[project @ 2001-02-26 15:42:24 by simonpj]
[ghc-hetmet.git] / ghc / compiler / simplCore / Simplify.lhs
index 68f8c22..131b56c 100644 (file)
@@ -10,54 +10,58 @@ module Simplify ( simplTopBinds, simplExpr ) where
 
 import CmdLineOpts     ( switchIsOn, opt_SimplDoEtaReduction,
                          opt_SimplNoPreInlining, 
+                         dopt, DynFlag(Opt_D_dump_inlinings),
                          SimplifierSwitch(..)
                        )
 import SimplMonad
-import SimplUtils      ( mkCase, transformRhs, findAlt, 
-                         simplBinder, simplBinders, simplIds, findDefault,
-                         SimplCont(..), DupFlag(..), 
+import SimplUtils      ( mkCase, tryRhsTyLam, tryEtaExpansion,
+                         simplBinder, simplBinders, simplIds, 
+                         SimplCont(..), DupFlag(..), mkStop, mkRhsStop,
                          contResultType, discardInline, countArgs, contIsDupable,
                          getContArgs, interestingCallContext, interestingArg, isStrictType
                        )
 import Var             ( mkSysTyVar, tyVarKind )
 import VarEnv
-import Id              ( Id, idType, idInfo, isDataConId,
+import Id              ( Id, idType, idInfo, isDataConId, hasNoBinding,
                          idUnfolding, setIdUnfolding, isExportedId, isDeadBinder,
                          idDemandInfo, setIdInfo,
-                         idOccInfo, setIdOccInfo,
+                         idOccInfo, setIdOccInfo, 
                          zapLamIdInfo, setOneShotLambda, 
                        )
-import IdInfo          ( OccInfo(..), ArityInfo(..),
-                         setArityInfo, setUnfoldingInfo,
+import IdInfo          ( OccInfo(..), isDeadOcc, isLoopBreaker,
+                         setArityInfo, 
+                         setUnfoldingInfo, atLeastArity,
                          occInfo
                        )
-import Demand          ( Demand, isStrict )
+import Demand          ( isStrict )
 import DataCon         ( dataConNumInstArgs, dataConRepStrictness,
                          dataConSig, dataConArgTys
                        )
 import CoreSyn
+import PprCore         ( pprParendExpr, pprCoreExpr )
 import CoreFVs         ( mustHaveLocalBinding )
 import CoreUnfold      ( mkOtherCon, mkUnfolding, otherCons,
                          callSiteInline
                        )
-import CoreUtils       ( cheapEqExpr, exprIsDupable, exprIsTrivial, exprIsConApp_maybe,
-                         exprType, coreAltsType, exprArity, exprIsValue, idAppIsCheap,
-                         exprOkForSpeculation, etaReduceExpr,
+import CoreUtils       ( cheapEqExpr, exprIsDupable, exprIsTrivial, 
+                         exprIsConApp_maybe, mkPiType, findAlt, findDefault,
+                         exprType, coreAltsType, exprIsValue, 
+                         exprOkForSpeculation, exprArity, exprIsCheap,
                          mkCoerce, mkSCC, mkInlineMe, mkAltExpr
                        )
 import Rules           ( lookupRule )
 import CostCentre      ( currentCCS )
 import Type            ( mkTyVarTys, isUnLiftedType, seqType,
-                         mkFunTy, splitFunTy, splitTyConApp_maybe, 
+                         mkFunTy, splitTyConApp_maybe, tyConAppArgs,
                          funResultTy
                        )
-import Subst           ( mkSubst, substTy, substExpr,
+import Subst           ( mkSubst, substTy, 
                          isInScope, lookupIdSubst, substIdInfo
                        )
 import TyCon           ( isDataTyCon, tyConDataConsIfAvailable )
 import TysPrim         ( realWorldStatePrimTy )
 import PrelInfo                ( realWorldPrimId )
-import BasicTypes      ( isLoopBreaker )
+import OrdList
 import Maybes          ( maybeToBool )
 import Util            ( zipWithEqual )
 import Outputable
@@ -95,12 +99,12 @@ simplTopBinds binds
     simplIds (bindersOfBinds binds)    $ \ bndrs' -> 
     simpl_binds binds bndrs'           `thenSmpl` \ (binds', _) ->
     freeTick SimplifierDone            `thenSmpl_`
-    returnSmpl binds'
+    returnSmpl (fromOL binds')
   where
 
        -- We need to track the zapped top-level binders, because
        -- they should have their fragile IdInfo zapped (notably occurrence info)
-    simpl_binds []                       bs     = ASSERT( null bs ) returnSmpl ([], panic "simplTopBinds corner")
+    simpl_binds []                       bs     = ASSERT( null bs ) returnSmpl (nilOL, panic "simplTopBinds corner")
     simpl_binds (NonRec bndr rhs : binds) (b:bs) = simplLazyBind True bndr  b rhs      (simpl_binds binds bs)
     simpl_binds (Rec pairs       : binds) bs     = simplRecBind  True pairs (take n bs) (simpl_binds binds (drop n bs))
                                                 where 
@@ -109,11 +113,11 @@ simplTopBinds binds
 simplRecBind :: Bool -> [(InId, InExpr)] -> [OutId]
             -> SimplM (OutStuff a) -> SimplM (OutStuff a)
 simplRecBind top_lvl pairs bndrs' thing_inside
-  = go pairs bndrs'            `thenSmpl` \ (binds', (binds'', res)) ->
-    returnSmpl (Rec (flattenBinds binds') : binds'', res)
+  = go pairs bndrs'            `thenSmpl` \ (binds', (_, (binds'', res))) ->
+    returnSmpl (unitOL (Rec (flattenBinds (fromOL binds'))) `appOL` binds'', res)
   where
     go [] _ = thing_inside     `thenSmpl` \ stuff ->
-             returnSmpl ([], stuff)
+             returnOutStuff stuff
        
     go ((bndr, rhs) : pairs) (bndr' : bndrs')
        = simplLazyBind top_lvl bndr bndr' rhs (go pairs bndrs')
@@ -128,33 +132,6 @@ simplRecBind top_lvl pairs bndrs' thing_inside
 %*                                                                     *
 %************************************************************************
 
