zipWith mk_export mono_bind_infos zonked_mono_tys
+             mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id, [])
+             mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id, [])
+                       -- ToDo: prags for unlifted bindings
+
+       ; return ( [unitBag $ L loc $ AbsBinds [] [] exports binds'],
+                  [poly_id | (_, poly_id, _, _) <- exports]) } -- Guaranteed zonked
+
+    else do    -- The normal lifted case: GENERALISE
+  { is_unres <- isUnRestrictedGroup bind_list sig_fn
+  ; (tyvars_to_gen, dict_binds, dict_ids)
+       <- addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
+          generalise top_lvl is_unres mono_bind_infos lie_req
+
+       -- FINALISE THE QUANTIFIED TYPE VARIABLES
+       -- The quantified type variables often include meta type variables
+       -- we want to freeze them into ordinary type variables, and
+       -- default their kind (e.g. from OpenTypeKind to TypeKind)
+  ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
+
+       -- BUILD THE POLYMORPHIC RESULT IDs
+  ; exports <- mapM (mkExport prag_fn tyvars_to_gen' (map idType dict_ids))
+                   mono_bind_infos
+
+       -- ZONK THE poly_ids, because they are used to extend the type 
+       -- environment; see the invariant on TcEnv.tcExtendIdEnv 
+  ; let        poly_ids = [poly_id | (_, poly_id, _, _) <- exports]
+  ; zonked_poly_ids <- mappM zonkId poly_ids
+
+  ; traceTc (text "binding:" <+> ppr (zonked_poly_ids `zip` map idType zonked_poly_ids))
+
+  ; let abs_bind = L loc $ AbsBinds tyvars_to_gen'
+                                   dict_ids exports
+                                   (dict_binds `unionBags` binds')
+
+  ; return ([unitBag abs_bind], zonked_poly_ids)
+  } }
+
+
+--------------
+mkExport :: TcPragFun -> [TyVar] -> [TcType] -> MonoBindInfo
+        -> TcM ([TyVar], Id, Id, [Prag])
+mkExport prag_fn inferred_tvs dict_tys (poly_name, mb_sig, mono_id)
+  = case mb_sig of
+      Nothing  -> do { prags <- tcPrags poly_id (prag_fn poly_name)
+                    ; return (inferred_tvs, poly_id, mono_id, prags) }
+         where
+           poly_id = mkLocalId poly_name poly_ty
+           poly_ty = mkForAllTys inferred_tvs
+                                      $ mkFunTys dict_tys 
+                                      $ idType mono_id
+
+      Just sig -> do { let poly_id = sig_id sig
+                    ; prags <- tcPrags poly_id (prag_fn poly_name)
+                    ; sig_tys <- zonkTcTyVars (sig_tvs sig)
+                    ; let sig_tvs' = map (tcGetTyVar "mkExport") sig_tys
+                    ; return (sig_tvs', poly_id, mono_id, prags) }
+               -- We zonk the sig_tvs here so that the export triple
+               -- always has zonked type variables; 
+               -- a convenient invariant
+
+
+------------------------
+type TcPragFun = Name -> [LSig Name]
+
+mkPragFun :: [LSig Name] -> TcPragFun
+mkPragFun sigs = \n -> lookupNameEnv env n `orElse` []
+       where
+         prs = [(expectJust "mkPragFun" (sigName sig), sig) 
+               | sig <- sigs, isPragLSig sig]
+         env = foldl add emptyNameEnv prs
+         add env (n,p) = extendNameEnv_Acc (:) singleton env n p
+
+tcPrags :: Id -> [LSig Name] -> TcM [Prag]
+tcPrags poly_id prags = mapM tc_prag prags
+  where
+    tc_prag (L loc prag) = setSrcSpan loc $ 
+                          addErrCtxt (pragSigCtxt prag) $ 
+                          tcPrag poly_id prag
 
 
-* The Ids in tc_ty_sigs don't necessarily have to have the same name
-  as the Name in the tc_ty_sig
+pragSigCtxt prag = hang (ptext SLIT("In the pragma")) 2 (ppr prag)
 
 
-\begin{code}
-tcBindWithSigs 
-       :: TopLevelFlag
-       -> RenamedMonoBinds
-       -> [TcSigInfo]
-       -> [RenamedSig]         -- Used solely to get INLINE, NOINLINE sigs
-       -> RecFlag
-       -> TcM s (TcMonoBinds, LIE, [TcId])
-
-tcBindWithSigs top_lvl mbind tc_ty_sigs inline_sigs is_rec
-  = recoverTc (
-       -- If typechecking the binds fails, then return with each
-       -- signature-less binder given type (forall a.a), to minimise subsequent
-       -- error messages
-       newTyVar boxedTypeKind          `thenNF_Tc` \ alpha_tv ->
-       let
-         forall_a_a    = mkForAllTy alpha_tv (mkTyVarTy alpha_tv)
-          binder_names  = map fst (bagToList (collectMonoBinders mbind))
-         poly_ids      = map mk_dummy binder_names
-         mk_dummy name = case maybeSig tc_ty_sigs name of
-                           Just (TySigInfo _ poly_id _ _ _ _ _ _) -> poly_id   -- Signature
-                           Nothing -> mkVanillaId name forall_a_a              -- No signature
-       in
-       returnTc (EmptyMonoBinds, emptyLIE, poly_ids)
-    ) $
-
-       -- TYPECHECK THE BINDINGS
-    tcMonoBinds mbind tc_ty_sigs is_rec                `thenTc` \ (mbind', lie_req, binder_names, mono_ids) ->
-
-       -- CHECK THAT THE SIGNATURES MATCH
-       -- (must do this before getTyVarsToGen)
-    checkSigMatch top_lvl binder_names mono_ids tc_ty_sigs     `thenTc` \ maybe_sig_theta ->   
-
-       -- IMPROVE the LIE
-       -- Force any unifications dictated by functional dependencies.
-       -- Because unification may happen, it's important that this step
-       -- come before:
-       --   - computing vars over which to quantify
-       --   - zonking the generalized type vars
-    tcImprove lie_req `thenTc_`
-
-       -- COMPUTE VARIABLES OVER WHICH TO QUANTIFY, namely tyvars_to_gen
-       -- The tyvars_not_to_gen are free in the environment, and hence
-       -- candidates for generalisation, but sometimes the monomorphism
-       -- restriction means we can't generalise them nevertheless
-    let
-       mono_id_tys = map idType mono_ids
-    in
-    getTyVarsToGen is_unrestricted mono_id_tys lie_req `thenNF_Tc` \ (tyvars_not_to_gen, tyvars_to_gen) ->
-
-       -- Finally, zonk the generalised type variables to real TyVars
-       -- This commits any unbound kind variables to boxed kind
-       -- I'm a little worried that such a kind variable might be
-       -- free in the environment, but I don't think it's possible for
-       -- this to happen when the type variable is not free in the envt
-       -- (which it isn't).            SLPJ Nov 98
-    mapTc zonkTcTyVarToTyVar (varSetElems tyvars_to_gen)       `thenTc` \ real_tyvars_to_gen_list ->
-    let
-       real_tyvars_to_gen = mkVarSet real_tyvars_to_gen_list
-               -- It's important that the final list 
-               -- (real_tyvars_to_gen and real_tyvars_to_gen_list) is fully
-               -- zonked, *including boxity*, because they'll be included in the forall types of
-               -- the polymorphic Ids, and instances of these Ids will be generated from them.
-               -- 
-               -- Also NB that tcSimplify takes zonked tyvars as its arg, hence we pass
-               -- real_tyvars_to_gen
-    in
+tcPrag :: TcId -> Sig Name -> TcM Prag
+tcPrag poly_id (SpecSig orig_name hs_ty inl) = tcSpecPrag poly_id hs_ty inl
+tcPrag poly_id (SpecInstSig hs_ty)          = tcSpecPrag poly_id hs_ty defaultInlineSpec
+tcPrag poly_id (InlineSig v inl)             = return (InlinePrag inl)
 
