[project @ 2004-08-26 15:44:50 by simonpj]
[ghc-hetmet.git] / ghc / compiler / basicTypes / MkId.lhs
index e83e491..dcd057d 100644 (file)
@@ -16,7 +16,7 @@ module MkId (
        mkDictFunId, mkDefaultMethodId,
        mkDictSelId, 
 
-       mkDataConId, mkDataConWrapId,
+       mkDataConIds,
        mkRecordSelId, 
        mkPrimOpId, mkFCallId,
 
@@ -25,30 +25,31 @@ module MkId (
        -- And some particular Ids; see below for why they are wired in
        wiredInIds, ghcPrimIds,
        unsafeCoerceId, realWorldPrimId, voidArgId, nullAddrId, seqId,
+       lazyId, lazyIdUnfolding, lazyIdKey,
 
        mkRuntimeErrorApp,
        rEC_CON_ERROR_ID, iRREFUT_PAT_ERROR_ID, rUNTIME_ERROR_ID,
        nON_EXHAUSTIVE_GUARDS_ERROR_ID, nO_METHOD_BINDING_ERROR_ID,
-       pAT_ERROR_ID
+       pAT_ERROR_ID, eRROR_ID
     ) where
 
 #include "HsVersions.h"
 
 
 import BasicTypes      ( Arity, StrictnessMark(..), isMarkedUnboxed, isMarkedStrict )
-import TysPrim         ( openAlphaTyVars, alphaTyVar, alphaTy, betaTyVar, betaTy,
-                         intPrimTy, realWorldStatePrimTy, addrPrimTy
+import TysPrim         ( openAlphaTyVars, alphaTyVar, alphaTy, 
+                         realWorldStatePrimTy, addrPrimTy
                        )
 import TysWiredIn      ( charTy, mkListTy )
 import PrelRules       ( primOpRules )
 import Rules           ( addRule )
+import Type            ( TyThing(..) )
 import TcType          ( Type, ThetaType, mkDictTy, mkPredTys, mkTyConApp,
                          mkTyVarTys, mkClassPred, tcEqPred,
                          mkFunTys, mkFunTy, mkSigmaTy, tcSplitSigmaTy, 
                          isUnLiftedType, mkForAllTys, mkTyVarTy, tyVarsOfType,
                          tcSplitFunTys, tcSplitForAllTys, mkPredTy
                        )
-import Module          ( Module )
 import CoreUtils       ( exprType )
 import CoreUnfold      ( mkTopUnfolding, mkCompulsoryUnfolding, mkOtherCon )
 import Literal         ( Literal(..), nullAddrLit )
@@ -57,37 +58,35 @@ import TyCon                ( TyCon, isNewTyCon, tyConTyVars, tyConDataCons,
 import Class           ( Class, classTyCon, classTyVars, classSelIds )
 import Var             ( Id, TyVar, Var )
 import VarSet          ( isEmptyVarSet )
-import Name            ( mkWiredInName, mkFCallName, Name )
-import OccName         ( mkVarOcc )
-import PrimOp          ( PrimOp(DataToTagOp), primOpSig, mkPrimOpIdName )
+import Name            ( mkFCallName, mkWiredInName, Name, BuiltInSyntax(..) )
+import OccName         ( mkOccFS, varName )
+import PrimOp          ( PrimOp, primOpSig, primOpOcc, primOpTag )
 import ForeignCall     ( ForeignCall )
-import DataCon         ( DataCon, 
-                         dataConFieldLabels, dataConRepArity, dataConTyCon,
+import DataCon         ( DataCon, DataConIds(..),
+                         dataConFieldLabels, dataConRepArity, 
                          dataConArgTys, dataConRepType, 
-                         dataConOrigArgTys,
-                          dataConName, dataConTheta,
-                         dataConSig, dataConStrictMarks, dataConWorkId,
+                         dataConOrigArgTys, dataConTheta,
+                         dataConSig, dataConStrictMarks, dataConExStricts, 
                          splitProductType
                        )
-import Id              ( idType, mkGlobalId, mkVanillaGlobal, mkSysLocal,
-                         mkTemplateLocals, mkTemplateLocalsNum,
-                         mkTemplateLocal, idNewStrictness, idName
+import Id              ( idType, mkGlobalId, mkVanillaGlobal, mkSysLocal, 
+                         mkTemplateLocals, mkTemplateLocalsNum, mkExportedLocalId,
+                         mkTemplateLocal, idName
                        )
-import IdInfo          ( IdInfo, noCafNoTyGenIdInfo,
-                         setUnfoldingInfo, 
+import IdInfo          ( IdInfo, noCafIdInfo,  setUnfoldingInfo, 
                          setArityInfo, setSpecInfo, setCafInfo,
-                         setAllStrictnessInfo,
+                         setAllStrictnessInfo, vanillaIdInfo,
                          GlobalIdDetails(..), CafInfo(..)
                        )
-import NewDemand       ( mkStrictSig, strictSigResInfo, DmdResult(..),
+import NewDemand       ( mkStrictSig, DmdResult(..),
                          mkTopDmdType, topDmd, evalDmd, lazyDmd, retCPR,
                          Demand(..), Demands(..) )
-import FieldLabel      ( mkFieldLabel, fieldLabelName, 
-                         firstFieldLabelTag, allFieldLabelTags, fieldLabelType
+import FieldLabel      ( fieldLabelName, firstFieldLabelTag, 
+                         allFieldLabelTags, fieldLabelType
                        )
 import DmdAnal         ( dmdAnalTopRhs )
 import CoreSyn
-import Unique          ( mkBuiltinUnique )
+import Unique          ( mkBuiltinUnique, mkPrimOpIdUnique )
 import Maybes
 import PrelNames
 import Maybe            ( isJust )
@@ -97,7 +96,6 @@ import FastString
 import ListSetOps      ( assoc, assocMaybe )
 import UnicodeUtil      ( stringToUtf8 )
 import List            ( nubBy )
-import Char             ( ord )
 \end{code}             
 