-\begin{code}
-addLetBind :: OutId -> OutExpr -> SimplM (OutStuff a) -> SimplM (OutStuff a)
-addLetBind bndr rhs thing_inside
-  = thing_inside       `thenSmpl` \ (binds, res) ->
-    returnSmpl (NonRec bndr rhs : binds, res)
-
-addLetBinds :: [CoreBind] -> SimplM (OutStuff a) -> SimplM (OutStuff a)
-addLetBinds binds1 thing_inside
-  = thing_inside       `thenSmpl` \ (binds2, res) ->
-    returnSmpl (binds1 ++ binds2, res)
-
-needsCaseBinding ty rhs = isUnLiftedType ty && not (exprOkForSpeculation rhs)
-       -- Make a case expression instead of a let
-       -- These can arise either from the desugarer,
-       -- or from beta reductions: (\x.e) (x +# y)
-
-addCaseBind bndr rhs thing_inside
-  = getInScope                         `thenSmpl` \ in_scope ->
-    thing_inside               `thenSmpl` \ (floats, (_, body)) ->
-    returnSmpl ([], (in_scope, Case rhs bndr [(DEFAULT, [], mkLets floats body)]))
-
-addNonRecBind bndr rhs thing_inside
-       -- Checks for needing a case binding
-  | needsCaseBinding (idType bndr) rhs = addCaseBind bndr rhs thing_inside
-  | otherwise                         = addLetBind  bndr rhs thing_inside
-\end{code}
-
 The reason for this OutExprStuff stuff is that we want to float *after*
 simplifying a RHS, not before.  If we do so naively we get quadratic
 behaviour as things float out.
@@ -196,7 +173,7 @@ might do the same again.
 \begin{code}
 simplExpr :: CoreExpr -> SimplM CoreExpr
 simplExpr expr = getSubst      `thenSmpl` \ subst ->
-                simplExprC expr (Stop (substTy subst (exprType expr)))
+                simplExprC expr (mkStop (substTy subst (exprType expr)))
        -- The type in the Stop continuation is usually not used
        -- It's only needed when discarding continuations after finding
        -- a function that returns bottom.
@@ -206,7 +183,7 @@ simplExprC :: CoreExpr -> SimplCont -> SimplM CoreExpr
        -- Simplify an expression, given a continuation
 
 simplExprC expr cont = simplExprF expr cont    `thenSmpl` \ (floats, (_, body)) ->
-                      returnSmpl (mkLets floats body)
+                      returnSmpl (wrapFloats floats body)
 
 simplExprF :: InExpr -> SimplCont -> SimplM OutExprStuff
        -- Simplify an expression, returning floated binds
@@ -235,7 +212,7 @@ simplExprF (Case scrut bndr alts) cont
        -- If case-of-case is off, simply simplify the case expression
        -- in a vanilla Stop context, and rebuild the result around it
        simplExprC scrut (Select NoDup bndr alts subst_env 
-                                (Stop (contResultType cont)))  `thenSmpl` \ case_expr' ->
+                                (mkStop (contResultType cont)))        `thenSmpl` \ case_expr' ->
        rebuild case_expr' cont
 
 
@@ -249,7 +226,7 @@ simplExprF (Let (Rec pairs) body) cont
 simplExprF expr@(Lam _ _) cont = simplLam expr cont
 
 simplExprF (Type ty) cont
-  = ASSERT( case cont of { Stop _ -> True; ArgOf _ _ _ -> True; other -> False } )
+  = ASSERT( case cont of { Stop _ _ -> True; ArgOf _ _ _ -> True; other -> False } )
     simplType ty       `thenSmpl` \ ty' ->
     rebuild (Type ty') cont
 
@@ -283,8 +260,8 @@ simplExprF (Note (SCC cc) e) cont
 simplExprF (Note InlineCall e) cont
   = simplExprF e (InlinePlease cont)
 
--- Comments about the InlineMe case 
--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+--      Comments about the InlineMe case 
+--      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 -- Don't inline in the RHS of something that has an
 -- inline pragma.  But be careful that the InScopeEnv that
 -- we return does still have inlinings on!
@@ -300,17 +277,31 @@ simplExprF (Note InlineCall e) cont
 -- the specialised version of g when f is inlined at some call site
 -- (perhaps in some other module).
 
