Reorganisation of the source tree
[ghc-hetmet.git] / ghc / compiler / deSugar / MatchCon.lhs
diff --git a/ghc/compiler/deSugar/MatchCon.lhs b/ghc/compiler/deSugar/MatchCon.lhs
deleted file mode 100644 (file)
index 6ff502a..0000000
+++ /dev/null
@@ -1,174 +0,0 @@
-
-% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-%
-\section[MatchCon]{Pattern-matching constructors}
-
-\begin{code}
-module MatchCon ( matchConFamily ) where
-
-#include "HsVersions.h"
-
-import Id( idType )
-
-import {-# SOURCE #-} Match    ( match )
-
-import HsSyn           ( Pat(..), HsConDetails(..) )
-import DsBinds         ( dsLHsBinds )
-import DataCon         ( isVanillaDataCon, dataConInstOrigArgTys )
-import TcType          ( tcTyConAppArgs )
-import Type            ( mkTyVarTys )
-import CoreSyn
-import DsMonad
-import DsUtils
-
-import Id              ( Id )
-import Type             ( Type )
-import ListSetOps      ( equivClassesByUniq )
-import SrcLoc          ( unLoc, Located(..) )
-import Unique          ( Uniquable(..) )
-import Outputable
-\end{code}
-
-We are confronted with the first column of patterns in a set of
-equations, all beginning with constructors from one ``family'' (e.g.,
-@[]@ and @:@ make up the @List@ ``family'').  We want to generate the
-alternatives for a @Case@ expression.  There are several choices:
-\begin{enumerate}
-\item
-Generate an alternative for every constructor in the family, whether
-they are used in this set of equations or not; this is what the Wadler
-chapter does.
-\begin{description}
-\item[Advantages:]
-(a)~Simple.  (b)~It may also be that large sparsely-used constructor
-families are mainly handled by the code for literals.
-\item[Disadvantages:]
-(a)~Not practical for large sparsely-used constructor families, e.g.,
-the ASCII character set.  (b)~Have to look up a list of what
-constructors make up the whole family.
-\end{description}
-
-\item
-Generate an alternative for each constructor used, then add a default
-alternative in case some constructors in the family weren't used.
-\begin{description}
-\item[Advantages:]
-(a)~Alternatives aren't generated for unused constructors.  (b)~The
-STG is quite happy with defaults.  (c)~No lookup in an environment needed.
-\item[Disadvantages:]
-(a)~A spurious default alternative may be generated.
-\end{description}
-
-\item
-``Do it right:'' generate an alternative for each constructor used,
-and add a default alternative if all constructors in the family
-weren't used.
-\begin{description}
-\item[Advantages:]
-(a)~You will get cases with only one alternative (and no default),
-which should be amenable to optimisation.  Tuples are a common example.
-\item[Disadvantages:]
-(b)~Have to look up constructor families in TDE (as above).
-\end{description}
-\end{enumerate}
-
-We are implementing the ``do-it-right'' option for now.  The arguments
-to @matchConFamily@ are the same as to @match@; the extra @Int@
-returned is the number of constructors in the family.
-
-The function @matchConFamily@ is concerned with this
-have-we-used-all-the-constructors? question; the local function
-@match_cons_used@ does all the real work.
-\begin{code}
-matchConFamily :: [Id]
-               -> Type
-              -> [EquationInfo]
-              -> DsM MatchResult
-matchConFamily (var:vars) ty eqns_info
-  = let
-       -- Sort into equivalence classes by the unique on the constructor
-       -- All the EqnInfos should start with a ConPat
-       groups = equivClassesByUniq get_uniq eqns_info
-       get_uniq (EqnInfo { eqn_pats = ConPatOut (L _ data_con) _ _ _ _ _ : _}) = getUnique data_con
-
-       -- Get the wrapper from the head of each group.  We're going to
-       -- use it as the pattern in this case expression, so we need to 
-       -- ensure that any type variables it mentions in the pattern are
-       -- in scope.  So we put its wrappers outside the case, and
-       -- zap the wrapper for it. 
-       wraps :: [CoreExpr -> CoreExpr]
-       wraps = map (eqn_wrap . head) groups
-
-       groups' = [ eqn { eqn_wrap = idWrapper } : eqns | eqn:eqns <- groups ]
-    in
-       -- Now make a case alternative out of each group
-    mappM (match_con vars ty) groups'  `thenDs` \ alts ->
-    returnDs (adjustMatchResult (foldr (.) idWrapper wraps) $
-             mkCoAlgCaseMatchResult var ty alts)
-\end{code}
-
-And here is the local function that does all the work.  It is
-more-or-less the @matchCon@/@matchClause@ functions on page~94 in
-Wadler's chapter in SLPJ.  The function @shift_con_pats@ does what the
-list comprehension in @matchClause@ (SLPJ, p.~94) does, except things
-are trickier in real life.  Works for @ConPats@, and we want it to
-fail catastrophically for anything else (which a list comprehension
-wouldn't).  Cf.~@shift_lit_pats@ in @MatchLits@.
-
-\begin{code}
-match_con vars ty eqns
-  = do { -- Make new vars for the con arguments; avoid new locals where possible
-         arg_vars     <- selectMatchVars (map unLoc arg_pats1) arg_tys
-       ; eqns'        <- mapM shift eqns 
-       ; match_result <- match (arg_vars ++ vars) ty eqns'
-       ; return (con, tvs1 ++ dicts1 ++ arg_vars, match_result) }
-  where
-    ConPatOut (L _ con) tvs1 dicts1 _ (PrefixCon arg_pats1) pat_ty = firstPat (head eqns)
-
-    shift eqn@(EqnInfo { eqn_wrap = wrap, 
-                        eqn_pats = ConPatOut _ tvs ds bind (PrefixCon arg_pats) _ : pats })
-       = do { prs <- dsLHsBinds bind
-            ; return (eqn { eqn_wrap = wrap . wrapBinds (tvs `zip` tvs1) 
-                                            . wrapBinds (ds  `zip` dicts1)
-                                            . mkDsLet (Rec prs),
-                            eqn_pats = map unLoc arg_pats ++ pats }) }
-
-       -- Get the arg types, which we use to type the new vars
-       -- to match on, from the "outside"; the types of pats1 may 
-       -- be more refined, and hence won't do
-    arg_tys = dataConInstOrigArgTys con inst_tys
-    inst_tys | isVanillaDataCon con = tcTyConAppArgs pat_ty    -- Newtypes opaque!
-            | otherwise            = mkTyVarTys tvs1
-\end{code}
-
-Note [Existentials in shift_con_pat]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Consider
-       data T = forall a. Ord a => T a (a->Int)
-
-       f (T x f) True  = ...expr1...
-       f (T y g) False = ...expr2..
-
-When we put in the tyvars etc we get
-
-       f (T a (d::Ord a) (x::a) (f::a->Int)) True =  ...expr1...
-       f (T b (e::Ord b) (y::a) (g::a->Int)) True =  ...expr2...
-
-After desugaring etc we'll get a single case:
-
-       f = \t::T b::Bool -> 
-           case t of
-              T a (d::Ord a) (x::a) (f::a->Int)) ->
-           case b of
-               True  -> ...expr1...
-               False -> ...expr2...
-
-*** We have to substitute [a/b, d/e] in expr2! **
-Hence
-               False -> ....((/\b\(e:Ord b).expr2) a d)....
-
-Originally I tried to use 
-       (\b -> let e = d in expr2) a 
-to do this substitution.  While this is "correct" in a way, it fails
-Lint, because e::Ord b but d::Ord a.  
-