 
-       -- SIMPLIFY THE LIE
-    tcExtendGlobalTyVars tyvars_not_to_gen (
-       let ips = getIPsOfLIE lie_req in
-       if null real_tyvars_to_gen_list && (null ips || not is_unrestricted) then
-               -- No polymorphism, and no IPs, so no need to simplify context
-           returnTc (lie_req, EmptyMonoBinds, [])
-       else
-       case maybe_sig_theta of
-         Nothing ->
-               -- No signatures, so just simplify the lie
-               -- NB: no signatures => no polymorphic recursion, so no
-               -- need to use lie_avail (which will be empty anyway)
-           tcSimplify (text "tcBinds1" <+> ppr binder_names)
-                      real_tyvars_to_gen lie_req       `thenTc` \ (lie_free, dict_binds, lie_bound) ->
-           returnTc (lie_free, dict_binds, map instToId (bagToList lie_bound))
-
-         Just (sig_theta, lie_avail) ->
-               -- There are signatures, and their context is sig_theta
-               -- Furthermore, lie_avail is an LIE containing the 'method insts'
-               -- for the things bound here
-
-           zonkTcThetaType sig_theta                   `thenNF_Tc` \ sig_theta' ->
-           newDicts SignatureOrigin sig_theta'         `thenNF_Tc` \ (dicts_sig, dict_ids) ->
-               -- It's important that sig_theta is zonked, because
-               -- dict_id is later used to form the type of the polymorphic thing,
-               -- and forall-types must be zonked so far as their bound variables
-               -- are concerned
-
-           let
-               -- The "givens" is the stuff available.  We get that from
-               -- the context of the type signature, BUT ALSO the lie_avail
-               -- so that polymorphic recursion works right (see comments at end of fn)
-               givens = dicts_sig `plusLIE` lie_avail
-           in
-
-               -- Check that the needed dicts can be expressed in
-               -- terms of the signature ones
-           tcAddErrCtxt  (bindSigsCtxt tysig_names) $
-           tcSimplifyAndCheck
-               (ptext SLIT("type signature for") <+> pprQuotedList binder_names)
-               real_tyvars_to_gen givens lie_req       `thenTc` \ (lie_free, dict_binds) ->
-
-           returnTc (lie_free, dict_binds, dict_ids)
-
-    )                                          `thenTc` \ (lie_free, dict_binds, dicts_bound) ->
-
-       -- GET THE FINAL MONO_ID_TYS
-    zonkTcTypes mono_id_tys                    `thenNF_Tc` \ zonked_mono_id_types ->
-
-
-       -- CHECK FOR BOGUS UNPOINTED BINDINGS
-    (if any isUnLiftedType zonked_mono_id_types then
-               -- Unlifted bindings must be non-recursive,
-               -- not top level, and non-polymorphic
-       checkTc (isNotTopLevel top_lvl)
-               (unliftedBindErr "Top-level" mbind)             `thenTc_`
-       checkTc (case is_rec of {Recursive -> False; NonRecursive -> True})
-               (unliftedBindErr "Recursive" mbind)             `thenTc_`
-       checkTc (null real_tyvars_to_gen_list)
-               (unliftedBindErr "Polymorphic" mbind)
-     else
-       returnTc ()
-    )                                                  `thenTc_`
-
-    ASSERT( not (any ((== unboxedTypeKind) . tyVarKind) real_tyvars_to_gen_list) )
-               -- The instCantBeGeneralised stuff in tcSimplify should have
-               -- already raised an error if we're trying to generalise an 
-               -- unboxed tyvar (NB: unboxed tyvars are always introduced 
-               -- along with a class constraint) and it's better done there 
-               -- because we have more precise origin information.
-               -- That's why we just use an ASSERT here.
-
-
-        -- BUILD THE POLYMORPHIC RESULT IDs
-    mapNF_Tc zonkId mono_ids           `thenNF_Tc` \ zonked_mono_ids ->
-    let
-       exports  = zipWith mk_export binder_names zonked_mono_ids
-       dict_tys = map idType dicts_bound
-
-       inlines    = mkNameSet [name | InlineSig name _ loc <- inline_sigs]
-        no_inlines = listToFM ([(name, IMustNotBeINLINEd False phase) | NoInlineSig name phase loc <- inline_sigs] ++
-                              [(name, IMustNotBeINLINEd True  phase) | InlineSig   name phase loc <- inline_sigs, maybeToBool phase])
-               -- "INLINE n foo" means inline foo, but not until at least phase n
-               -- "NOINLINE n foo" means don't inline foo until at least phase n, and even 
-               --                  then only if it is small enough etc.
-               -- "NOINLINE foo" means don't inline foo ever, which we signal with a (IMustNotBeINLINEd Nothing)
-               -- See comments in CoreUnfold.blackListed for the Authorised Version
-
-       mk_export binder_name zonked_mono_id
-         = (tyvars, 
-            attachNoInlinePrag no_inlines poly_id,
-            zonked_mono_id)
-         where
-           (tyvars, poly_id) = 
-               case maybeSig tc_ty_sigs binder_name of
-                 Just (TySigInfo _ sig_poly_id sig_tyvars _ _ _ _ _) -> 
-                       (sig_tyvars, sig_poly_id)
-                 Nothing -> (real_tyvars_to_gen_list, new_poly_id)
-
-           new_poly_id = mkVanillaId binder_name poly_ty
-           poly_ty = mkForAllTys real_tyvars_to_gen_list 
-                       $ mkFunTys dict_tys 
-                       $ idType (zonked_mono_id)
-               -- It's important to build a fully-zonked poly_ty, because
-               -- we'll slurp out its free type variables when extending the
-               -- local environment (tcExtendLocalValEnv); if it's not zonked
-               -- it appears to have free tyvars that aren't actually free 
-               -- at all.
-       
-       pat_binders :: [Name]
-       pat_binders = map fst $ bagToList $ collectMonoBinders $ 
-                     (justPatBindings mbind EmptyMonoBinds)
-    in
-       -- CHECK FOR UNBOXED BINDERS IN PATTERN BINDINGS
-    mapTc (\id -> checkTc (not (idName id `elem` pat_binders
-                               && isUnboxedType (idType id)))
-                         (unboxedPatBindErr id)) zonked_mono_ids
-                               `thenTc_`
-
-        -- BUILD RESULTS
-    returnTc (
-        -- pprTrace "binding.." (ppr ((dicts_bound, dict_binds), exports, [idType poly_id | (_, poly_id, _) <- exports])) $
-        AbsBinds real_tyvars_to_gen_list
-                 dicts_bound
-                 exports
-                 inlines
-                 (dict_binds `andMonoBinds` mbind'),
-        lie_free,
-        [poly_id | (_, poly_id, _) <- exports]
-    )
+
+tcSpecPrag :: TcId -> LHsType Name -> InlineSpec -> TcM Prag
+tcSpecPrag poly_id hs_ty inl
+  = do { spec_ty <- tcHsSigType (FunSigCtxt (idName poly_id)) hs_ty
+       ; (co_fn, lie) <- getLIE (tcSubExp (idType poly_id) spec_ty)
+       ; extendLIEs lie
+       ; let const_dicts = map instToId lie
+       ; return (SpecPrag (mkHsCoerce co_fn (HsVar poly_id)) spec_ty const_dicts inl) }
+  
+--------------
+-- If typechecking the binds fails, then return with each
+-- signature-less binder given type (forall a.a), to minimise 
+-- subsequent error messages
+recoveryCode binder_names
+  = do { traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
+       ; poly_ids <- mapM mk_dummy binder_names
+       ; return ([], poly_ids) }
+  where
+    mk_dummy name = do { mb_id <- tcLookupLocalId_maybe name
+                       ; case mb_id of
+                             Just id -> return id              -- Had signature, was in envt
+                             Nothing -> return (mkLocalId name forall_a_a) }    -- No signature
+
+forall_a_a :: TcType
+forall_a_a = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)
+
+
+-- Check that non-overloaded unlifted bindings are
+--     a) non-recursive,
+--     b) not top level, 
+--     c) not a multiple-binding group (more or less implied by (a))
+
+checkStrictBinds :: TopLevelFlag -> RecFlag
+                -> LHsBinds TcId -> [TcType] -> [MonoBindInfo]
+                -> TcM Bool
+checkStrictBinds top_lvl rec_group mbind mono_tys infos
+  | unlifted || bang_pat
+  = do         { checkTc (isNotTopLevel top_lvl)
+                 (strictBindErr "Top-level" unlifted mbind)
+       ; checkTc (isNonRec rec_group)
+                 (strictBindErr "Recursive" unlifted mbind)
+       ; checkTc (isSingletonBag mbind)
+                 (strictBindErr "Multiple" unlifted mbind) 
+       ; mapM_ check_sig infos
+       ; return True }
+  | otherwise
+  = return False
   where
   where
-    tysig_names     = [name | (TySigInfo name _ _ _ _ _ _ _) <- tc_ty_sigs]
-    is_unrestricted = isUnRestrictedGroup tysig_names mbind
-
-justPatBindings bind@(PatMonoBind _ _ _) binds = bind `andMonoBinds` binds
-justPatBindings (AndMonoBinds b1 b2) binds = 
-       justPatBindings b1 (justPatBindings b2 binds) 
-justPatBindings other_bind binds = binds
-
-attachNoInlinePrag no_inlines bndr
-  = case lookupFM no_inlines (idName bndr) of
-       Just prag -> bndr `setInlinePragma` prag
-       Nothing   -> bndr
+    unlifted = any isUnLiftedType mono_tys
+    bang_pat = anyBag (isBangHsBind . unLoc) mbind
+    check_sig (_, Just sig, _) = checkTc (null (sig_tvs sig) && null (sig_theta sig))
+                                        (badStrictSig unlifted sig)
+    check_sig other           = return ()
+
+strictBindErr flavour unlifted mbind
+  = hang (text flavour <+> msg <+> ptext SLIT("aren't allowed:")) 4 (ppr mbind)
+  where
+    msg | unlifted  = ptext SLIT("bindings for unlifted types")
+       | otherwise = ptext SLIT("bang-pattern bindings")
+
+badStrictSig unlifted sig
+  = hang (ptext SLIT("Illegal polymorphic signature in") <+> msg)
+        4 (ppr sig)
+  where
+    msg | unlifted  = ptext SLIT("an unlifted binding")
+       | otherwise = ptext SLIT("a bang-pattern binding")
 \end{code}
 
