[project @ 2003-09-20 17:26:46 by ross]
[ghc-hetmet.git] / ghc / compiler / typecheck / TcBinds.lhs
index 51b7301..b5d2cb7 100644 (file)
@@ -1,76 +1,57 @@
 %
-% (c) The GRASP/AQUA Project, Glasgow University, 1992-1995
+% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
 %
 \section[TcBinds]{TcBinds}
 
 \begin{code}
-#include "HsVersions.h"
-
-module TcBinds (
-       tcTopBindsAndThen, tcLocalBindsAndThen,
-       tcSigs, doSpecPragma
-    ) where
+module TcBinds ( tcBindsAndThen, tcTopBinds, tcMonoBinds, tcSpecSigs ) where
 
---IMPORT_Trace         -- ToDo:rm (debugging)
+#include "HsVersions.h"
 
-import TcMonad         -- typechecking monad machinery
-import TcMonadFns      ( newLocalsWithOpenTyVarTys,
-                         newLocalsWithPolyTyVarTys,
-                         newSpecPragmaId, newSpecId,
-                         applyTcSubstAndCollectTyVars
-                       )
-import AbsSyn          -- the stuff being typechecked
+import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
+import {-# SOURCE #-} TcExpr  ( tcCheckSigma, tcCheckRho )
 
-import AbsUniType      ( isTyVarTy, isGroundTy, isUnboxedDataType,
-                         isGroundOrTyVarTy, extractTyVarsFromTy,
-                         UniType
+import CmdLineOpts     ( DynFlag(Opt_NoMonomorphismRestriction) )
+import HsSyn           ( HsExpr(..), HsBinds(..), MonoBinds(..), Sig(..), 
+                         Match(..), mkMonoBind,
+                         collectMonoBinders, andMonoBinds,
+                         collectSigTysFromMonoBinds
                        )
-import BackSubst       ( applyTcSubstToBinds )
-import E
-import Errors          ( topLevelUnboxedDeclErr, specGroundnessErr,
-                         specCtxtGroundnessErr, Error(..), UnifyErrContext(..)
+import RnHsSyn         ( RenamedHsBinds, RenamedSig, RenamedMonoBinds )
+import TcHsSyn         ( TcHsBinds, TcMonoBinds, TcId, zonkId, mkHsLet )
+
+import TcRnMonad
+import Inst            ( InstOrigin(..), newDicts, newIPDict, instToId )
+import TcEnv           ( tcExtendLocalValEnv, tcExtendLocalValEnv2, newLocalName )
+import TcUnify         ( Expected(..), newHole, unifyTauTyLists, checkSigTyVarsWrt, sigCtxt )
+import TcSimplify      ( tcSimplifyInfer, tcSimplifyInferCheck, tcSimplifyRestricted, 
+                         tcSimplifyToDicts, tcSimplifyIPs )
+import TcMonoType      ( tcHsSigType, UserTypeCtxt(..), TcSigInfo(..), 
+                         tcTySig, maybeSig, tcSigPolyId, tcSigMonoId, tcAddScopedTyVars
                        )
-import GenSpecEtc      ( checkSigTyVars, genBinds, SignatureInfo(..) )
-import Id              ( getIdUniType, mkInstId )
-import IdInfo          ( SpecInfo(..) )
-import Inst
-import LIE             ( nullLIE, mkLIE, plusLIE, LIE )
-import Maybes          ( assocMaybe, catMaybes, Maybe(..) )
-import Spec            ( specTy )
-import TVE             ( nullTVE, TVE(..), UniqFM )
-import TcMonoBnds      ( tcMonoBinds )
-import TcPolyType      ( tcPolyType )
+import TcPat           ( tcPat, tcSubPat, tcMonoPatBndr )
 import TcSimplify      ( bindInstsOfLocalFuns )
-import Unify           ( unifyTauTy )
-import UniqFM          ( emptyUFM ) -- profiling, pragmas only
-import Util
-\end{code}
-
-%************************************************************************
-%*                                                                     *
-\subsection{Type-checking top-level bindings}
-%*                                                                     *
-%************************************************************************
-
-@tcBindsAndThen@ takes a boolean which indicates whether the binding
-group is at top level or not.  The difference from inner bindings is
-that
-\begin{enumerate}
-\item
-we zero the substitution before each group
-\item
-we back-substitute after each group.
-\end{enumerate}
-We still return an LIE, but it is sure to contain nothing but constant
-dictionaries, which we resolve at the module level.
+import TcMType         ( newTyVar, newTyVarTy, zonkTcTyVarToTyVar )
+import TcType          ( TcTyVar, mkTyVarTy, mkForAllTys, mkFunTys, tyVarsOfType, 
+                         mkPredTy, mkForAllTy, isUnLiftedType, 
+                         unliftedTypeKind, liftedTypeKind, openTypeKind, eqKind
+                       )
 