-simplExprF (Note InlineMe e) cont
-  = case cont of
-       Stop _ ->       -- Totally boring continuation
-                       -- Don't inline inside an INLINE expression
-                 setBlackList noInlineBlackList (simplExpr e)  `thenSmpl` \ e' ->
-                 rebuild (mkInlineMe e') cont
+-- It's also important not to inline a worker back into a wrapper.
+-- A wrapper looks like
+--     wraper = inline_me (\x -> ...worker... )
+-- Normally, the inline_me prevents the worker getting inlined into
+-- the wrapper (initially, the worker's only call site!).  But,
+-- if the wrapper is sure to be called, the strictness analyser will
+-- mark it 'demanded', so when the RHS is simplified, it'll get an ArgOf
+-- continuation.  That's why the keep_inline predicate returns True for
+-- ArgOf continuations.  It shouldn't do any harm not to dissolve the
+-- inline-me note under these circumstances
 
-       other  ->       -- Dissolve the InlineMe note if there's
-                       -- an interesting context of any kind to combine with
-                       -- (even a type application -- anything except Stop)
-                 simplExprF e cont     
+simplExprF (Note InlineMe e) cont
+  | keep_inline cont           -- Totally boring continuation
+  =                            -- Don't inline inside an INLINE expression
+    setBlackList noInlineBlackList (simplExpr e)       `thenSmpl` \ e' ->
+    rebuild (mkInlineMe e') cont
+
+  | otherwise          -- Dissolve the InlineMe note if there's
+               -- an interesting context of any kind to combine with
+               -- (even a type application -- anything except Stop)
+  = simplExprF e cont
+  where
+    keep_inline (Stop _ _)    = True           -- See notes above
+    keep_inline (ArgOf _ _ _) = True           -- about this predicate
+    keep_inline other        = False
 
 -- A non-recursive let is dealt with by simplBeta
 simplExprF (Let (NonRec bndr rhs) body) cont
@@ -352,22 +343,42 @@ simplLam fun cont
     go expr cont = simplExprF expr cont
 
 -- completeLam deals with the case where a lambda doesn't have an ApplyTo
--- continuation.  
--- We used to try for eta reduction here, but I found that this was
--- eta reducing things like 
---     f = \x -> (coerce (\x -> e))
--- This made f's arity reduce, which is a bad thing, so I removed the
--- eta reduction at this point, and now do it only when binding 
--- (at the call to postInlineUnconditionally)
-
-completeLam acc (Lam bndr body) cont
+-- continuation, so there are real lambdas left to put in the result
+
+-- We try for eta reduction here, but *only* if we get all the 
+-- way to an exprIsTrivial expression.    
+-- We don't want to remove extra lambdas unless we are going 
+-- to avoid allocating this thing altogether
+
+completeLam rev_bndrs (Lam bndr body) cont
   = simplBinder bndr                   $ \ bndr' ->
-    completeLam (bndr':acc) body cont
+    completeLam (bndr':rev_bndrs) body cont
 
-completeLam acc body cont
+completeLam rev_bndrs body cont
   = simplExpr body                     `thenSmpl` \ body' ->
-    rebuild (foldl (flip Lam) body' acc) cont
-               -- Remember, acc is the *reversed* binders
+    case try_eta body' of
+       Just etad_lam -> tick (EtaReduction (head rev_bndrs))   `thenSmpl_`
+                        rebuild etad_lam cont
+
+       Nothing       -> rebuild (foldl (flip Lam) body' rev_bndrs) cont
+  where
+       -- We don't use CoreUtils.etaReduce, because we can be more
+       -- efficient here:
+       --  (a) we already have the binders,
+       --  (b) we can do the triviality test before computing the free vars
+       --      [in fact I take the simple path and look for just a variable]
+       --  (c) we don't want to eta-reduce a data con worker or primop
+       --      because we only have to eta-expand them later when we saturate
+    try_eta body | not opt_SimplDoEtaReduction = Nothing
+                | otherwise                   = go rev_bndrs body
+
+    go (b : bs) (App fun arg) | ok_arg b arg = go bs fun       -- Loop round
+    go []       body          | ok_body body = Just body       -- Success!
+    go _        _                           = Nothing          -- Failure!
+
+    ok_body (Var v) = not (v `elem` rev_bndrs) && not (hasNoBinding v)
+    ok_body other   = False
+    ok_arg b arg    = varToCoreExpr b `cheapEqExpr` arg
 
 mkLamBndrZapper :: CoreExpr    -- Function
                -> SimplCont    -- The context
@@ -465,28 +476,17 @@ simplValArg :: OutType            -- rhs_ty: Type of arg; used only occasionally
 
 simplValArg arg_ty is_strict arg arg_se cont_ty thing_inside
   | is_strict
-  = transformRhs arg                   `thenSmpl` \ t_arg ->
-    getEnv                             `thenSmpl` \ env ->
+  = getEnv                             `thenSmpl` \ env ->
     setSubstEnv arg_se                                 $
-    simplExprF t_arg (ArgOf NoDup cont_ty      $ \ rhs' ->
+    simplExprF arg (ArgOf NoDup cont_ty        $ \ rhs' ->
     setAllExceptInScope env                    $
-    thing_inside (etaFirst rhs'))
+    thing_inside rhs')
 
   | otherwise
   = simplRhs False {- Not top level -} 
             True {- OK to float unboxed -}
             arg_ty arg arg_se 
             thing_inside
-   
--- Do eta-reduction on the simplified RHS, if eta reduction is on
--- But *only* if we get all the way to an exprIsTrivial expression.    
--- We don't want to remove extra lambdas unless we are going 
--- to avoid allocating this thing altogether
-etaFirst rhs 
-  | opt_SimplDoEtaReduction && exprIsTrivial rhs' = rhs'
-  | otherwise                                    = rhs
- where
-   rhs' = etaReduceExpr rhs
 \end{code}
 