 \end{code}
 
-Polymorphic recursion
-~~~~~~~~~~~~~~~~~~~~~
-The game plan for polymorphic recursion in the code above is 
 
 
-       * Bind any variable for which we have a type signature
-         to an Id with a polymorphic type.  Then when type-checking 
-         the RHSs we'll make a full polymorphic call.
+%************************************************************************
+%*                                                                     *
+\subsection{tcMonoBind}
+%*                                                                     *
+%************************************************************************
 
 
-This fine, but if you aren't a bit careful you end up with a horrendous
-amount of partial application and (worse) a huge space leak. For example:
+@tcMonoBinds@ deals with a perhaps-recursive group of HsBinds.
+The signatures have been dealt with already.
 
 
-       f :: Eq a => [a] -> [a]
-       f xs = ...f...
+\begin{code}
+tcMonoBinds :: [LHsBind Name]
+           -> TcSigFun
+           -> RecFlag  -- Whether the binding is recursive for typechecking purposes
+                       -- i.e. the binders are mentioned in their RHSs, and
+                       --      we are not resuced by a type signature
+           -> TcM (LHsBinds TcId, [MonoBindInfo])
+
+tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
+                               fun_matches = matches, bind_fvs = fvs })]
+           sig_fn              -- Single function binding,
+           NonRecursive        -- binder isn't mentioned in RHS,
+  | Nothing <- sig_fn name     -- ...with no type signature
+  =    -- In this very special case we infer the type of the
+       -- right hand side first (it may have a higher-rank type)
+       -- and *then* make the monomorphic Id for the LHS
+       -- e.g.         f = \(x::forall a. a->a) -> <body>
+       --      We want to infer a higher-rank type for f
+    setSrcSpan b_loc   $
+    do { ((co_fn, matches'), rhs_ty) <- tcInfer (tcMatchesFun name matches)
+
+               -- Check for an unboxed tuple type
+               --      f = (# True, False #)
+               -- Zonk first just in case it's hidden inside a meta type variable
+               -- (This shows up as a (more obscure) kind error 
+               --  in the 'otherwise' case of tcMonoBinds.)
+       ; zonked_rhs_ty <- zonkTcType rhs_ty
+       ; checkTc (not (isUnboxedTupleType zonked_rhs_ty))
+                 (unboxedTupleErr name zonked_rhs_ty)
+
+       ; mono_name <- newLocalName name
+       ; let mono_id = mkLocalId mono_name zonked_rhs_ty
+       ; return (unitBag (L b_loc (FunBind { fun_id = L nm_loc mono_id, fun_infix = inf,
+                                             fun_matches = matches', bind_fvs = fvs,
+                                             fun_co_fn = co_fn })),
+                 [(name, Nothing, mono_id)]) }
+
+tcMonoBinds [L b_loc (FunBind { fun_id = L nm_loc name, fun_infix = inf, 
+                               fun_matches = matches, bind_fvs = fvs })]
+           sig_fn              -- Single function binding
+           non_rec     
+  | Just sig <- sig_fn name    -- ...with a type signature
+  =    -- When we have a single function binding, with a type signature
+       -- we can (a) use genuine, rigid skolem constants for the type variables
+       --        (b) bring (rigid) scoped type variables into scope
+    setSrcSpan b_loc   $
+    do { tc_sig <- tcInstSig True sig
+       ; mono_name <- newLocalName name
+       ; let mono_ty = sig_tau tc_sig
+             mono_id = mkLocalId mono_name mono_ty
+             rhs_tvs = [ (name, mkTyVarTy tv)
+                       | (name, tv) <- sig_scoped tc_sig `zip` sig_tvs tc_sig ]
+
+       ; (co_fn, matches') <- tcExtendTyVarEnv2 rhs_tvs    $
+                              tcMatchesFun mono_name matches mono_ty
+
+       ; let fun_bind' = FunBind { fun_id = L nm_loc mono_id, 
+                                   fun_infix = inf, fun_matches = matches',
+                                   bind_fvs = placeHolderNames, fun_co_fn = co_fn }
+       ; return (unitBag (L b_loc fun_bind'),
+                 [(name, Just tc_sig, mono_id)]) }
+
+tcMonoBinds binds sig_fn non_rec
+  = do { tc_binds <- mapM (wrapLocM (tcLhs sig_fn)) binds
+
+       -- Bring the monomorphic Ids, into scope for the RHSs
+       ; let mono_info  = getMonoBindInfo tc_binds
+             rhs_id_env = [(name,mono_id) | (name, Nothing, mono_id) <- mono_info]
+                               -- A monomorphic binding for each term variable that lacks 
+                               -- a type sig.  (Ones with a sig are already in scope.)
+
+       ; binds' <- tcExtendIdEnv2    rhs_id_env $
+                   traceTc (text "tcMonoBinds" <+> vcat [ ppr n <+> ppr id <+> ppr (idType id) 
+                                                        | (n,id) <- rhs_id_env]) `thenM_`
+                   mapM (wrapLocM tcRhs) tc_binds
+       ; return (listToBag binds', mono_info) }
+
+------------------------
+-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
+-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
+--     if there's a signature for it, use the instantiated signature type
+--     otherwise invent a type variable
+-- You see that quite directly in the FunBind case.
+-- 
+-- But there's a complication for pattern bindings:
+--     data T = MkT (forall a. a->a)
+--     MkT f = e
+-- Here we can guess a type variable for the entire LHS (which will be refined to T)
+-- but we want to get (f::forall a. a->a) as the RHS environment.
+-- The simplest way to do this is to typecheck the pattern, and then look up the
+-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
+-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't
+
+data TcMonoBind                -- Half completed; LHS done, RHS not done
+  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
+  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType
+
+type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
+       -- Type signature (if any), and
+       -- the monomorphic bound things
+
+bndrNames :: [MonoBindInfo] -> [Name]
+bndrNames mbi = [n | (n,_,_) <- mbi]
+
+getMonoType :: MonoBindInfo -> TcTauType
+getMonoType (_,_,mono_id) = idType mono_id
+
+tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
+tcLhs sig_fn (FunBind { fun_id = L nm_loc name, fun_infix = inf, fun_matches = matches })
+  = do { mb_sig <- tcInstSig_maybe (sig_fn name)
+       ; mono_name <- newLocalName name
+       ; mono_ty   <- mk_mono_ty mb_sig
+       ; let mono_id = mkLocalId mono_name mono_ty
+       ; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
+  where
+    mk_mono_ty (Just sig) = return (sig_tau sig)
+    mk_mono_ty Nothing    = newFlexiTyVarTy argTypeKind
 