-@tcTopBinds@ returns an LVE, not, as you might expect, a GVE.  Why?
-Because the monomorphism restriction means that is might return some
-monomorphic things, with free type variables.  Hence it must be an LVE.
+import CoreFVs         ( idFreeTyVars )
+import Id              ( mkLocalId, mkSpecPragmaId, setInlinePragma )
+import Var             ( idType, idName )
+import Name            ( Name, getSrcLoc )
+import NameSet
+import Var             ( tyVarKind )
+import VarSet
+import Bag
+import Util            ( isIn, equalLength )
+import BasicTypes      ( TopLevelFlag(..), RecFlag(..), isNonRec, isRec, 
+                         isNotTopLevel, isAlwaysActive )
+import FiniteMap       ( listToFM, lookupFM )
+import Outputable
+\end{code}
 
-The LIE returned by @tcTopBinds@ may constrain some type variables,
-but they are guaranteed to be a subset of those free in the
-corresponding returned LVE.
 
 %************************************************************************
 %*                                                                     *
@@ -78,7 +59,7 @@ corresponding returned LVE.
 %*                                                                     *
 %************************************************************************
 
-@tcBindsAndThen@ typechecks a @Binds@.  The "and then" part is because
+@tcBindsAndThen@ typechecks a @HsBinds@.  The "and then" part is because
 it needs to know something about the {\em usage} of the things bound,
 so that it can create specialisations of them.  So @tcBindsAndThen@
 takes a function which, given an extended environment, E, typechecks
@@ -89,7 +70,7 @@ specialising the things bound.
 @tcBindsAndThen@ also takes a "combiner" which glues together the
 bindings and the "thing" to make a new "thing".
 
-The real work is done by @tcBindAndThen@.
+The real work is done by @tcBindWithSigsAndThen@.
 
 Recursive and non-recursive binds are handled in essentially the same
 way: because of uniques there are no scoping issues left.  The only
@@ -100,444 +81,794 @@ to the LVE for the following reason.  When each individual binding is
 checked the type of its LHS is unified with that of its RHS; and
 type-checking the LHS of course requires that the binder is in scope.
 