 
@@ -512,63 +512,113 @@ completeBinding :: InId          -- Binder
                -> SimplM (OutStuff a)
 
 completeBinding old_bndr new_bndr top_lvl black_listed new_rhs thing_inside
-  |  (case occ_info of         -- This happens; for example, the case_bndr during case of
-       IAmDead -> True         -- known constructor:  case (a,b) of x { (p,q) -> ... }
-       other   -> False)       -- Here x isn't mentioned in the RHS, so we don't want to
+  |  isDeadOcc occ_info        -- This happens; for example, the case_bndr during case of
+                               -- known constructor:  case (a,b) of x { (p,q) -> ... }
+                               -- Here x isn't mentioned in the RHS, so we don't want to
                                -- create the (dead) let-binding  let x = (a,b) in ...
   =  thing_inside
 
-  |  postInlineUnconditionally black_listed occ_info old_bndr new_rhs
-       -- Maybe we don't need a let-binding!  Maybe we can just
-       -- inline it right away.  Unlike the preInlineUnconditionally case
-       -- we are allowed to look at the RHS.
+  | trivial_rhs && not must_keep_binding
+       -- We're looking at a binding with a trivial RHS, so
+       -- perhaps we can discard it altogether!
        --
-       -- NB: a loop breaker never has postInlineUnconditionally True
+       -- NB: a loop breaker has must_keep_binding = True
        -- and non-loop-breakers only have *forward* references
        -- Hence, it's safe to discard the binding
        --      
-       -- NB: You might think that postInlineUnconditionally is an optimisation,
-       -- but if we have
-       --      let x = f Bool in (x, y)
-       -- then because of the constructor, x will not be *inlined* in the pair,
-       -- so the trivial binding will stay.  But in this postInlineUnconditionally 
-       -- gag we use the *substitution* to substitute (f Bool) for x, and that *will*
-       -- happen.
-  =  tick (PostInlineUnconditionally old_bndr) `thenSmpl_`
-     extendSubst old_bndr (DoneEx new_rhs)     
-     thing_inside
+       -- NOTE: This isn't our last opportunity to inline.
+       -- We're at the binding site right now, and
+       -- we'll get another opportunity when we get to the ocurrence(s)
+
+       -- Note that we do this unconditional inlining only for trival RHSs.
+       -- Don't inline even WHNFs inside lambdas; doing so may
+       -- simply increase allocation when the function is called
+       -- This isn't the last chance; see NOTE above.
+       --
+       -- NB: Even inline pragmas (e.g. IMustBeINLINEd) are ignored here
+       -- Why?  Because we don't even want to inline them into the
+       -- RHS of constructor arguments. See NOTE above
+       --
+       -- NB: Even NOINLINEis ignored here: if the rhs is trivial
+       -- it's best to inline it anyway.  We often get a=E; b=a
+       -- from desugaring, with both a and b marked NOINLINE.
+  =            -- Drop the binding
+    extendSubst old_bndr (DoneEx new_rhs)      $
+               -- Use the substitution to make quite, quite sure that the substitution
+               -- will happen, since we are going to discard the binding
+    tick (PostInlineUnconditionally old_bndr)  `thenSmpl_`
+    thing_inside
+
+  | Note coercion@(Coerce _ inner_ty) inner_rhs <- new_rhs,
+    not trivial_rhs && not (isUnLiftedType inner_ty)
+       -- x = coerce t e  ==>  c = e; x = inline_me (coerce t c)
+       -- Now x can get inlined, which moves the coercion
+       -- to the usage site.  This is a bit like worker/wrapper stuff,
+       -- but it's useful to do it very promptly, so that
+       --      x = coerce T (I# 3)
+       -- get's w/wd to
+       --      c = I# 3
+       --      x = coerce T c
+       -- This in turn means that
+       --      case (coerce Int x) of ...
+       -- will inline x.  
+       -- Also the full-blown w/w thing isn't set up for non-functions
+       --
+       -- The (not (isUnLiftedType inner_ty)) avoids the nasty case of
+       --      x::Int = coerce Int Int# (foo y)
+       -- ==>
+       --      v::Int# = foo y
+       --      x::Int  = coerce Int Int# v
+       -- which would be bogus because then v will be evaluated strictly.
+       -- How can this arise?  Via 
+       --      x::Int = case (foo y) of { ... }
+       -- followed by case elimination.
+       --
+       -- The inline_me note is so that the simplifier doesn't 
+       -- just substitute c back inside x's rhs!  (Typically, x will
+       -- get substituted away, but not if it's exported.)
+  = newId SLIT("c") inner_ty                                   $ \ c_id ->
+    completeBinding c_id c_id top_lvl False inner_rhs          $
+    completeBinding old_bndr new_bndr top_lvl black_listed
+                   (Note InlineMe (Note coercion (Var c_id)))  $
+    thing_inside
 
   |  otherwise
-  =  getSubst                  `thenSmpl` \ subst ->
-     let
-       -- We make new IdInfo for the new binder by starting from the old binder, 
-       -- doing appropriate substitutions.
-       -- Then we add arity and unfolding info to get the new binder
-       old_info      = idInfo old_bndr
-       new_bndr_info = substIdInfo subst old_info (idInfo new_bndr)
-                       `setArityInfo` ArityAtLeast (exprArity new_rhs)
-
-       -- Add the unfolding *only* for non-loop-breakers
-       -- Making loop breakers not have an unfolding at all 
-       -- means that we can avoid tests in exprIsConApp, for example.
-       -- This is important: if exprIsConApp says 'yes' for a recursive
-       -- thing, then we can get into an infinite loop
-       info_w_unf | isLoopBreaker (occInfo old_info) = new_bndr_info
-                  | otherwise = new_bndr_info `setUnfoldingInfo` mkUnfolding top_lvl new_rhs
+  = getSubst                   `thenSmpl` \ subst ->
+    let
+               -- We make new IdInfo for the new binder by starting from the old binder, 
+               -- doing appropriate substitutions.
+               -- Then we add arity and unfolding info to get the new binder
+       new_bndr_info = substIdInfo subst old_info (idInfo new_bndr)
+                       `setArityInfo` arity_info
+
+               -- Add the unfolding *only* for non-loop-breakers
+               -- Making loop breakers not have an unfolding at all 
+               -- means that we can avoid tests in exprIsConApp, for example.
+               -- This is important: if exprIsConApp says 'yes' for a recursive
+               -- thing, then we can get into an infinite loop
+        info_w_unf | loop_breaker = new_bndr_info
+                  | otherwise    = new_bndr_info `setUnfoldingInfo` mkUnfolding top_lvl new_rhs
 