 
-If we don't take care, after typechecking we get
+tcLhs sig_fn bind@(PatBind { pat_lhs = pat, pat_rhs = grhss })
+  = do { mb_sigs <- mapM (tcInstSig_maybe . sig_fn) names
 
 
-       f = /\a -> \d::Eq a -> let f' = f a d
-                              in
-                              \ys:[a] -> ...f'...
+       ; let nm_sig_prs  = names `zip` mb_sigs
+             tau_sig_env = mkNameEnv [ (name, sig_tau sig) | (name, Just sig) <- nm_sig_prs]
+             sig_tau_fn  = lookupNameEnv tau_sig_env
 
 
-Notice the the stupid construction of (f a d), which is of course
-identical to the function we're executing.  In this case, the
-polymorphic recursion isn't being used (but that's a very common case).
-We'd prefer
+             tc_pat exp_ty = tcPat (LetPat sig_tau_fn) pat exp_ty unitTy $ \ _ ->
+                             mapM lookup_info nm_sig_prs
+               -- The unitTy is a bit bogus; it's the "result type" for lookup_info.  
 
 
-       f = /\a -> \d::Eq a -> letrec
-                                fm = \ys:[a] -> ...fm...
-                              in
-                              fm
+               -- After typechecking the pattern, look up the binder
+               -- names, which the pattern has brought into scope.
+             lookup_info :: (Name, Maybe TcSigInfo) -> TcM MonoBindInfo
+             lookup_info (name, mb_sig) = do { mono_id <- tcLookupId name
+                                             ; return (name, mb_sig, mono_id) }
 
 
-This can lead to a massive space leak, from the following top-level defn
-(post-typechecking)
+       ; ((pat', infos), pat_ty) <- addErrCtxt (patMonoBindsCtxt pat grhss) $
+                                    tcInfer tc_pat
 
 
-       ff :: [Int] -> [Int]
-       ff = f Int dEqInt
+       ; return (TcPatBind infos pat' grhss pat_ty) }
+  where
+    names = collectPatBinders pat
 
 
-Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
-f' is another thunk which evaluates to the same thing... and you end
-up with a chain of identical values all hung onto by the CAF ff.
 
 
-       ff = f Int dEqInt
+tcLhs sig_fn other_bind = pprPanic "tcLhs" (ppr other_bind)
+       -- AbsBind, VarBind impossible
 
 
-          = let f' = f Int dEqInt in \ys. ...f'...
+-------------------
+tcRhs :: TcMonoBind -> TcM (HsBind TcId)
+tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
+  = do { (co_fn, matches') <- tcMatchesFun (idName mono_id) matches 
+                                           (idType mono_id)
+       ; return (FunBind { fun_id = fun', fun_infix = inf, fun_matches = matches',
+                           bind_fvs = placeHolderNames, fun_co_fn = co_fn }) }
 
 
-          = let f' = let f' = f Int dEqInt in \ys. ...f'...
-                     in \ys. ...f'...
+tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
+  = do { grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
+                   tcGRHSsPat grhss pat_ty
+       ; return (PatBind { pat_lhs = pat', pat_rhs = grhss', pat_rhs_ty = pat_ty, 
+                           bind_fvs = placeHolderNames }) }
 
 
-Etc.
-Solution: when typechecking the RHSs we always have in hand the
-*monomorphic* Ids for each binding.  So we just need to make sure that
-if (Method f a d) shows up in the constraints emerging from (...f...)
-we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
-to the "givens" when simplifying constraints.  That's what the "lies_avail"
-is doing.
+
+---------------------
+getMonoBindInfo :: [Located TcMonoBind] -> [MonoBindInfo]
+getMonoBindInfo tc_binds
+  = foldr (get_info . unLoc) [] tc_binds
+  where
+    get_info (TcFunBind info _ _ _)  rest = info : rest
+    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
+\end{code}
 
 
 %************************************************************************
 %*                                                                     *
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{getTyVarsToGen}
+               Generalisation
 %*                                                                     *
 %************************************************************************
 
 %*                                                                     *
 %************************************************************************
 
+\begin{code}
+generalise :: TopLevelFlag -> Bool 
+          -> [MonoBindInfo] -> [Inst]
+          -> TcM ([TcTyVar], TcDictBinds, [TcId])
+generalise top_lvl is_unrestricted mono_infos lie_req
+  | not is_unrestricted        -- RESTRICTED CASE
+  =    -- Check signature contexts are empty 
+    do { checkTc (all is_mono_sig sigs)
+                 (restrictedBindCtxtErr bndrs)
+
+       -- Now simplify with exactly that set of tyvars
+       -- We have to squash those Methods
+       ; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndrs 
+                                               tau_tvs lie_req
+
+       -- Check that signature type variables are OK
+       ; final_qtvs <- checkSigsTyVars qtvs sigs
+
+       ; return (final_qtvs, binds, []) }
+
+  | null sigs  -- UNRESTRICTED CASE, NO TYPE SIGS
+  = tcSimplifyInfer doc tau_tvs lie_req
+
+  | otherwise  -- UNRESTRICTED CASE, WITH TYPE SIGS
+  = do { sig_lie <- unifyCtxts sigs    -- sigs is non-empty
+       ; let   -- The "sig_avails" is the stuff available.  We get that from
+               -- the context of the type signature, BUT ALSO the lie_avail
+               -- so that polymorphic recursion works right (see Note [Polymorphic recursion])
+               local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
+               sig_avails = sig_lie ++ local_meths
+
+       -- Check that the needed dicts can be
+       -- expressed in terms of the signature ones
+       ; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
+       
+       -- Check that signature type variables are OK
+       ; final_qtvs <- checkSigsTyVars forall_tvs sigs
+
+       ; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
+  where
+    bndrs   = bndrNames mono_infos
+    sigs    = [sig | (_, Just sig, _) <- mono_infos]
+    tau_tvs = foldr (unionVarSet . exactTyVarsOfType . getMonoType) emptyVarSet mono_infos
+               -- NB: exactTyVarsOfType; see Note [Silly type synonym] 
+               --     near defn of TcType.exactTyVarsOfType
+    is_mono_sig sig = null (sig_theta sig)
+    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndrs
+
+    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
+                           sig_theta = theta, sig_loc = loc }) mono_id
+      = Method mono_id poly_id (mkTyVarTys tvs) theta loc
+\end{code}
+
+unifyCtxts checks that all the signature contexts are the same
+The type signatures on a mutually-recursive group of definitions
+must all have the same context (or none).
+
+The trick here is that all the signatures should have the same
+context, and we want to share type variables for that context, so that
+all the right hand sides agree a common vocabulary for their type
+constraints
+
+We unify them because, with polymorphic recursion, their types
+might not otherwise be related.  This is a rather subtle issue.
+
+\begin{code}
+unifyCtxts :: [TcSigInfo] -> TcM [Inst]
+unifyCtxts (sig1 : sigs)       -- Argument is always non-empty
+  = do { mapM unify_ctxt sigs
+       ; newDictsAtLoc (sig_loc sig1) (sig_theta sig1) }
+  where
+    theta1 = sig_theta sig1
+    unify_ctxt :: TcSigInfo -> TcM ()
+    unify_ctxt sig@(TcSigInfo { sig_theta = theta })
+       = setSrcSpan (instLocSrcSpan (sig_loc sig))     $
+         addErrCtxt (sigContextsCtxt sig1 sig)         $
+         unifyTheta theta1 theta
+
+checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
+checkSigsTyVars qtvs sigs 
+  = do { gbl_tvs <- tcGetGlobalTyVars
+       ; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs
+
+       ; let   -- Sigh.  Make sure that all the tyvars in the type sigs
+               -- appear in the returned ty var list, which is what we are
+               -- going to generalise over.  Reason: we occasionally get
+               -- silly types like
+               --      type T a = () -> ()
+               --      f :: T a
+               --      f () = ()
+               -- Here, 'a' won't appear in qtvs, so we have to add it
+               sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
+               all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
+       ; returnM all_tvs }
+  where
+    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
+                                 sig_theta = theta, sig_tau = tau})
+      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))       $
+       addErrCtxtM (sigCtxt id tvs theta tau)                                          $
+       do { tvs' <- checkDistinctTyVars tvs
+          ; ifM (any (`elemVarSet` gbl_tvs) tvs')
+                (bleatEscapedTvs gbl_tvs tvs tvs') 
+          ; return tvs' }
+
+checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
+-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
+-- are still all type variables, and all distinct from each other.  
+-- It returns a zonked set of type variables.
+-- For example, if the type sig is
+--     f :: forall a b. a -> b -> b
+-- we want to check that 'a' and 'b' haven't 
+--     (a) been unified with a non-tyvar type
+--     (b) been unified with each other (all distinct)
+
+checkDistinctTyVars sig_tvs
+  = do { zonked_tvs <- mapM zonkSigTyVar sig_tvs
+       ; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
+       ; return zonked_tvs }
+  where
+    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
+       -- The TyVarEnv maps each zonked type variable back to its
+       -- corresponding user-written signature type variable
+    check_dup acc (sig_tv, zonked_tv)
+       = case lookupVarEnv acc zonked_tv of
+               Just sig_tv' -> bomb_out sig_tv sig_tv'
+
+               Nothing -> return (extendVarEnv acc zonked_tv sig_tv)
+
+    bomb_out sig_tv1 sig_tv2
+       = do { env0 <- tcInitTidyEnv
+           ; let (env1, tidy_tv1) = tidyOpenTyVar env0 sig_tv1
+                 (env2, tidy_tv2) = tidyOpenTyVar env1 sig_tv2
+                 msg = ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
+                        <+> ptext SLIT("is unified with another quantified type variable") 
+                        <+> quotes (ppr tidy_tv2)
+           ; failWithTcM (env2, msg) }
+       where
+\end{code}    
+
+
 @getTyVarsToGen@ decides what type variables to generalise over.
 