+At the top-level the LIE is sure to contain nothing but constant
+dictionaries, which we resolve at the module level.
+
 \begin{code}
-tcBindsAndThen 
-       :: Bool
-       -> E 
-       -> (TypecheckedBinds -> thing -> thing)         -- Combinator
-       -> RenamedBinds
-       -> (E -> TcM (thing, LIE, thing_ty))
-       -> TcM (thing, LIE, thing_ty)
-
-tcBindsAndThen top_level e combiner EmptyBinds do_next
-  = do_next e          `thenTc` \ (thing, lie, thing_ty) ->
-    returnTc (combiner EmptyBinds thing, lie, thing_ty)
-
-tcBindsAndThen top_level e combiner (SingleBind bind) do_next
-  = tcBindAndThen top_level e combiner bind [] do_next
-
-tcBindsAndThen top_level e combiner (BindWith bind sigs) do_next
-  = tcBindAndThen top_level e combiner bind sigs do_next
-
-tcBindsAndThen top_level e combiner (ThenBinds binds1 binds2) do_next
-  = tcBindsAndThen top_level e combiner binds1 new_after
+tcTopBinds :: RenamedHsBinds -> TcM (TcMonoBinds, TcLclEnv)
+       -- Note: returning the TcLclEnv is more than we really
+       --       want.  The bit we care about is the local bindings
+       --       and the free type variables thereof
+tcTopBinds binds
+  = tc_binds_and_then TopLevel glue binds      $
+    getLclEnv                                  `thenM` \ env ->
+    returnM (EmptyMonoBinds, env)
+  where
+       -- The top level bindings are flattened into a giant 
+       -- implicitly-mutually-recursive MonoBinds
+    glue binds1 (binds2, env) = (flatten binds1 `AndMonoBinds` binds2, env)
+    flatten EmptyBinds                 = EmptyMonoBinds
+    flatten (b1 `ThenBinds` b2) = flatten b1 `AndMonoBinds` flatten b2
+    flatten (MonoBind b _ _)   = b
+       -- Can't have a IPBinds at top level
+
+
+tcBindsAndThen
+       :: (TcHsBinds -> thing -> thing)                -- Combinator
+       -> RenamedHsBinds
+       -> TcM thing
+       -> TcM thing
+
+tcBindsAndThen = tc_binds_and_then NotTopLevel
+
+tc_binds_and_then top_lvl combiner EmptyBinds do_next
+  = do_next
+tc_binds_and_then top_lvl combiner (MonoBind EmptyMonoBinds sigs is_rec) do_next
+  = do_next
+
+tc_binds_and_then top_lvl combiner (ThenBinds b1 b2) do_next
+  = tc_binds_and_then top_lvl combiner b1      $
+    tc_binds_and_then top_lvl combiner b2      $
+    do_next
+
+tc_binds_and_then top_lvl combiner (IPBinds binds is_with) do_next
+  = getLIE do_next                     `thenM` \ (result, expr_lie) ->
+    mapAndUnzipM tc_ip_bind binds      `thenM` \ (avail_ips, binds') ->
+
+       -- If the binding binds ?x = E, we  must now 
+       -- discharge any ?x constraints in expr_lie
+    tcSimplifyIPs avail_ips expr_lie   `thenM` \ dict_binds ->
+
+    returnM (combiner (IPBinds binds' is_with) $
+            combiner (mkMonoBind Recursive dict_binds) result)
   where
-    -- new_after :: E -> TcM (thing, LIE, thing_ty)
-    -- Can't write this signature, cos it's monomorphic in thing and
-    -- thing_ty.
-    new_after e = tcBindsAndThen top_level e combiner binds2 do_next
+       -- I wonder if we should do these one at at time
+       -- Consider     ?x = 4
+       --              ?y = ?x + 1
+    tc_ip_bind (ip, expr)
+      = newTyVarTy openTypeKind                `thenM` \ ty ->
+       getSrcLocM                      `thenM` \ loc ->
+       newIPDict (IPBind ip) ip ty     `thenM` \ (ip', ip_inst) ->
+       tcCheckRho expr ty              `thenM` \ expr' ->
+       returnM (ip_inst, (ip', expr'))
+
+tc_binds_and_then top_lvl combiner (MonoBind bind sigs is_rec) do_next
+  =    -- BRING ANY SCOPED TYPE VARIABLES INTO SCOPE
+       -- Notice that they scope over 
+       --      a) the type signatures in the binding group
+       --      b) the bindings in the group
+       --      c) the scope of the binding group (the "in" part)
+      tcAddScopedTyVars (collectSigTysFromMonoBinds bind)      $
+
+      tcBindWithSigs top_lvl bind sigs is_rec  `thenM` \ (poly_binds, poly_ids) ->
+  
+      case top_lvl of
+       TopLevel        -- For the top level don't bother will all this
+                       --  bindInstsOfLocalFuns stuff. All the top level 
+                       -- things are rec'd together anyway, so it's fine to
+                       -- leave them to the tcSimplifyTop, and quite a bit faster too
+                       --
+                       -- Subtle (and ugly) point: furthermore at top level we
+                       -- return the TcLclEnv, which contains the LIE var; we
+                       -- don't want to return the wrong one!
+               -> tc_body poly_ids                     `thenM` \ (prag_binds, thing) ->
+                  returnM (combiner (mkMonoBind Recursive (poly_binds `andMonoBinds` prag_binds)) 
+                                    thing)
+
+       NotTopLevel     -- For nested bindings we must do teh bindInstsOfLocalFuns thing
+               -> getLIE (tc_body poly_ids)            `thenM` \ ((prag_binds, thing), lie) ->
+
+                       -- Create specialisations of functions bound here
+                   bindInstsOfLocalFuns lie poly_ids   `thenM` \ lie_binds ->
+
+                       -- We want to keep non-recursive things non-recursive
+                       -- so that we desugar unlifted bindings correctly
+                  if isRec is_rec then
+                    returnM (
+                       combiner (mkMonoBind Recursive (
+                               poly_binds `andMonoBinds`
+                               lie_binds  `andMonoBinds`
+                               prag_binds)) thing
+                    )
+                  else
+                    returnM (
+                       combiner (mkMonoBind NonRecursive poly_binds) $
+                       combiner (mkMonoBind NonRecursive prag_binds) $
+                       combiner (mkMonoBind Recursive lie_binds)     $
+                               -- NB: the binds returned by tcSimplify and bindInstsOfLocalFuns
+                               -- aren't guaranteed in dependency order (though we could change
+                               -- that); hence the Recursive marker.
+                       thing)
+  where
+    tc_body poly_ids   -- Type check the pragmas and "thing inside"
+      =   -- Extend the environment to bind the new polymorphic Ids
+         tcExtendLocalValEnv poly_ids  $
+  
+         -- Build bindings and IdInfos corresponding to user pragmas
+         tcSpecSigs sigs               `thenM` \ prag_binds ->
+
+         -- Now do whatever happens next, in the augmented envt
+         do_next                       `thenM` \ thing ->
+
+         returnM (prag_binds, thing)
 \end{code}
 