 %************************************************************************
@@ -128,7 +126,9 @@ wiredInIds
     nON_EXHAUSTIVE_GUARDS_ERROR_ID,
     nO_METHOD_BINDING_ERROR_ID,
     pAT_ERROR_ID,
-    rEC_CON_ERROR_ID
+    rEC_CON_ERROR_ID,
+
+    lazyId
     ] ++ ghcPrimIds
 
 -- These Ids are exported from GHC.Prim
@@ -138,7 +138,6 @@ ghcPrimIds
     realWorldPrimId,
     unsafeCoerceId,
     nullAddrId,
-    getTagId,
     seqId
     ]
 \end{code}
@@ -149,57 +148,6 @@ ghcPrimIds
 %*                                                                     *
 %************************************************************************
 
-\begin{code}
-mkDataConId :: Name -> DataCon -> Id
-       -- Makes the *worker* for the data constructor; that is, the function
-       -- that takes the reprsentation arguments and builds the constructor.
-mkDataConId work_name data_con
-  = mkGlobalId (DataConId data_con) work_name (dataConRepType data_con) info
-  where
-    info = noCafNoTyGenIdInfo
-          `setArityInfo`               arity
-          `setAllStrictnessInfo`       Just strict_sig
-
-    arity      = dataConRepArity data_con
-
-    strict_sig = mkStrictSig (mkTopDmdType (replicate arity topDmd) cpr_info)
-       -- Notice that we do *not* say the worker is strict
-       -- even if the data constructor is declared strict
-       --      e.g.    data T = MkT !(Int,Int)
-       -- Why?  Because the *wrapper* is strict (and its unfolding has case
-       -- expresssions that do the evals) but the *worker* itself is not.
-       -- If we pretend it is strict then when we see
-       --      case x of y -> $wMkT y
-       -- the simplifier thinks that y is "sure to be evaluated" (because
-       -- $wMkT is strict) and drops the case.  No, $wMkT is not strict.
-       --
-       -- When the simplifer sees a pattern 
-       --      case e of MkT x -> ...
-       -- it uses the dataConRepStrictness of MkT to mark x as evaluated;
-       -- but that's fine... dataConRepStrictness comes from the data con
-       -- not from the worker Id.
-
-    tycon = dataConTyCon data_con
-    cpr_info | isProductTyCon tycon && 
-              isDataTyCon tycon    &&
-              arity > 0            &&
-              arity <= mAX_CPR_SIZE    = retCPR
-            | otherwise                = TopRes
-       -- RetCPR is only true for products that are real data types;
-       -- that is, not unboxed tuples or [non-recursive] newtypes
-
-mAX_CPR_SIZE :: Arity
-mAX_CPR_SIZE = 10
--- We do not treat very big tuples as CPR-ish:
---     a) for a start we get into trouble because there aren't 
---        "enough" unboxed tuple types (a tiresome restriction, 
---        but hard to fix), 
---     b) more importantly, big unboxed tuples get returned mainly
---        on the stack, and are often then allocated in the heap
---        by the caller.  So doing CPR for them may in fact make
---        things worse.
-\end{code}
-
 The wrapper for a constructor is an ordinary top-level binding that evaluates
 any strict args, unboxes any args that are going to be flattened, and calls
 the worker.
@@ -237,73 +185,23 @@ Notice that
   Making an explicit case expression allows the simplifier to eliminate
   it in the (common) case where the constructor arg is already evaluated.
 