        final_id = new_bndr `setIdInfo` info_w_unf
-     in
-       -- These seqs forces the Id, and hence its IdInfo,
-       -- and hence any inner substitutions
-     final_id                          `seq`
-     addLetBind final_id new_rhs       $
-     modifyInScope new_bndr final_id thing_inside
+    in
+               -- These seqs forces the Id, and hence its IdInfo,
+               -- and hence any inner substitutions
+    final_id                           `seq`
+    addLetBind (NonRec final_id new_rhs)       $
+    modifyInScope new_bndr final_id thing_inside
 
   where
-    occ_info = idOccInfo old_bndr
+    old_info          = idInfo old_bndr
+    occ_info          = occInfo old_info
+    loop_breaker      = isLoopBreaker occ_info
+    trivial_rhs              = exprIsTrivial new_rhs
+    must_keep_binding = black_listed || loop_breaker || isExportedId old_bndr
+    arity_info       = atLeastArity (exprArity new_rhs)
 \end{code}    
 
 
+
 %************************************************************************
 %*                                                                     *
 \subsection{simplLazyBind}
@@ -621,49 +671,51 @@ simplLazyBind top_lvl bndr bndr' rhs thing_inside
 \begin{code}
 simplRhs :: Bool               -- True <=> Top level
         -> Bool                -- True <=> OK to float unboxed (speculative) bindings
+                               --          False for (a) recursive and (b) top-level bindings
         -> OutType             -- Type of RHS; used only occasionally
         -> InExpr -> SubstEnv
         -> (OutExpr -> SimplM (OutStuff a))
         -> SimplM (OutStuff a)
 simplRhs top_lvl float_ubx rhs_ty rhs rhs_se thing_inside
-  =            -- Swizzle the inner lets past the big lambda (if any)
-       -- and try eta expansion
-    transformRhs rhs                                   `thenSmpl` \ t_rhs ->
-
-       -- Simplify it
-    setSubstEnv rhs_se (simplExprF t_rhs (Stop rhs_ty))        `thenSmpl` \ (floats, (in_scope', rhs')) ->
-
-       -- Float lets out of RHS
+  =    -- Simplify it
+    setSubstEnv rhs_se (simplExprF rhs (mkRhsStop rhs_ty))     `thenSmpl` \ (floats1, (rhs_in_scope, rhs1)) ->
     let
-       (floats_out, rhs'') = splitFloats float_ubx floats rhs'
+       (floats2, rhs2) = splitFloats float_ubx floats1 rhs1
     in
-    if (top_lvl || wantToExpose 0 rhs') &&     -- Float lets if (a) we're at the top level
-        not (null floats_out)                  -- or            (b) the resulting RHS is one we'd like to expose
-    then
-       tickLetFloat floats_out                         `thenSmpl_`
-               -- Do the float
-               -- 
                -- There's a subtlety here.  There may be a binding (x* = e) in the
                -- floats, where the '*' means 'will be demanded'.  So is it safe
                -- to float it out?  Answer no, but it won't matter because
                -- we only float if arg' is a WHNF,
                -- and so there can't be any 'will be demanded' bindings in the floats.
                -- Hence the assert
-       WARN( any demanded_float floats_out, ppr floats_out )
-       addLetBinds floats_out  $
-       setInScope in_scope'    $
-       thing_inside (etaFirst rhs'')
-               -- in_scope' may be excessive, but that's OK;
-               -- it's a superset of what's in scope
+    WARN( any demanded_float (fromOL floats2), ppr (fromOL floats2) )
+
+       --                      Transform the RHS
+       -- It's important that we do eta expansion on function *arguments* (which are
+       -- simplified with simplRhs), as well as let-bound right-hand sides.  
+       -- Otherwise we find that things like
+       --      f (\x -> case x of I# x' -> coerce T (\ y -> ...))
+       -- get right through to the code generator as two separate lambdas, 
+       -- which is a Bad Thing
+    tryRhsTyLam rhs2           `thenSmpl` \ (floats3, rhs3) ->
+    tryEtaExpansion rhs3 rhs_ty        `thenSmpl` \ (floats4, rhs4) ->
+
+       -- Float lets if (a) we're at the top level
+       -- or            (b) the resulting RHS is one we'd like to expose
+    if (top_lvl || exprIsCheap rhs4) then
+       (if (isNilOL floats2 && null floats3 && null floats4) then
+               returnSmpl ()
+        else
+               tick LetFloatFromLet)                   `thenSmpl_`
+
+       addFloats floats2 rhs_in_scope  $
+       addAuxiliaryBinds floats3       $
+       addAuxiliaryBinds floats4       $
+       thing_inside rhs4
     else       
                -- Don't do the float
-       thing_inside (etaFirst (mkLets floats rhs'))
+       thing_inside (wrapFloats floats1 rhs1)
 