-Simple wrappers for export:
+
+%************************************************************************
+%*                                                                     *
+\subsection{tcBindWithSigs}
+%*                                                                     *
+%************************************************************************
+
+@tcBindWithSigs@ deals with a single binding group.  It does generalisation,
+so all the clever stuff is in here.
+
+* binder_names and mbind must define the same set of Names
+
+* The Names in tc_ty_sigs must be a subset of binder_names
+
+* The Ids in tc_ty_sigs don't necessarily have to have the same name
+  as the Name in the tc_ty_sig
+
 \begin{code}
-tcTopBindsAndThen
-       :: E
-       -> (TypecheckedBinds -> thing -> thing)         -- Combinator
-       -> RenamedBinds 
-       -> (E -> TcM (thing, LIE, anything))
-       -> TcM (thing, LIE, anything)
-
-tcTopBindsAndThen e combiner binds do_next
-  = tcBindsAndThen True e combiner binds do_next
-
-tcLocalBindsAndThen
-       :: E 
-       -> (TypecheckedBinds -> thing -> thing)         -- Combinator
-       -> RenamedBinds 
-       -> (E -> TcM (thing, LIE, thing_ty))
-       -> TcM (thing, LIE, thing_ty)
-
-tcLocalBindsAndThen e combiner binds do_next
-  = tcBindsAndThen False e combiner  binds do_next
+tcBindWithSigs 
+       :: TopLevelFlag
+       -> RenamedMonoBinds
+       -> [RenamedSig]         -- Used solely to get INLINE, NOINLINE sigs
+       -> RecFlag
+       -> TcM (TcMonoBinds, [TcId])
+
+tcBindWithSigs top_lvl mbind sigs is_rec
+  =    -- TYPECHECK THE SIGNATURES
+     recoverM (returnM []) (
+       mappM tcTySig [sig | sig@(Sig name _ _) <- sigs]
+     )                                         `thenM` \ tc_ty_sigs ->
+
+       -- SET UP THE MAIN RECOVERY; take advantage of any type sigs
+   recoverM (
+       -- If typechecking the binds fails, then return with each
+       -- signature-less binder given type (forall a.a), to minimise subsequent
+       -- error messages
+       newTyVar liftedTypeKind         `thenM` \ alpha_tv ->
+       let
+         forall_a_a    = mkForAllTy alpha_tv (mkTyVarTy alpha_tv)
+          binder_names  = collectMonoBinders mbind
+         poly_ids      = map mk_dummy binder_names
+         mk_dummy name = case maybeSig tc_ty_sigs name of
+                           Just sig -> tcSigPolyId sig                 -- Signature
+                           Nothing  -> mkLocalId name forall_a_a       -- No signature
+       in
+       traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)   `thenM_`
+       returnM (EmptyMonoBinds, poly_ids)
+    )                                          $
+
+       -- TYPECHECK THE BINDINGS
+    getLIE (tcMonoBinds mbind tc_ty_sigs is_rec)       `thenM` \ ((mbind', bndr_names_w_ids), lie_req) ->
+    let
+       (binder_names, mono_ids) = unzip (bagToList bndr_names_w_ids)
+       tau_tvs = foldr (unionVarSet . tyVarsOfType . idType) emptyVarSet mono_ids
+    in
+
+       -- GENERALISE
+       --      (it seems a bit crude to have to do getLIE twice,
+       --       but I can't see a better way just now)
+    addSrcLoc  (minimum (map getSrcLoc binder_names))          $
+    addErrCtxt (genCtxt binder_names)                          $
+    getLIE (generalise binder_names mbind tau_tvs lie_req tc_ty_sigs)
+                       `thenM` \ ((tc_tyvars_to_gen, dict_binds, dict_ids), lie_free) ->
+
+
+       -- ZONK THE GENERALISED TYPE VARIABLES TO REAL TyVars
+       -- This commits any unbound kind variables to boxed kind, by unification
+       -- It's important that the final quanfified type variables
+       -- are fully zonked, *including boxity*, because they'll be 
+       -- included in the forall types of the polymorphic Ids.
+       -- At calls of these Ids we'll instantiate fresh type variables from
+       -- them, and we use their boxity then.
+    mappM zonkTcTyVarToTyVar tc_tyvars_to_gen  `thenM` \ real_tyvars_to_gen ->
+
+       -- ZONK THE Ids
+       -- It's important that the dict Ids are zonked, including the boxity set
+       -- in the previous step, because they are later used to form the type of 
+       -- the polymorphic thing, and forall-types must be zonked so far as 
+       -- their bound variables are concerned
+    mappM zonkId dict_ids                              `thenM` \ zonked_dict_ids ->