+
 \begin{code}
-mkDataConWrapId data_con
-  = mkGlobalId (DataConWrapId data_con) (dataConName data_con) wrap_ty info
-  where
-    work_id = dataConWorkId data_con
-
-    info = noCafNoTyGenIdInfo
-          `setUnfoldingInfo`   wrap_unf
-               -- The NoCaf-ness is set by noCafNoTyGenIdInfo
-          `setArityInfo`       arity
-               -- It's important to specify the arity, so that partial
-               -- applications are treated as values
-          `setAllStrictnessInfo`       Just wrap_sig
-
-    wrap_sig = mkStrictSig (mkTopDmdType arg_dmds res_info)
-    res_info = strictSigResInfo (idNewStrictness work_id)
-    arg_dmds = map mk_dmd strict_marks
-    mk_dmd str | isMarkedStrict str = evalDmd
-              | otherwise          = lazyDmd
-       -- The Cpr info can be important inside INLINE rhss, where the
-       -- wrapper constructor isn't inlined.
-       -- And the argument strictness can be important too; we
-       -- may not inline a contructor when it is partially applied.
-       -- For example:
-       --      data W = C !Int !Int !Int
-       --      ...(let w = C x in ...(w p q)...)...
-       -- we want to see that w is strict in its two arguments
+mkDataConIds :: Name -> Name -> DataCon -> DataConIds
+       -- Makes the *worker* for the data constructor; that is, the function
+       -- that takes the reprsentation arguments and builds the constructor.
+mkDataConIds wrap_name wkr_name data_con
+  | isNewTyCon tycon
+  = NewDC nt_wrap_id
 
-    wrap_unf | isNewTyCon tycon
-            = ASSERT( null ex_tyvars && null ex_dict_args && isSingleton orig_arg_tys )
-               -- No existentials on a newtype, but it can have a context
-               -- e.g.         newtype Eq a => T a = MkT (...)
-               mkTopUnfolding $ Note InlineMe $
-               mkLams tyvars $ Lam id_arg1 $ 
-               mkNewTypeBody tycon result_ty (Var id_arg1)
-
-            | not (any isMarkedStrict strict_marks)
-            = mkCompulsoryUnfolding (Var work_id)
-                       -- The common case.  Not only is this efficient,
-                       -- but it also ensures that the wrapper is replaced
-                       -- by the worker even when there are no args.
-                       --              f (:) x
-                       -- becomes 
-                       --              f $w: x
-                       -- This is really important in rule matching,
-                       -- (We could match on the wrappers,
-                       -- but that makes it less likely that rules will match
-                       -- when we bring bits of unfoldings together.)
-               --
-               -- NB:  because of this special case, (map (:) ys) turns into
-               --      (map $w: ys).  The top-level defn for (:) is never used.
-               --      This is somewhat of a bore, but I'm currently leaving it 
-               --      as is, so that there still is a top level curried (:) for
-               --      the interpreter to call.
-
-            | otherwise
-            = mkTopUnfolding $ Note InlineMe $
-              mkLams all_tyvars $ 
-              mkLams ex_dict_args $ mkLams id_args $
-              foldr mk_case con_app 
-                    (zip (ex_dict_args++id_args) strict_marks) i3 []
-
-    con_app i rep_ids = mkApps (Var work_id)
-                              (map varToCoreExpr (all_tyvars ++ reverse rep_ids))
+  | any isMarkedStrict all_strict_marks                -- Algebraic, needs wrapper
+  = AlgDC (Just alg_wrap_id) wrk_id
 
+  | otherwise                                  -- Algebraic, no wrapper
+  = AlgDC Nothing wrk_id
+  where
     (tyvars, _, ex_tyvars, ex_theta, orig_arg_tys, tycon) = dataConSig data_con
-    all_tyvars   = tyvars ++ ex_tyvars
+    all_tyvars = tyvars ++ ex_tyvars
 
     ex_dict_tys  = mkPredTys ex_theta
     all_arg_tys  = ex_dict_tys ++ orig_arg_tys
@@ -314,16 +212,91 @@ mkDataConWrapId data_con
        -- but now we don't.  Instead the type checker just injects these
        -- extra constraints where necessary.
 