 For a "restricted group" -- see the monomorphism restriction
 @getTyVarsToGen@ decides what type variables to generalise over.
 
 For a "restricted group" -- see the monomorphism restriction
@@ -524,6 +859,8 @@ generalise.  We must be careful about doing this:
        Another, more common, example is when there's a Method inst in
        the LIE, whose type might very well involve non-overloaded
        type variables.
        Another, more common, example is when there's a Method inst in
        the LIE, whose type might very well involve non-overloaded
        type variables.
+  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
+       the simple thing instead]
 
  (b) On the other hand, we mustn't generalise tyvars which are constrained,
        because we are going to pass on out the unmodified LIE, with those
 
  (b) On the other hand, we mustn't generalise tyvars which are constrained,
        because we are going to pass on out the unmodified LIE, with those
@@ -533,351 +870,210 @@ So we are careful, and do a complete simplification just to find the
 constrained tyvars. We don't use any of the results, except to
 find which tyvars are constrained.
 
 constrained tyvars. We don't use any of the results, except to
 find which tyvars are constrained.
 
-\begin{code}
-getTyVarsToGen is_unrestricted mono_id_tys lie
-  = tcGetGlobalTyVars                  `thenNF_Tc` \ free_tyvars ->
-    zonkTcTypes mono_id_tys            `thenNF_Tc` \ zonked_mono_id_tys ->
-    let
-       body_tyvars = tyVarsOfTypes zonked_mono_id_tys `minusVarSet` free_tyvars
-    in
-    if is_unrestricted
-    then
-       let fds = getAllFunDepsOfLIE lie in
-       zonkFunDeps fds         `thenNF_Tc` \ fds' ->
-       let tvFundep = tyVarFunDep fds'
-           extended_tyvars = oclose tvFundep body_tyvars in
-       -- pprTrace "gTVTG" (ppr (lie, body_tyvars, extended_tyvars)) $
-       returnNF_Tc (emptyVarSet, extended_tyvars)
-    else
-       -- This recover and discard-errs is to avoid duplicate error
-       -- messages; this, after all, is an "extra" call to tcSimplify
-       recoverNF_Tc (returnNF_Tc (emptyVarSet, body_tyvars))           $
-       discardErrsTc                                                   $
-
-       tcSimplify (text "getTVG") body_tyvars lie    `thenTc` \ (_, _, constrained_dicts) ->
-       let
-         -- ASSERT: dicts_sig is already zonked!
-           constrained_tyvars    = foldrBag (unionVarSet . tyVarsOfInst) emptyVarSet constrained_dicts
-           reduced_tyvars_to_gen = body_tyvars `minusVarSet` constrained_tyvars
-        in
-        returnTc (constrained_tyvars, reduced_tyvars_to_gen)
-\end{code}
+Note [Polymorphic recursion]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The game plan for polymorphic recursion in the code above is 
 
 
+       * Bind any variable for which we have a type signature
+         to an Id with a polymorphic type.  Then when type-checking 
+         the RHSs we'll make a full polymorphic call.
 
 
-\begin{code}
-isUnRestrictedGroup :: [Name]          -- Signatures given for these
-                   -> RenamedMonoBinds
-                   -> Bool
-
-is_elem v vs = isIn "isUnResMono" v vs
-
-isUnRestrictedGroup sigs (PatMonoBind (VarPatIn v) _ _) = v `is_elem` sigs
-isUnRestrictedGroup sigs (PatMonoBind other        _ _) = False
-isUnRestrictedGroup sigs (VarMonoBind v _)             = v `is_elem` sigs
-isUnRestrictedGroup sigs (FunMonoBind _ _ _ _)         = True
-isUnRestrictedGroup sigs (AndMonoBinds mb1 mb2)                = isUnRestrictedGroup sigs mb1 &&
-                                                         isUnRestrictedGroup sigs mb2
-isUnRestrictedGroup sigs EmptyMonoBinds                        = True
-\end{code}
+This fine, but if you aren't a bit careful you end up with a horrendous
+amount of partial application and (worse) a huge space leak. For example:
 
 
+       f :: Eq a => [a] -> [a]
+       f xs = ...f...
 
 
-%************************************************************************
-%*                                                                     *
-\subsection{tcMonoBind}
-%*                                                                     *
-%************************************************************************
+If we don't take care, after typechecking we get
 
 
-@tcMonoBinds@ deals with a single @MonoBind@.  
-The signatures have been dealt with already.
+       f = /\a -> \d::Eq a -> let f' = f a d
+                              in
+                              \ys:[a] -> ...f'...
 
 
-\begin{code}
-tcMonoBinds :: RenamedMonoBinds 
-           -> [TcSigInfo]
-           -> RecFlag
-           -> TcM s (TcMonoBinds, 
-                     LIE,              -- LIE required
-                     [Name],           -- Bound names
-                     [TcId])   -- Corresponding monomorphic bound things
-
-tcMonoBinds mbinds tc_ty_sigs is_rec
-  = tc_mb_pats mbinds          `thenTc` \ (complete_it, lie_req_pat, tvs, ids, lie_avail) ->
-    let
-       tv_list           = bagToList tvs
-       id_list           = bagToList ids
-       (names, mono_ids) = unzip id_list
-
-               -- This last defn is the key one:
-               -- extend the val envt with bindings for the 
-               -- things bound in this group, overriding the monomorphic
-               -- ids with the polymorphic ones from the pattern
-       extra_val_env = case is_rec of
-                         Recursive    -> map mk_bind id_list
-                         NonRecursive -> []
-    in
-       -- Don't know how to deal with pattern-bound existentials yet
-    checkTc (isEmptyBag tvs && isEmptyBag lie_avail) 
-           (existentialExplode mbinds)                 `thenTc_` 
-
-       -- *Before* checking the RHSs, but *after* checking *all* the patterns,
-       -- extend the envt with bindings for all the bound ids;
-       --   and *then* override with the polymorphic Ids from the signatures
-       -- That is the whole point of the "complete_it" stuff.
-       --
-       -- There's a further wrinkle: we have to delay extending the environment
-       -- until after we've dealt with any pattern-bound signature type variables
-       -- Consider  f (x::a) = ...f...
-       -- We're going to check that a isn't unified with anything in the envt, 
-       -- so f itself had better not be!  So we pass the envt binding f into
-       -- complete_it, which extends the actual envt in TcMatches.tcMatch, after
-       -- dealing with the signature tyvars
+Notice the the stupid construction of (f a d), which is of course
+identical to the function we're executing.  In this case, the
+polymorphic recursion isn't being used (but that's a very common case).
+This can lead to a massive space leak, from the following top-level defn
+(post-typechecking)
 
 
-    complete_it extra_val_env                          `thenTc` \ (mbinds', lie_req_rhss) ->
+       ff :: [Int] -> [Int]
+       ff = f Int dEqInt
 
 
-    returnTc (mbinds', lie_req_pat `plusLIE` lie_req_rhss, names, mono_ids)
-  where
+Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
+f' is another thunk which evaluates to the same thing... and you end
+up with a chain of identical values all hung onto by the CAF ff.
 