--- In a let-from-let float, we just tick once, arbitrarily
--- choosing the first floated binder to identify it
-tickLetFloat (NonRec b r      : fs) = tick (LetFloatFromLet b)
-tickLetFloat (Rec ((b,r):prs) : fs) = tick (LetFloatFromLet b)
-       
 demanded_float (NonRec b r) = isStrict (idDemandInfo b) && not (isUnLiftedType (idType b))
                -- Unlifted-type (cheap-eagerness) lets may well have a demanded flag on them
 demanded_float (Rec _)     = False
@@ -678,46 +730,15 @@ demanded_float (Rec _)        = False
 -- can tolerate them.
 splitFloats float_ubx floats rhs
   | float_ubx = (floats, rhs)          -- Float them all
-  | otherwise = go floats
+  | otherwise = go (fromOL floats)
   where
-    go []                  = ([], rhs)
-    go (f:fs) | must_stay f = ([], mkLets (f:fs) rhs)
+    go []                  = (nilOL, rhs)
+    go (f:fs) | must_stay f = (nilOL, mkLets (f:fs) rhs)
              | otherwise   = case go fs of
-                                  (out, rhs') -> (f:out, rhs')
+                                  (out, rhs') -> (f `consOL` out, rhs')
 
     must_stay (Rec prs)    = False     -- No unlifted bindings in here
     must_stay (NonRec b r) = isUnLiftedType (idType b)
-
-wantToExpose :: Int -> CoreExpr -> Bool
--- True for expressions that we'd like to expose at the
--- top level of an RHS.  This includes partial applications
--- even if the args aren't cheap; the next pass will let-bind the
--- args and eta expand the partial application.  So exprIsCheap won't do.
--- Here's the motivating example:
---     z = letrec g = \x y -> ...g... in g E
--- Even though E is a redex we'd like to float the letrec to give
---     g = \x y -> ...g...
---     z = g E
--- Now the next use of SimplUtils.tryEtaExpansion will give
---     g = \x y -> ...g...
---     z = let v = E in \w -> g v w
--- And now we'll float the v to give
---     g = \x y -> ...g...
---     v = E
---     z = \w -> g v w
--- Which is what we want; chances are z will be inlined now.
---
--- This defn isn't quite like 
---     exprIsCheap (it ignores non-cheap args)
---     exprIsValue (may not say True for a lone variable)
--- which is slightly weird
-wantToExpose n (Var v)         = idAppIsCheap v n
-wantToExpose n (Lit l)         = True
-wantToExpose n (Lam _ e)       = True
-wantToExpose n (Note _ e)      = wantToExpose n e
-wantToExpose n (App f (Type _))        = wantToExpose n f
-wantToExpose n (App f a)       = wantToExpose (n+1) f
-wantToExpose n other           = False                 -- There won't be any lets
 \end{code}
 
 
@@ -749,10 +770,11 @@ simplVar var cont
 ---------------------------------------------------------
 --     Dealing with a call
 
-completeCall var occ cont
+completeCall var occ_info cont
   = getBlackList               `thenSmpl` \ black_list_fn ->
     getInScope                 `thenSmpl` \ in_scope ->
     getContArgs var cont       `thenSmpl` \ (args, call_cont, inline_call) ->
+    getDOptsSmpl               `thenSmpl` \ dflags ->
     let
        black_listed       = black_list_fn var
        arg_infos          = [ interestingArg in_scope arg subst 
@@ -765,7 +787,7 @@ completeCall var occ cont
        inline_cont | inline_call = discardInline cont
                    | otherwise   = cont
 
-       maybe_inline = callSiteInline black_listed inline_call occ
+       maybe_inline = callSiteInline dflags black_listed inline_call occ_info
                                      var arg_infos interesting_cont
     in
        -- First, look for an inlining
@@ -793,6 +815,18 @@ completeCall var occ cont
        -- But the black-listing mechanism means that inlining of the wrapper
        -- won't occur for things that have specialisations till a later phase, so
        -- it's ok to try for inlining first.
+       --
+       -- You might think that we shouldn't apply rules for a loop breaker: 
+       -- doing so might give rise to an infinite loop, because a RULE is
+       -- rather like an extra equation for the function:
+       --      RULE:           f (g x) y = x+y
+       --      Eqn:            f a     y = a-y
+       --
+       -- But it's too drastic to disable rules for loop breakers.  
+       -- Even the foldr/build rule would be disabled, because foldr 
+       -- is recursive, and hence a loop breaker:
+       --      foldr k z (build g) = g k z
+       -- So it's up to the programmer: rules can cause divergence
 
     getSwitchChecker   `thenSmpl` \ chkr ->
     let
@@ -802,6 +836,15 @@ completeCall var occ cont
     case maybe_rule of {
        Just (rule_name, rule_rhs) -> 
                tick (RuleFired rule_name)                      `thenSmpl_`
+#ifdef DEBUG
+               (if dopt Opt_D_dump_inlinings dflags then
+                  pprTrace "Rule fired" (vcat [
+                       text "Rule:" <+> ptext rule_name,
+                       text "Before:" <+> ppr var <+> sep (map pprParendExpr args'),
+                       text "After: " <+> pprCoreExpr rule_rhs])
+                else
+                       id)             $
+#endif
                simplExprF rule_rhs call_cont ;
        