-    mkLocals i tys = (zipWith mkTemplateLocal [i..i+n-1] tys, i+n)
-                  where
-                    n = length tys
+       ----------- Worker (algebraic data types only) --------------
+    wrk_id = mkGlobalId (DataConWorkId data_con) wkr_name
+                       (dataConRepType data_con) wkr_info
+
+    wkr_arity = dataConRepArity data_con
+    wkr_info  = noCafIdInfo
+               `setArityInfo`          wkr_arity
+               `setAllStrictnessInfo`  Just wkr_sig
+
+    wkr_sig = mkStrictSig (mkTopDmdType (replicate wkr_arity topDmd) cpr_info)
+       -- Notice that we do *not* say the worker is strict
+       -- even if the data constructor is declared strict
+       --      e.g.    data T = MkT !(Int,Int)
+       -- Why?  Because the *wrapper* is strict (and its unfolding has case
+       -- expresssions that do the evals) but the *worker* itself is not.
+       -- If we pretend it is strict then when we see
+       --      case x of y -> $wMkT y
+       -- the simplifier thinks that y is "sure to be evaluated" (because
+       -- $wMkT is strict) and drops the case.  No, $wMkT is not strict.
+       --
+       -- When the simplifer sees a pattern 
+       --      case e of MkT x -> ...
+       -- it uses the dataConRepStrictness of MkT to mark x as evaluated;
+       -- but that's fine... dataConRepStrictness comes from the data con
+       -- not from the worker Id.
+
+    cpr_info | isProductTyCon tycon && 
+              isDataTyCon tycon    &&
+              wkr_arity > 0        &&
+              wkr_arity <= mAX_CPR_SIZE        = retCPR
+            | otherwise                        = TopRes
+       -- RetCPR is only true for products that are real data types;
+       -- that is, not unboxed tuples or [non-recursive] newtypes
+
+       ----------- Wrappers for newtypes --------------
+    nt_wrap_id   = mkGlobalId (DataConWrapId data_con) wrap_name wrap_ty nt_wrap_info
+    nt_wrap_info = noCafIdInfo         -- The NoCaf-ness is set by noCafIdInfo
+                 `setArityInfo` 1      -- Arity 1
+                 `setUnfoldingInfo`     newtype_unf
+    newtype_unf  = ASSERT( null ex_tyvars && null ex_theta && 
+                         isSingleton orig_arg_tys )
+                  -- No existentials on a newtype, but it can have a context
+                  -- e.g.      newtype Eq a => T a = MkT (...)
+                  mkTopUnfolding $ Note InlineMe $
+                  mkLams tyvars $ Lam id_arg1 $ 
+                  mkNewTypeBody tycon result_ty (Var id_arg1)
+
+    id_arg1 = mkTemplateLocal 1 (head orig_arg_tys)
+
+       ----------- Wrappers for algebraic data types -------------- 
+    alg_wrap_id = mkGlobalId (DataConWrapId data_con) wrap_name wrap_ty alg_wrap_info
+    alg_wrap_info = noCafIdInfo                -- The NoCaf-ness is set by noCafIdInfo
+                   `setArityInfo`         alg_arity
+                       -- It's important to specify the arity, so that partial
+                       -- applications are treated as values
+                   `setUnfoldingInfo`     alg_unf
+                   `setAllStrictnessInfo` Just wrap_sig
+
+    all_strict_marks = dataConExStricts data_con ++ dataConStrictMarks data_con
+    wrap_sig = mkStrictSig (mkTopDmdType arg_dmds cpr_info)
+    arg_dmds = map mk_dmd all_strict_marks
+    mk_dmd str | isMarkedStrict str = evalDmd
+              | otherwise          = lazyDmd
+       -- The Cpr info can be important inside INLINE rhss, where the
+       -- wrapper constructor isn't inlined.
+       -- And the argument strictness can be important too; we
+       -- may not inline a contructor when it is partially applied.
+       -- For example:
+       --      data W = C !Int !Int !Int
+       --      ...(let w = C x in ...(w p q)...)...
+       -- we want to see that w is strict in its two arguments
+
+    alg_unf = mkTopUnfolding $ Note InlineMe $
+             mkLams all_tyvars $ 
+             mkLams ex_dict_args $ mkLams id_args $
+             foldr mk_case con_app 
+                   (zip (ex_dict_args ++ id_args) all_strict_marks)
+                   i3 []
+
+    con_app i rep_ids = mkApps (Var wrk_id)
+                              (map varToCoreExpr (all_tyvars ++ reverse rep_ids))
 
     (ex_dict_args,i2)  = mkLocals 1  ex_dict_tys
     (id_args,i3)       = mkLocals i2 orig_arg_tys
-    arity             = i3-1
-    (id_arg1:_)   = id_args            -- Used for newtype only
-
-    strict_marks  = dataConStrictMarks data_con
+    alg_arity         = i3-1
 
     mk_case 
           :: (Id, StrictnessMark)      -- Arg, strictness
@@ -346,6 +319,21 @@ mkDataConWrapId data_con
                                        body i' (reverse con_args ++ rep_args))]
                              where 
                                (con_args, i') = mkLocals i tys
+
+mAX_CPR_SIZE :: Arity
+mAX_CPR_SIZE = 10
+-- We do not treat very big tuples as CPR-ish:
+--     a) for a start we get into trouble because there aren't 
+--        "enough" unboxed tuple types (a tiresome restriction, 
+--        but hard to fix), 
+--     b) more importantly, big unboxed tuples get returned mainly
+--        on the stack, and are often then allocated in the heap
+--        by the caller.  So doing CPR for them may in fact make
+--        things worse.
+
+mkLocals i tys = (zipWith mkTemplateLocal [i..i+n-1] tys, i+n)
+              where
+                n = length tys
 \end{code}
 
 
@@ -386,19 +374,16 @@ Then we want
 (not f :: R -> forall a. a->a, which gives the type inference mechanism 
 problems at call sites)
 