 
-       -- This function is used when dealing with a LHS binder; we make a monomorphic
-       -- version of the Id.  We check for type signatures
-    tc_pat_bndr name pat_ty
-       = case maybeSig tc_ty_sigs name of
-           Nothing
-               -> newLocalId (getOccName name) pat_ty (getSrcLoc name)
-
-           Just (TySigInfo _ _ _ _ _ mono_id _ _)
-               -> tcAddSrcLoc (getSrcLoc name)                         $
-                  unifyTauTy (idType mono_id) pat_ty   `thenTc_`
-                  returnTc mono_id
-
-    mk_bind (name, mono_id) = case maybeSig tc_ty_sigs name of
-                               Nothing                                   -> (name, mono_id)
-                               Just (TySigInfo name poly_id _ _ _ _ _ _) -> (name, poly_id)
-
-    tc_mb_pats EmptyMonoBinds
-      = returnTc (\ xve -> returnTc (EmptyMonoBinds, emptyLIE), emptyLIE, emptyBag, emptyBag, emptyLIE)
-
-    tc_mb_pats (AndMonoBinds mb1 mb2)
-      = tc_mb_pats mb1         `thenTc` \ (complete_it1, lie_req1, tvs1, ids1, lie_avail1) ->
-        tc_mb_pats mb2         `thenTc` \ (complete_it2, lie_req2, tvs2, ids2, lie_avail2) ->
-       let
-          complete_it xve = complete_it1 xve   `thenTc` \ (mb1', lie1) ->
-                            complete_it2 xve   `thenTc` \ (mb2', lie2) ->
-                            returnTc (AndMonoBinds mb1' mb2', lie1 `plusLIE` lie2)
-       in
-       returnTc (complete_it,
-                 lie_req1 `plusLIE` lie_req2,
-                 tvs1 `unionBags` tvs2,
-                 ids1 `unionBags` ids2,
-                 lie_avail1 `plusLIE` lie_avail2)
-
-    tc_mb_pats (FunMonoBind name inf matches locn)
-      = newTyVarTy boxedTypeKind       `thenNF_Tc` \ bndr_ty ->
-       tc_pat_bndr name bndr_ty        `thenTc` \ bndr_id ->
-       let
-          complete_it xve = tcAddSrcLoc locn                           $
-                            tcMatchesFun xve name bndr_ty  matches     `thenTc` \ (matches', lie) ->
-                            returnTc (FunMonoBind bndr_id inf matches' locn, lie)
-       in
-       returnTc (complete_it, emptyLIE, emptyBag, unitBag (name, bndr_id), emptyLIE)
-
-    tc_mb_pats bind@(PatMonoBind pat grhss locn)
-      = tcAddSrcLoc locn               $
-
-               -- Figure out the appropriate kind for the pattern,
-               -- and generate a suitable type variable 
-       (case is_rec of
-            Recursive    -> newTyVarTy boxedTypeKind   -- Recursive, so no unboxed types
-            NonRecursive -> newTyVarTy_OpenKind        -- Non-recursive, so we permit unboxed types
-       )                                       `thenNF_Tc` \ pat_ty ->
-
-               --      Now typecheck the pattern
-               -- We don't support binding fresh type variables in the
-               -- pattern of a pattern binding.  For example, this is illegal:
-               --      (x::a, y::b) = e
-               -- whereas this is ok
-               --      (x::Int, y::Bool) = e
-               --
-               -- We don't check explicitly for this problem.  Instead, we simply
-               -- type check the pattern with tcPat.  If the pattern mentions any
-               -- fresh tyvars we simply get an out-of-scope type variable error
-       tcPat tc_pat_bndr pat pat_ty            `thenTc` \ (pat', lie_req, tvs, ids, lie_avail) ->
-       let
-          complete_it xve = tcAddSrcLoc locn                           $
-                            tcAddErrCtxt (patMonoBindsCtxt bind)       $
-                            tcExtendLocalValEnv xve                    $
-                            tcGRHSs grhss pat_ty PatBindRhs            `thenTc` \ (grhss', lie) ->
-                            returnTc (PatMonoBind pat' grhss' locn, lie)
-       in
-       returnTc (complete_it, lie_req, tvs, ids, lie_avail)
-\end{code}
+       ff = f Int dEqInt
 
 
-%************************************************************************
-%*                                                                     *
-\subsection{Signatures}
-%*                                                                     *
-%************************************************************************
+          = let f' = f Int dEqInt in \ys. ...f'...
 
 
-@checkSigMatch@ does the next step in checking signature matching.
-The tau-type part has already been unified.  What we do here is to
-check that this unification has not over-constrained the (polymorphic)
-type variables of the original signature type.
+          = let f' = let f' = f Int dEqInt in \ys. ...f'...
+                     in \ys. ...f'...
 
 
-The error message here is somewhat unsatisfactory, but it'll do for
-now (ToDo).
+Etc.
 
 
-\begin{code}
-checkSigMatch top_lvl binder_names mono_ids sigs
-  | main_bound_here
-  =    -- First unify the main_id with IO t, for any old t
-    tcSetErrCtxt mainTyCheckCtxt (
-       tcLookupTyCon ioTyCon_NAME              `thenTc`    \ ioTyCon ->
-       newTyVarTy boxedTypeKind                `thenNF_Tc` \ t_tv ->
-       unifyTauTy ((mkTyConApp ioTyCon [t_tv]))
-                  (idType main_mono_id)
-    )                                          `thenTc_`
-
-       -- Now check the signatures
-       -- Must do this after the unification with IO t, 
-       -- in case of a silly signature like
-       --      main :: forall a. a
-       -- The unification to IO t will bind the type variable 'a',
-       -- which is just waht check_one_sig looks for
-    mapTc check_one_sig sigs                   `thenTc_`
-    mapTc check_main_ctxt sigs                 `thenTc_` 
-
-           returnTc (Just ([], emptyLIE))
-
-  | not (null sigs)
-  = mapTc check_one_sig sigs                   `thenTc_`
-    mapTc check_one_ctxt all_sigs_but_first    `thenTc_`
-    returnTc (Just (theta1, sig_lie))
+NOTE: a bit of arity anaysis would push the (f a d) inside the (\ys...),
+which would make the space leak go away in this case
 
 
-  | otherwise
-  = returnTc Nothing           -- No constraints from type sigs
+Solution: when typechecking the RHSs we always have in hand the
+*monomorphic* Ids for each binding.  So we just need to make sure that
+if (Method f a d) shows up in the constraints emerging from (...f...)
+we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
+to the "givens" when simplifying constraints.  That's what the "lies_avail"
+is doing.
+
+Then we get
+
+       f = /\a -> \d::Eq a -> letrec
+                                fm = \ys:[a] -> ...fm...
+                              in
+                              fm
 