        Nothing ->              -- No rules
@@ -911,7 +954,7 @@ even if they occur exactly once.  Reason:
        (a) some might appear as a function argument, so we simply
                replace static allocation with dynamic allocation:
                   l = <...>
-                  x = f x
+                  x = f l
        becomes
                   x = f <...>
 
@@ -952,35 +995,6 @@ preInlineUnconditionally black_listed bndr
                  OneOcc in_lam once -> not in_lam && once
                        -- Not inside a lambda, one occurrence ==> safe!
                  other              -> False
-
-
-postInlineUnconditionally :: Bool      -- Black listed
-                         -> OccInfo
-                         -> InId -> OutExpr -> Bool
-       -- Examines a (bndr = rhs) binding, AFTER the rhs has been simplified
-       -- It returns True if it's ok to discard the binding and inline the
-       -- RHS at every use site.
-
-       -- NOTE: This isn't our last opportunity to inline.
-       -- We're at the binding site right now, and
-       -- we'll get another opportunity when we get to the ocurrence(s)
-
-postInlineUnconditionally black_listed occ_info bndr rhs
-  | isExportedId bndr     = False              -- Don't inline these, ever
-  | black_listed          = False
-  | isLoopBreaker occ_info = False
-  | otherwise             = exprIsTrivial rhs  -- Duplicating is free
-       -- Don't inline even WHNFs inside lambdas; doing so may
-       -- simply increase allocation when the function is called
-       -- This isn't the last chance; see NOTE above.
-       --
-       -- NB: Even inline pragmas (e.g. IMustBeINLINEd) are ignored here
-       -- Why?  Because we don't even want to inline them into the
-       -- RHS of constructor arguments. See NOTE above
-       --
-       -- NB: Even NOINLINEis ignored here: if the rhs is trivial
-       -- it's best to inline it anyway.  We often get a=E; b=a
-       -- from desugaring, with both a and b marked NOINLINE.
 \end{code}
 
 
@@ -994,15 +1008,13 @@ postInlineUnconditionally black_listed occ_info bndr rhs
 \begin{code}
 -------------------------------------------------------------------
 -- Finish rebuilding
-rebuild_done expr
-  = getInScope                 `thenSmpl` \ in_scope ->
-    returnSmpl ([], (in_scope, expr))
+rebuild_done expr = returnOutStuff expr
 
 ---------------------------------------------------------
 rebuild :: OutExpr -> SimplCont -> SimplM OutExprStuff
 
 --     Stop continuation
-rebuild expr (Stop _) = rebuild_done expr
+rebuild expr (Stop _ _) = rebuild_done expr
 
 --     ArgOf continuation
 rebuild expr (ArgOf _ _ cont_fn) = cont_fn expr
@@ -1211,7 +1223,11 @@ knownCon :: OutExpr -> AltCon -> [OutExpr]
         -> SimplM OutExprStuff
 
 knownCon expr con args bndr alts se cont
-  = tick (KnownBranch bndr)    `thenSmpl_`
+  =    -- Arguments should be atomic;
+       -- yell if not
+    WARN( not (all exprIsTrivial args), 
+         text "knownCon" <+> ppr expr )
+    tick (KnownBranch bndr)    `thenSmpl_`
     setSubstEnv se             (
     simplBinder bndr           $ \ bndr' ->
     completeBinding bndr bndr' False False expr $
@@ -1354,8 +1370,7 @@ prepareCaseAlts _ _ scrut_cons alts
 simplAlts zap_occ_info scrut_cons case_bndr' alts cont'
   = mapSmpl simpl_alt alts
   where
-    inst_tys' = case splitTyConApp_maybe (idType case_bndr') of
-                       Just (tycon, inst_tys) -> inst_tys
+    inst_tys' = tyConAppArgs (idType case_bndr')
 
        -- handled_cons is all the constructors that are dealt
        -- with, either by being impossible, or by there being an alternative
@@ -1435,8 +1450,8 @@ mkDupableCont ty (InlinePlease cont) thing_inside
 mkDupableCont join_arg_ty (ArgOf _ cont_ty cont_fn) thing_inside
   =    -- Build the RHS of the join point
     newId SLIT("a") join_arg_ty                                ( \ arg_id ->
-       cont_fn (Var arg_id)                            `thenSmpl` \ (binds, (_, rhs)) ->
-       returnSmpl (Lam (setOneShotLambda arg_id) (mkLets binds rhs))
+       cont_fn (Var arg_id)                            `thenSmpl` \ (floats, (_, rhs)) ->
+       returnSmpl (Lam (setOneShotLambda arg_id) (wrapFloats floats rhs))
     )                                                  `thenSmpl` \ join_rhs ->
    
        -- Build the join Id and continuation
@@ -1453,7 +1468,8 @@ mkDupableCont join_arg_ty (ArgOf _ cont_ty cont_fn) thing_inside
        -- Want to tick here so that we go round again,
        -- and maybe copy or inline the code;
        -- not strictly CaseOf Case
-    addLetBind join_id join_rhs        (thing_inside new_cont)
+    addLetBind (NonRec join_id join_rhs)       $
+    thing_inside new_cont
 
 mkDupableCont ty (ApplyTo _ arg se cont) thing_inside
   = mkDupableCont (funResultTy ty) cont                $ \ cont' ->
@@ -1468,7 +1484,7 @@ mkDupableCont ty (ApplyTo _ arg se cont) thing_inside
        -- and maybe copy or inline the code;
        -- not strictly CaseOf Case
 