-Similarly for newtypes
+Similarly for (recursive) newtypes
 
        newtype N = MkN { unN :: forall a. a->a }
 
-       unN :: forall a. N -> a -> a
-       unN = /\a -> \n:N -> coerce (a->a) n
+       unN :: forall b. N -> b -> b
+       unN = /\b -> \n:N -> (coerce (forall a. a->a) n)
 
 \begin{code}
 mkRecordSelId tycon field_label
        -- Assumes that all fields with the same field label have the same type
-       --
-       -- Annoyingly, we have to pass in the unpackCString# Id, because
-       -- we can't conjure it up out of thin air
   = sel_id
   where
     sel_id     = mkGlobalId (RecordSelId field_label) (fieldLabelName field_label) selector_ty info
@@ -455,7 +440,7 @@ mkRecordSelId tycon field_label
        -- Use the demand analyser to work out strictness.
        -- With all this unpackery it's not easy!
 
-    info = noCafNoTyGenIdInfo
+    info = noCafIdInfo
           `setCafInfo`           caf_info
           `setArityInfo`         arity
           `setUnfoldingInfo`     mkTopUnfolding rhs_w_str
@@ -480,7 +465,7 @@ mkRecordSelId tycon field_label
     default_alt | no_default = []
                | otherwise  = [(DEFAULT, [], error_expr)]
 
-       -- the default branch may have CAF refs, because it calls recSelError etc.
+       -- The default branch may have CAF refs, because it calls recSelError etc.
     caf_info    | no_default = NoCafRefs
                | otherwise  = MayHaveCafRefs
 
@@ -488,10 +473,10 @@ mkRecordSelId tycon field_label
              mkLams dict_ids $ mkLams field_dict_ids $
              Lam data_id     $ sel_body
 
-    sel_body | isNewTyCon tycon = mkNewTypeBody tycon field_tau (mk_result data_id)
+    sel_body | isNewTyCon tycon = mk_result (mkNewTypeBody tycon field_ty (Var data_id))
             | otherwise        = Case (Var data_id) data_id (default_alt ++ the_alts)
 
-    mk_result result_id = mkVarApps (mkVarApps (Var result_id) field_tyvars) field_dict_ids
+    mk_result poly_result = mkVarApps (mkVarApps poly_result field_tyvars) field_dict_ids
        -- We pull the field lambdas to the top, so we need to 
        -- apply them in the body.  For example:
        --      data T = MkT { foo :: forall a. a->a }
@@ -504,10 +489,11 @@ mkRecordSelId tycon field_label
                Nothing         -> Nothing
                Just the_arg_id -> Just (mkReboxingAlt uniqs data_con arg_ids body)
                                where
-                                  body = mk_result the_arg_id
+                                  body = mk_result (Var the_arg_id)
        where
             arg_ids = mkTemplateLocalsNum field_base (dataConOrigArgTys data_con)
                        -- No need to instantiate; same tyvars in datacon as tycon
+                       -- Records can't be existential, so no existential tyvars or dicts
 
            unpack_base = field_base + length arg_ids
            uniqs = map mkBuiltinUnique [unpack_base..]
@@ -551,7 +537,7 @@ mkReboxingAlt us con args rhs
     (DataAlt con, args', mkLets binds rhs)
 
   where
-    stricts = dataConStrictMarks con
+    stricts = dataConExStricts con ++ dataConStrictMarks con
 
     go [] stricts us = ([], [])
 
@@ -589,12 +575,25 @@ mkReboxingAlt us con args rhs
 Selecting a field for a dictionary.  If there is just one field, then
 there's nothing to do.  
 
-ToDo: unify with mkRecordSelId.
+Dictionary selectors may get nested forall-types.  Thus:
+
+       class Foo a where
+         op :: forall b. Ord b => a -> b -> b
+
+Then the top-level type for op is
+
+       op :: forall a. Foo a => 
+             forall b. Ord b => 
+             a -> b -> b
+
+This is unlike ordinary record selectors, which have all the for-alls
+at the outside.  When dealing with classes it's very convenient to
+recover the original type signature from the class op selector.
 
 \begin{code}
 mkDictSelId :: Name -> Class -> Id
 mkDictSelId name clas
-  = mkGlobalId (RecordSelId field_lbl) name sel_ty info
+  = mkGlobalId (ClassOpId clas) name sel_ty info
   where
     sel_ty = mkForAllTys tyvars (mkFunTy (idType dict_id) (idType the_arg_id))
        -- We can't just say (exprType rhs), because that would give a type
@@ -603,10 +602,9 @@ mkDictSelId name clas
        -- But it's type must expose the representation of the dictionary
        -- to gat (say)         C a -> (a -> a)
 
-    field_lbl = mkFieldLabel name tycon sel_ty tag
-    tag       = assoc "MkId.mkDictSelId" (map idName (classSelIds clas) `zip` allFieldLabelTags) name
+    tag  = assoc "MkId.mkDictSelId" (map idName (classSelIds clas) `zip` allFieldLabelTags) name
 