 
-  where
-    (TySigInfo _ id1 _ theta1 _ _ _ _ : all_sigs_but_first) = sigs
-
-    sig1_dict_tys      = mk_dict_tys theta1
-    n_sig1_dict_tys    = length sig1_dict_tys
-    sig_lie            = mkLIE [inst | TySigInfo _ _ _ _ _ _ inst _ <- sigs]
-
-    maybe_main        = find_main top_lvl binder_names mono_ids
-    main_bound_here   = maybeToBool maybe_main
-    Just main_mono_id = maybe_main
-                     
-       -- CHECK THAT THE SIGNATURE TYVARS AND TAU_TYPES ARE OK
-       -- Doesn't affect substitution
-    check_one_sig (TySigInfo _ id sig_tyvars sig_theta sig_tau _ _ src_loc)
-      = tcAddSrcLoc src_loc                                    $
-       tcAddErrCtxtM (sigCtxt (sig_msg id) sig_tyvars sig_theta sig_tau)       $
-       checkSigTyVars sig_tyvars (idFreeTyVars id)
-
-
-       -- CHECK THAT ALL THE SIGNATURE CONTEXTS ARE UNIFIABLE
-       -- The type signatures on a mutually-recursive group of definitions
-       -- must all have the same context (or none).
-       --
-       -- We unify them because, with polymorphic recursion, their types
-       -- might not otherwise be related.  This is a rather subtle issue.
-       -- ToDo: amplify
-    check_one_ctxt sig@(TySigInfo _ id _ theta _ _ _ src_loc)
-       = tcAddSrcLoc src_loc   $
-        tcAddErrCtxt (sigContextsCtxt id1 id) $
-        checkTc (length this_sig_dict_tys == n_sig1_dict_tys)
-                               sigContextsErr          `thenTc_`
-        unifyTauTyLists sig1_dict_tys this_sig_dict_tys
-      where
-        this_sig_dict_tys = mk_dict_tys theta
-
-       -- CHECK THAT FOR A GROUP INVOLVING Main.main, all 
-       -- the signature contexts are empty (what a bore)
-    check_main_ctxt sig@(TySigInfo _ id _ theta _ _ _ src_loc)
-       = tcAddSrcLoc src_loc   $
-         checkTc (null theta) (mainContextsErr id)
-
-    mk_dict_tys theta = map mkPredTy theta
-
-    sig_msg id = ptext SLIT("When checking the type signature for") <+> ppr id
-
-       -- Search for Main.main in the binder_names, return corresponding mono_id
-    find_main NotTopLevel binder_names mono_ids = Nothing
-    find_main TopLevel    binder_names mono_ids = go binder_names mono_ids
-    go [] [] = Nothing
-    go (n:ns) (m:ms) | n == main_NAME = Just m
-                    | otherwise      = go ns ms
-\end{code}
 
 
 %************************************************************************
 %*                                                                     *
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{SPECIALIZE pragmas}
+               Signatures
 %*                                                                     *
 %************************************************************************
 
 %*                                                                     *
 %************************************************************************
 
-@tcSpecSigs@ munches up the specialisation "signatures" that arise through *user*
-pragmas.  It is convenient for them to appear in the @[RenamedSig]@
-part of a binding because then the same machinery can be used for
-moving them into place as is done for type signatures.
-
-They look like this:
-
-\begin{verbatim}
-       f :: Ord a => [a] -> b -> b
-       {-# SPECIALIZE f :: [Int] -> b -> b #-}
-\end{verbatim}
-
-For this we generate:
-\begin{verbatim}
-       f* = /\ b -> let d1 = ...
-                    in f Int b d1
-\end{verbatim}
-
-where f* is a SpecPragmaId.  The **sole** purpose of SpecPragmaIds is to
-retain a right-hand-side that the simplifier will otherwise discard as
-dead code... the simplifier has a flag that tells it not to discard
-SpecPragmaId bindings.
-
-In this case the f* retains a call-instance of the overloaded
-function, f, (including appropriate dictionaries) so that the
-specialiser will subsequently discover that there's a call of @f@ at
-Int, and will create a specialisation for @f@.  After that, the
-binding for @f*@ can be discarded.
-
-We used to have a form
-       {-# SPECIALISE f :: <type> = g #-}
-which promised that g implemented f at <type>, but we do that with 
-a RULE now:
-       {-# SPECIALISE (f::<type) = g #-}
+Type signatures are tricky.  See Note [Signature skolems] in TcType
+
+@tcSigs@ checks the signatures for validity, and returns a list of
+{\em freshly-instantiated} signatures.  That is, the types are already
+split up, and have fresh type variables installed.  All non-type-signature
+"RenamedSigs" are ignored.
+
+The @TcSigInfo@ contains @TcTypes@ because they are unified with
+the variable's type, and after that checked to see whether they've
+been instantiated.
 