-     addLetBind bndr arg'                                              $
+     addLetBind (NonRec bndr arg')             $
        -- But what if the arg should be case-bound?  We can't use
        -- addNonRecBind here because its type is too specific.
        -- This has been this way for a long time, so I'll leave it,
@@ -1482,11 +1498,11 @@ mkDupableCont ty (Select _ case_bndr alts se cont) thing_inside
     setSubstEnv se (
        simplBinder case_bndr                                           $ \ case_bndr' ->
        prepareCaseCont alts cont                                       $ \ cont' ->
-       mapAndUnzipSmpl (mkDupableAlt case_bndr case_bndr' cont') alts  `thenSmpl` \ (alt_binds_s, alts') ->
-       returnSmpl (concat alt_binds_s, alts')
-    )                                  `thenSmpl` \ (alt_binds, alts') ->
+       mkDupableAlts case_bndr case_bndr' cont' alts                   $ \ alts' ->
+       returnOutStuff alts'
+    )                                  `thenSmpl` \ (alt_binds, (in_scope, alts')) ->
 
-    addNewInScopeIds [b | NonRec b _ <- alt_binds]             $
+    addFloats alt_binds in_scope               $
 
        -- NB that the new alternatives, alts', are still InAlts, using the original
        -- binders.  That means we can keep the case_bndr intact. This is important
@@ -1495,15 +1511,23 @@ mkDupableCont ty (Select _ case_bndr alts se cont) thing_inside
        -- This is VITAL when the type of case_bndr is an unboxed pair (often the
        -- case in I/O rich code.  We aren't allowed a lambda bound
        -- arg of unboxed tuple type, and indeed such a case_bndr is always dead
-    addLetBinds alt_binds                                      $
-    thing_inside (Select OkToDup case_bndr alts' se (Stop (contResultType cont)))
-
-mkDupableAlt :: InId -> OutId -> SimplCont -> InAlt -> SimplM (OutStuff InAlt)
-mkDupableAlt case_bndr case_bndr' cont alt@(con, bndrs, rhs)
+    thing_inside (Select OkToDup case_bndr alts' se (mkStop (contResultType cont)))
+
+mkDupableAlts :: InId -> OutId -> SimplCont -> [InAlt] 
+            -> ([InAlt] -> SimplM (OutStuff a))
+            -> SimplM (OutStuff a)
+mkDupableAlts case_bndr case_bndr' cont [] thing_inside
+  = thing_inside []
+mkDupableAlts case_bndr case_bndr' cont (alt:alts) thing_inside
+  = mkDupableAlt  case_bndr case_bndr' cont alt                $ \ alt' -> 
+    mkDupableAlts case_bndr case_bndr' cont alts       $ \ alts' ->
+    thing_inside (alt' : alts')
+
+mkDupableAlt case_bndr case_bndr' cont alt@(con, bndrs, rhs) thing_inside
   = simplBinders bndrs                                 $ \ bndrs' ->
     simplExprC rhs cont                                        `thenSmpl` \ rhs' ->
 
-    if (case cont of { Stop _ -> exprIsDupable rhs'; other -> False}) then
+    if (case cont of { Stop _ _ -> exprIsDupable rhs'; other -> False}) then
        -- It is worth checking for a small RHS because otherwise we
        -- get extra let bindings that may cause an extra iteration of the simplifier to
        -- inline back in place.  Quite often the rhs is just a variable or constructor.
@@ -1521,7 +1545,7 @@ mkDupableAlt case_bndr case_bndr' cont alt@(con, bndrs, rhs)
        -- because otherwise we'd need to pair it up with an empty subst-env.
        -- (Remember we must zap the subst-env before re-simplifying something).
        -- Rather than do this we simply agree to re-simplify the original (small) thing later.
-       returnSmpl ([], alt)
+       thing_inside alt
 
     else
     let
@@ -1567,12 +1591,31 @@ mkDupableAlt case_bndr case_bndr' cont alt@(con, bndrs, rhs)
        `thenSmpl` \ (final_bndrs', final_args) ->
 
        -- See comment about "$j" name above
-    newId SLIT("$j") (foldr (mkFunTy . idType) rhs_ty' final_bndrs')   $ \ join_bndr ->
-
-       -- Notice that we make the lambdas into one-shot-lambdas.  The
+    newId SLIT("$j") (foldr mkPiType rhs_ty' final_bndrs')     $ \ join_bndr ->
+       -- Notice the funky mkPiType.  If the contructor has existentials
+       -- it's possible that the join point will be abstracted over
+       -- type varaibles as well as term variables.
+       --  Example:  Suppose we have
+       --      data T = forall t.  C [t]
+       --  Then faced with
+       --      case (case e of ...) of
+       --          C t xs::[t] -> rhs
+       --  We get the join point
+       --      let j :: forall t. [t] -> ...
+       --          j = /\t \xs::[t] -> rhs
+       --      in
+       --      case (case e of ...) of
+       --          C t xs::[t] -> j t xs
+
+    let 
+       -- We make the lambdas into one-shot-lambdas.  The
        -- join point is sure to be applied at most once, and doing so
        -- prevents the body of the join point being floated out by
        -- the full laziness pass
-    returnSmpl ([NonRec join_bndr (mkLams (map setOneShotLambda final_bndrs') rhs')],
-               (con, bndrs, mkApps (Var join_bndr) final_args))
+       really_final_bndrs = map one_shot final_bndrs'
+       one_shot v | isId v    = setOneShotLambda v
+                  | otherwise = v
+    in
+    addLetBind (NonRec join_bndr (mkLams really_final_bndrs rhs'))     $
+    thing_inside (con, bndrs, mkApps (Var join_bndr) final_args)
 \end{code}