-    info      = noCafNoTyGenIdInfo
+    info = noCafIdInfo
                `setArityInfo`          1
                `setUnfoldingInfo`      mkTopUnfolding rhs
                `setAllStrictnessInfo`  Just strict_sig
@@ -663,10 +661,12 @@ mkPrimOpId prim_op
   where
     (tyvars,arg_tys,res_ty, arity, strict_sig) = primOpSig prim_op
     ty   = mkForAllTys tyvars (mkFunTys arg_tys res_ty)
-    name = mkPrimOpIdName prim_op
+    name = mkWiredInName gHC_PRIM (primOpOcc prim_op) 
+                        (mkPrimOpIdUnique (primOpTag prim_op))
+                        Nothing (AnId id) UserSyntax
     id   = mkGlobalId (PrimOpId prim_op) name ty info
                
-    info = noCafNoTyGenIdInfo
+    info = noCafIdInfo
           `setSpecInfo`        rules
           `setArityInfo`       arity
           `setAllStrictnessInfo` Just strict_sig
@@ -696,7 +696,7 @@ mkFCallId uniq fcall ty
 
     name = mkFCallName uniq occ_str
 
-    info = noCafNoTyGenIdInfo
+    info = noCafIdInfo
           `setArityInfo`               arity
           `setAllStrictnessInfo`       Just strict_sig
 
@@ -740,17 +740,17 @@ BUT make sure they are *exported* LocalIds (setIdLocalExported) so
 that they aren't discarded by the occurrence analyser.
 
 \begin{code}
-mkDefaultMethodId dm_name ty = mkVanillaGlobal dm_name ty noCafNoTyGenIdInfo
+mkDefaultMethodId dm_name ty = mkExportedLocalId dm_name ty
 
 mkDictFunId :: Name            -- Name to use for the dict fun;
-           -> Class 
            -> [TyVar]
-           -> [Type]
            -> ThetaType
+           -> Class 
+           -> [Type]
            -> Id
 
-mkDictFunId dfun_name clas inst_tyvars inst_tys dfun_theta
-  = mkVanillaGlobal dfun_name dfun_ty noCafNoTyGenIdInfo
+mkDictFunId dfun_name inst_tyvars dfun_theta clas inst_tys
+  = mkExportedLocalId dfun_name dfun_ty
   where
     dfun_ty = mkSigmaTy inst_tyvars dfun_theta (mkDictTy clas inst_tys)
 
@@ -806,11 +806,34 @@ they can unify with both unlifted and lifted types.  Hence we provide
 another gun with which to shoot yourself in the foot.
 
 \begin{code}
+mkWiredInIdName mod fs uniq id
+ = mkWiredInName mod (mkOccFS varName fs) uniq Nothing (AnId id) UserSyntax
+
+unsafeCoerceName = mkWiredInIdName gHC_PRIM FSLIT("unsafeCoerce#") unsafeCoerceIdKey  unsafeCoerceId
+nullAddrName     = mkWiredInIdName gHC_PRIM FSLIT("nullAddr#")    nullAddrIdKey      nullAddrId
+seqName                 = mkWiredInIdName gHC_PRIM FSLIT("seq")           seqIdKey           seqId
+realWorldName   = mkWiredInIdName gHC_PRIM FSLIT("realWorld#")    realWorldPrimIdKey realWorldPrimId
+lazyIdName      = mkWiredInIdName pREL_BASE FSLIT("lazy")         lazyIdKey          lazyId
+
+errorName               = mkWiredInIdName pREL_ERR FSLIT("error")           errorIdKey eRROR_ID
+recSelErrorName                 = mkWiredInIdName pREL_ERR FSLIT("recSelError")     recSelErrorIdKey rEC_SEL_ERROR_ID
+runtimeErrorName        = mkWiredInIdName pREL_ERR FSLIT("runtimeError")    runtimeErrorIdKey rUNTIME_ERROR_ID
+irrefutPatErrorName     = mkWiredInIdName pREL_ERR FSLIT("irrefutPatError") irrefutPatErrorIdKey iRREFUT_PAT_ERROR_ID
+recConErrorName                 = mkWiredInIdName pREL_ERR FSLIT("recConError")     recConErrorIdKey rEC_CON_ERROR_ID
+patErrorName            = mkWiredInIdName pREL_ERR FSLIT("patError")        patErrorIdKey pAT_ERROR_ID
+noMethodBindingErrorName = mkWiredInIdName pREL_ERR FSLIT("noMethodBindingError")
+                                          noMethodBindingErrorIdKey nO_METHOD_BINDING_ERROR_ID
+nonExhaustiveGuardsErrorName 
+  = mkWiredInIdName pREL_ERR FSLIT("nonExhaustiveGuardsError") 
+                   nonExhaustiveGuardsErrorIdKey nON_EXHAUSTIVE_GUARDS_ERROR_ID
+\end{code}
+
+\begin{code}
 -- unsafeCoerce# :: forall a b. a -> b
 unsafeCoerceId
-  = pcMiscPrelId unsafeCoerceIdKey gHC_PRIM FSLIT("unsafeCoerce#") ty info
+  = pcMiscPrelId unsafeCoerceName ty info
   where
-    info = noCafNoTyGenIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs
+    info = noCafIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs
           