 \begin{code}
 
 \begin{code}
-tcSpecSigs :: [RenamedSig] -> TcM s (TcMonoBinds, LIE)
-tcSpecSigs (SpecSig name poly_ty src_loc : sigs)
-  =    -- SPECIALISE f :: forall b. theta => tau  =  g
-    tcAddSrcLoc src_loc                                $
-    tcAddErrCtxt (valSpecSigCtxt name poly_ty) $
-
-       -- Get and instantiate its alleged specialised type
-    tcHsSigType poly_ty                                `thenTc` \ sig_ty ->
-
-       -- Check that f has a more general type, and build a RHS for
-       -- the spec-pragma-id at the same time
-    tcExpr (HsVar name) sig_ty                 `thenTc` \ (spec_expr, spec_lie) ->
-
-       -- Squeeze out any Methods (see comments with tcSimplifyToDicts)
-    tcSimplifyToDicts spec_lie                 `thenTc` \ (spec_lie1, spec_binds) ->
-
-       -- Just specialise "f" by building a SpecPragmaId binding
-       -- It is the thing that makes sure we don't prematurely 
-       -- dead-code-eliminate the binding we are really interested in.
-    newSpecPragmaId name sig_ty                `thenNF_Tc` \ spec_id ->
-
-       -- Do the rest and combine
-    tcSpecSigs sigs                    `thenTc` \ (binds_rest, lie_rest) ->
-    returnTc (binds_rest `andMonoBinds` VarMonoBind spec_id (mkHsLet spec_binds spec_expr),
-             lie_rest   `plusLIE`      spec_lie1)
-
-tcSpecSigs (other_sig : sigs) = tcSpecSigs sigs
-tcSpecSigs []                = returnTc (EmptyMonoBinds, emptyLIE)
+type TcSigFun = Name -> Maybe (LSig Name)
+
+mkSigFun :: [LSig Name] -> TcSigFun
+-- Search for a particular type signature
+-- Precondition: the sigs are all type sigs
+-- Precondition: no duplicates
+mkSigFun sigs = lookupNameEnv env
+  where
+    env = mkNameEnv [(expectJust "mkSigFun" (sigName sig), sig) | sig <- sigs]
+
+---------------
+data TcSigInfo
+  = TcSigInfo {
+       sig_id     :: TcId,             --  *Polymorphic* binder for this value...
+
+       sig_scoped :: [Name],           -- Names for any scoped type variables
+                                       -- Invariant: correspond 1-1 with an initial
+                                       -- segment of sig_tvs (see Note [Scoped])
+
+       sig_tvs    :: [TcTyVar],        -- Instantiated type variables
+                                       -- See Note [Instantiate sig]
+
+       sig_theta  :: TcThetaType,      -- Instantiated theta
+       sig_tau    :: TcTauType,        -- Instantiated tau
+       sig_loc    :: InstLoc           -- The location of the signature
+    }
+
+--     Note [Scoped]
+-- There may be more instantiated type variables than scoped 
+-- ones.  For example:
+--     type T a = forall b. b -> (a,b)
+--     f :: forall c. T c
+-- Here, the signature for f will have one scoped type variable, c,
+-- but two instantiated type variables, c' and b'.  
+--
+-- We assume that the scoped ones are at the *front* of sig_tvs,
+-- and remember the names from the original HsForAllTy in sig_scoped
+
+--     Note [Instantiate sig]
+-- It's vital to instantiate a type signature with fresh variable.
+-- For example:
+--     type S = forall a. a->a
+--     f,g :: S
+--     f = ...
+--     g = ...
+-- Here, we must use distinct type variables when checking f,g's right hand sides.
+-- (Instantiation is only necessary because of type synonyms.  Otherwise,
+-- it's all cool; each signature has distinct type variables from the renamer.)
+
+instance Outputable TcSigInfo where
+    ppr (TcSigInfo { sig_id = id, sig_tvs = tyvars, sig_theta = theta, sig_tau = tau})
+       = ppr id <+> ptext SLIT("::") <+> ppr tyvars <+> ppr theta <+> ptext SLIT("=>") <+> ppr tau
+\end{code}
+
+\begin{code}
+tcTySig :: LSig Name -> TcM TcId
+tcTySig (L span (TypeSig (L _ name) ty))
+  = setSrcSpan span            $
+    do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
+       ; return (mkLocalId name sigma_ty) }
+
+-------------------
+tcInstSig_maybe :: Maybe (LSig Name) -> TcM (Maybe TcSigInfo)
+-- Instantiate with *meta* type variables; 
+-- this signature is part of a multi-signature group
+tcInstSig_maybe Nothing    = return Nothing
+tcInstSig_maybe (Just sig) = do { tc_sig <- tcInstSig False sig
+                               ; return (Just tc_sig) }
+
+tcInstSig :: Bool -> LSig Name -> TcM TcSigInfo
+-- Instantiate the signature, with either skolems or meta-type variables
+-- depending on the use_skols boolean
+--
+-- We always instantiate with freshs uniques,
+-- although we keep the same print-name
+--     
+--     type T = forall a. [a] -> [a]
+--     f :: T; 
+--     f = g where { g :: T; g = <rhs> }
+--
+-- We must not use the same 'a' from the defn of T at both places!!
+
+tcInstSig use_skols (L loc (TypeSig (L _ name) hs_ty))
+  = setSrcSpan loc $
+    do { poly_id <- tcLookupId name    -- Cannot fail; the poly ids are put into 
+                                       -- scope when starting the binding group
+       ; let skol_info = SigSkol (FunSigCtxt name)
+             inst_tyvars | use_skols = tcInstSkolTyVars skol_info
+                         | otherwise = tcInstSigTyVars  skol_info
+       ; (tvs, theta, tau) <- tcInstType inst_tyvars (idType poly_id)
+       ; loc <- getInstLoc (SigOrigin skol_info)
+       ; return (TcSigInfo { sig_id = poly_id,
+                             sig_tvs = tvs, sig_theta = theta, sig_tau = tau, 
+                             sig_scoped = scoped_names, sig_loc = loc }) }
+               -- Note that the scoped_names and the sig_tvs will have
+               -- different Names. That's quite ok; when we bring the 
+               -- scoped_names into scope, we just bind them to the sig_tvs
+  where
+       -- The scoped names are the ones explicitly mentioned
+       -- in the HsForAll.  (There may be more in sigma_ty, because
+       -- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
+       -- We also only have scoped type variables when we are instantiating
+       -- with true skolems
+    scoped_names = case (use_skols, hs_ty) of
+                    (True, L _ (HsForAllTy Explicit tvs _ _)) -> hsLTyVarNames tvs
+                    other                                     -> []
+
+-------------------
+isUnRestrictedGroup :: [LHsBind Name] -> TcSigFun -> TcM Bool
+isUnRestrictedGroup binds sig_fn
+  = do { mono_restriction <- doptM Opt_MonomorphismRestriction
+       ; return (not mono_restriction || all_unrestricted) }
+  where 
+    all_unrestricted = all (unrestricted . unLoc) binds
+    has_sig n = isJust (sig_fn n)
+
+    unrestricted (PatBind {})                                           = False
+    unrestricted (VarBind { var_id = v })                       = has_sig v
+    unrestricted (FunBind { fun_id = v, fun_matches = matches }) = unrestricted_match matches 
+                                                                || has_sig (unLoc v)
+
+    unrestricted_match (MatchGroup (L _ (Match [] _ _) : _) _) = False
+       -- No args => like a pattern binding
+    unrestricted_match other             = True
+       -- Some args => a function binding
 \end{code}
 
 
 \end{code}
 
 
@@ -889,65 +1085,33 @@ tcSpecSigs []                  = returnTc (EmptyMonoBinds, emptyLIE)
 
 
 \begin{code}
 
 
 \begin{code}
-patMonoBindsCtxt bind
-  = hang (ptext SLIT("In a pattern binding:")) 4 (ppr bind)
+-- This one is called on LHS, when pat and grhss are both Name 
+-- and on RHS, when pat is TcId and grhss is still Name
+patMonoBindsCtxt pat grhss
+  = hang (ptext SLIT("In a pattern binding:")) 4 (pprPatBind pat grhss)
 
 -----------------------------------------------
 
 -----------------------------------------------
-valSpecSigCtxt v ty
-  = sep [ptext SLIT("In a SPECIALIZE pragma for a value:"),
-        nest 4 (ppr v <+> dcolon <+> ppr ty)]
-
------------------------------------------------
-notAsPolyAsSigErr sig_tau mono_tyvars
-  = hang (ptext SLIT("A type signature is more polymorphic than the inferred type"))
-       4  (vcat [text "Can't for-all the type variable(s)" <+> 
-                 pprQuotedList mono_tyvars,
-                 text "in the type" <+> quotes (ppr sig_tau)
-          ])
-
------------------------------------------------
-badMatchErr sig_ty inferred_ty
-  = hang (ptext SLIT("Type signature doesn't match inferred type"))
-        4 (vcat [hang (ptext SLIT("Signature:")) 4 (ppr sig_ty),
-                     hang (ptext SLIT("Inferred :")) 4 (ppr inferred_ty)
-          ])
+sigContextsCtxt sig1 sig2
+  = vcat [ptext SLIT("When matching the contexts of the signatures for"), 
+         nest 2 (vcat [ppr id1 <+> dcolon <+> ppr (idType id1),
+                       ppr id2 <+> dcolon <+> ppr (idType id2)]),
+         ptext SLIT("The signature contexts in a mutually recursive group should all be identical")]
+  where
+    id1 = sig_id sig1
+    id2 = sig_id sig2
 
 
------------------------------------------------
-unboxedPatBindErr id
-  = ptext SLIT("variable in a lazy pattern binding has unboxed type: ")
-        <+> quotes (ppr id)
 
 -----------------------------------------------
 
 -----------------------------------------------
-bindSigsCtxt ids
-  = ptext SLIT("When checking the type signature(s) for") <+> pprQuotedList ids
+unboxedTupleErr name ty
+  = hang (ptext SLIT("Illegal binding of unboxed tuple"))
+        4 (ppr name <+> dcolon <+> ppr ty)
 
 -----------------------------------------------
 
 -----------------------------------------------
-sigContextsErr
-  = ptext SLIT("Mismatched contexts")
+restrictedBindCtxtErr binder_names
+  = hang (ptext SLIT("Illegal overloaded type signature(s)"))
+       4 (vcat [ptext SLIT("in a binding group for") <+> pprBinders binder_names,
+               ptext SLIT("that falls under the monomorphism restriction")])
 
 
-sigContextsCtxt s1 s2
-  = hang (hsep [ptext SLIT("When matching the contexts of the signatures for"), 
-               quotes (ppr s1), ptext SLIT("and"), quotes (ppr s2)])
-        4 (ptext SLIT("(the signature contexts in a mutually recursive group should all be identical)"))
-
-mainContextsErr id
-  | getName id == main_NAME = ptext SLIT("Main.main cannot be overloaded")
-  | otherwise
-  = quotes (ppr id) <+> ptext SLIT("cannot be overloaded") <> char ',' <> -- sigh; workaround for cpp's inability to deal
-    ptext SLIT("because it is mutually recursive with Main.main")         -- with commas inside SLIT strings.
-
-mainTyCheckCtxt
-  = hsep [ptext SLIT("When checking that"), quotes (ppr main_NAME), 
-         ptext SLIT("has the required type")]
-
------------------------------------------------
-unliftedBindErr flavour mbind
-  = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed"))
-        4 (ppr mbind)
-
-existentialExplode mbinds
-  = hang (vcat [text "My brain just exploded.",
-               text "I can't handle pattern bindings for existentially-quantified constructors.",
-               text "In the binding group"])
-       4 (ppr mbinds)
+genCtxt binder_names
+  = ptext SLIT("When generalising the type(s) for") <+> pprBinders binder_names
 \end{code}
 \end{code}