+    mappM zonkId mono_ids                              `thenM` \ zonked_mono_ids ->
+
+       -- BUILD THE POLYMORPHIC RESULT IDs
+    let
+       exports  = zipWith mk_export binder_names zonked_mono_ids
+       poly_ids = [poly_id | (_, poly_id, _) <- exports]
+       dict_tys = map idType zonked_dict_ids
+
+       inlines    = mkNameSet [name | InlineSig True name _ loc <- sigs]
+                       -- Any INLINE sig (regardless of phase control) 
+                       -- makes the RHS look small
+        inline_phases = listToFM [(name, phase) | InlineSig _ name phase _ <- sigs, 
+                                                 not (isAlwaysActive phase)]
+                       -- Set the IdInfo field to control the inline phase
+                       -- AlwaysActive is the default, so don't bother with them
+
+       mk_export binder_name zonked_mono_id
+         = (tyvars, 
+            attachInlinePhase inline_phases poly_id,
+            zonked_mono_id)
+         where
+           (tyvars, poly_id) = 
+               case maybeSig tc_ty_sigs binder_name of
+                 Just (TySigInfo sig_poly_id sig_tyvars _ _ _ _ _) -> 
+                       (sig_tyvars, sig_poly_id)
+                 Nothing -> (real_tyvars_to_gen, new_poly_id)
+
+           new_poly_id = mkLocalId binder_name poly_ty
+           poly_ty = mkForAllTys real_tyvars_to_gen
+                   $ mkFunTys dict_tys 
+                   $ idType zonked_mono_id
+               -- It's important to build a fully-zonked poly_ty, because
+               -- we'll slurp out its free type variables when extending the
+               -- local environment (tcExtendLocalValEnv); if it's not zonked
+               -- it appears to have free tyvars that aren't actually free 
+               -- at all.
+    in
+
+    traceTc (text "binding:" <+> ppr ((zonked_dict_ids, dict_binds),
+                                     exports, map idType poly_ids)) `thenM_`
+
+       -- Check for an unlifted, non-overloaded group
+       -- In that case we must make extra checks
+    if any (isUnLiftedType . idType) zonked_mono_ids && null zonked_dict_ids 
+    then       -- Some bindings are unlifted
+       checkUnliftedBinds top_lvl is_rec real_tyvars_to_gen mbind      `thenM_` 
+       
+       extendLIEs lie_req                      `thenM_`
+       returnM (
+           AbsBinds [] [] exports inlines mbind',
+               -- Do not generate even any x=y bindings
+           poly_ids
+        )
+
+    else       -- The normal case
+    extendLIEs lie_free                                `thenM_`
+    returnM (
+       AbsBinds real_tyvars_to_gen
+                zonked_dict_ids
+                exports
+                inlines
+                (dict_binds `andMonoBinds` mbind'),
+       poly_ids
+    )
+
+attachInlinePhase inline_phases bndr
+  = case lookupFM inline_phases (idName bndr) of
+       Just prag -> bndr `setInlinePragma` prag
+       Nothing   -> bndr
+
+-- Check that non-overloaded unlifted bindings are
+--     a) non-recursive,
+--     b) not top level, 
+--     c) non-polymorphic
+--     d) not a multiple-binding group (more or less implied by (a))
+
+checkUnliftedBinds top_lvl is_rec real_tyvars_to_gen mbind
+  = ASSERT( not (any ((eqKind unliftedTypeKind) . tyVarKind) real_tyvars_to_gen) )
+               -- The instCantBeGeneralised stuff in tcSimplify should have
+               -- already raised an error if we're trying to generalise an 
+               -- unboxed tyvar (NB: unboxed tyvars are always introduced 
+               -- along with a class constraint) and it's better done there 
+               -- because we have more precise origin information.
+               -- That's why we just use an ASSERT here.
+
+    checkTc (isNotTopLevel top_lvl)
+           (unliftedBindErr "Top-level" mbind)         `thenM_`
+    checkTc (isNonRec is_rec)
+           (unliftedBindErr "Recursive" mbind)         `thenM_`
+    checkTc (single_bind mbind)
+           (unliftedBindErr "Multiple" mbind)          `thenM_`
+    checkTc (null real_tyvars_to_gen)
+           (unliftedBindErr "Polymorphic" mbind)
+
+  where
+    single_bind (PatMonoBind _ _ _)   = True
+    single_bind (FunMonoBind _ _ _ _) = True
+    single_bind other                = False
 \end{code}
 