 
     ty  = mkForAllTys [openAlphaTyVar,openBetaTyVar]
@@ -823,39 +846,38 @@ unsafeCoerceId
 -- The reason is is here is because we don't provide 
 -- a way to write this literal in Haskell.
 nullAddrId 
-  = pcMiscPrelId nullAddrIdKey gHC_PRIM FSLIT("nullAddr#") addrPrimTy info
+  = pcMiscPrelId nullAddrName addrPrimTy info
   where
-    info = noCafNoTyGenIdInfo `setUnfoldingInfo` 
+    info = noCafIdInfo `setUnfoldingInfo` 
           mkCompulsoryUnfolding (Lit nullAddrLit)
 
 seqId
-  = pcMiscPrelId seqIdKey gHC_PRIM FSLIT("seq") ty info
+  = pcMiscPrelId seqName ty info
   where
-    info = noCafNoTyGenIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs
+    info = noCafIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs
           
 
-    ty  = mkForAllTys [alphaTyVar,betaTyVar]
-                     (mkFunTy alphaTy (mkFunTy betaTy betaTy))
-    [x,y] = mkTemplateLocals [alphaTy, betaTy]
-    rhs = mkLams [alphaTyVar,betaTyVar,x,y] (Case (Var x) x [(DEFAULT, [], Var y)])
-\end{code}
-
-@getTag#@ is another function which can't be defined in Haskell.  It needs to
-evaluate its argument and call the dataToTag# primitive.
-
-\begin{code}
-getTagId
-  = pcMiscPrelId getTagIdKey gHC_PRIM FSLIT("getTag#") ty info
+    ty  = mkForAllTys [alphaTyVar,openBetaTyVar]
+                     (mkFunTy alphaTy (mkFunTy openBetaTy openBetaTy))
+    [x,y] = mkTemplateLocals [alphaTy, openBetaTy]
+    rhs = mkLams [alphaTyVar,openBetaTyVar,x,y] (Case (Var x) x [(DEFAULT, [], Var y)])
+
+-- lazy :: forall a?. a? -> a?  (i.e. works for unboxed types too)
+-- Used to lazify pseq:                pseq a b = a `seq` lazy b
+-- No unfolding: it gets "inlined" by the worker/wrapper pass
+-- Also, no strictness: by being a built-in Id, it overrides all
+-- the info in PrelBase.hi.  This is important, because the strictness
+-- analyser will spot it as strict!
+lazyId
+  = pcMiscPrelId lazyIdName ty info
   where
-    info = noCafNoTyGenIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs
-       -- We don't provide a defn for this; you must inline it
-
-    ty = mkForAllTys [alphaTyVar] (mkFunTy alphaTy intPrimTy)
-    [x,y] = mkTemplateLocals [alphaTy,alphaTy]
-    rhs = mkLams [alphaTyVar,x] $
-         Case (Var x) y [ (DEFAULT, [], mkApps (Var dataToTagId) [Type alphaTy, Var y]) ]
+    info = noCafIdInfo
+    ty  = mkForAllTys [alphaTyVar] (mkFunTy alphaTy alphaTy)
 
-dataToTagId = mkPrimOpId DataToTagOp
+lazyIdUnfolding :: CoreExpr    -- Used to expand LazyOp after strictness anal
+lazyIdUnfolding = mkLams [openAlphaTyVar,x] (Var x)
+               where
+                 [x] = mkTemplateLocals [openAlphaTy]
 \end{code}
 
 @realWorld#@ used to be a magic literal, \tr{void#}.  If things get
@@ -870,9 +892,8 @@ This comes up in strictness analysis
 
 \begin{code}
 realWorldPrimId        -- :: State# RealWorld
-  = pcMiscPrelId realWorldPrimIdKey gHC_PRIM FSLIT("realWorld#")
-                realWorldStatePrimTy
-                (noCafNoTyGenIdInfo `setUnfoldingInfo` mkOtherCon [])
+  = pcMiscPrelId realWorldName realWorldStatePrimTy
+                (noCafIdInfo `setUnfoldingInfo` mkOtherCon [])
        -- The mkOtherCon makes it look that realWorld# is evaluated
        -- which in turn makes Simplify.interestingArg return True,
        -- which in turn makes INLINE things applied to realWorld# likely
@@ -917,22 +938,21 @@ mkRuntimeErrorApp err_id res_ty err_msg
   where
     err_string = Lit (MachStr (mkFastString (stringToUtf8 err_msg)))
 
-rEC_SEL_ERROR_ID               = mkRuntimeErrorId recSelErrIdKey                FSLIT("recSelError")
-rUNTIME_ERROR_ID               = mkRuntimeErrorId runtimeErrorIdKey             FSLIT("runtimeError")
-
-iRREFUT_PAT_ERROR_ID           = mkRuntimeErrorId irrefutPatErrorIdKey          FSLIT("irrefutPatError")
-rEC_CON_ERROR_ID               = mkRuntimeErrorId recConErrorIdKey              FSLIT("recConError")
-nON_EXHAUSTIVE_GUARDS_ERROR_ID = mkRuntimeErrorId nonExhaustiveGuardsErrorIdKey FSLIT("nonExhaustiveGuardsError")
-pAT_ERROR_ID                   = mkRuntimeErrorId patErrorIdKey                 FSLIT("patError")
-nO_METHOD_BINDING_ERROR_ID      = mkRuntimeErrorId noMethodBindingErrorIdKey    FSLIT("noMethodBindingError")
+rEC_SEL_ERROR_ID               = mkRuntimeErrorId recSelErrorName
+rUNTIME_ERROR_ID               = mkRuntimeErrorId runtimeErrorName
+iRREFUT_PAT_ERROR_ID           = mkRuntimeErrorId irrefutPatErrorName
+rEC_CON_ERROR_ID               = mkRuntimeErrorId recConErrorName
+pAT_ERROR_ID                   = mkRuntimeErrorId patErrorName
+nO_METHOD_BINDING_ERROR_ID      = mkRuntimeErrorId noMethodBindingErrorName
+nON_EXHAUSTIVE_GUARDS_ERROR_ID = mkRuntimeErrorId nonExhaustiveGuardsErrorName
 
 -- The runtime error Ids take a UTF8-encoded string as argument
-mkRuntimeErrorId key name = pc_bottoming_Id key pREL_ERR name runtimeErrorTy
-runtimeErrorTy                   = mkSigmaTy [openAlphaTyVar] [] (mkFunTy addrPrimTy openAlphaTy)
+mkRuntimeErrorId name = pc_bottoming_Id name runtimeErrorTy
+runtimeErrorTy               = mkSigmaTy [openAlphaTyVar] [] (mkFunTy addrPrimTy openAlphaTy)
 \end{code}
 
 \begin{code}
-eRROR_ID = pc_bottoming_Id errorIdKey pREL_ERR FSLIT("error") errorTy
+eRROR_ID = pc_bottoming_Id errorName errorTy
 
 errorTy  :: Type
 errorTy  = mkSigmaTy [openAlphaTyVar] [] (mkFunTys [mkListTy charTy] openAlphaTy)
@@ -949,25 +969,30 @@ errorTy  = mkSigmaTy [openAlphaTyVar] [] (mkFunTys [mkListTy charTy] openAlphaTy
 %************************************************************************
 
 \begin{code}
-pcMiscPrelId :: Unique{-IdKey-} -> Module -> FastString -> Type -> IdInfo -> Id
-pcMiscPrelId key mod str ty info
-  = let
-       name = mkWiredInName mod (mkVarOcc str) key
-       imp  = mkVanillaGlobal name ty info -- the usual case...
-    in
-    imp
+pcMiscPrelId :: Name -> Type -> IdInfo -> Id
+pcMiscPrelId name ty info
+  = mkVanillaGlobal name ty info
     -- We lie and say the thing is imported; otherwise, we get into
     -- a mess with dependency analysis; e.g., core2stg may heave in
     -- random calls to GHCbase.unpackPS__.  If GHCbase is the module
     -- being compiled, then it's just a matter of luck if the definition
     -- will be in "the right place" to be in scope.
 
-pc_bottoming_Id key mod name ty
- = pcMiscPrelId key mod name ty bottoming_info
+pc_bottoming_Id name ty
+ = pcMiscPrelId name ty bottoming_info
  where
+    bottoming_info = vanillaIdInfo `setAllStrictnessInfo` Just strict_sig
+       -- Do *not* mark them as NoCafRefs, because they can indeed have
+       -- CAF refs.  For example, pAT_ERROR_ID calls GHC.Err.untangle,
+       -- which has some CAFs
+       -- In due course we may arrange that these error-y things are
+       -- regarded by the GC as permanently live, in which case we
+       -- can give them NoCaf info.  As it is, any function that calls
+       -- any pc_bottoming_Id will itself have CafRefs, which bloats
+       -- SRTs.
+
     strict_sig    = mkStrictSig (mkTopDmdType [evalDmd] BotRes)
-    bottoming_info = noCafNoTyGenIdInfo `setAllStrictnessInfo` Just strict_sig
-       -- these "bottom" out, no matter what their arguments
+       -- These "bottom" out, no matter what their arguments
 
 (openAlphaTyVar:openBetaTyVar:_) = openAlphaTyVars
 openAlphaTy  = mkTyVarTy openAlphaTyVar