-An aside.  The original version of @tcBindsAndThen@ which lacks a
-combiner function, appears below.  Though it is perfectly well
-behaved, it cannot be typed by Haskell, because the recursive call is
-at a different type to the definition itself.  There aren't too many
-examples of this, which is why I thought it worth preserving! [SLPJ]
 
-\begin{pseudocode}
-tcBindsAndThen 
-       :: Bool -> E -> RenamedBinds
-       -> (E -> TcM (thing, LIE, thing_ty))
-       -> TcM ((TypecheckedBinds, thing), LIE, thing_ty)
+Polymorphic recursion
+~~~~~~~~~~~~~~~~~~~~~
+The game plan for polymorphic recursion in the code above is 
 
-tcBindsAndThen top_level e EmptyBinds do_next
-  = do_next e          `thenTc` \ (thing, lie, thing_ty) ->
-    returnTc ((EmptyBinds, thing), lie, thing_ty)
+       * Bind any variable for which we have a type signature
+         to an Id with a polymorphic type.  Then when type-checking 
+         the RHSs we'll make a full polymorphic call.
 
-tcBindsAndThen top_level e (SingleBind bind) do_next
-  = tcBindAndThen top_level e bind [] do_next
+This fine, but if you aren't a bit careful you end up with a horrendous
+amount of partial application and (worse) a huge space leak. For example:
 
-tcBindsAndThen top_level e (BindWith bind sigs) do_next
-  = tcBindAndThen top_level e bind sigs do_next
+       f :: Eq a => [a] -> [a]
+       f xs = ...f...
 
-tcBindsAndThen top_level e (ThenBinds binds1 binds2) do_next
-  = tcBindsAndThen top_level e binds1 new_after
-       `thenTc` \ ((binds1', (binds2', thing')), lie1, thing_ty) ->
+If we don't take care, after typechecking we get
 
-    returnTc ((binds1' `ThenBinds` binds2', thing'), lie1, thing_ty)
+       f = /\a -> \d::Eq a -> let f' = f a d
+                              in
+                              \ys:[a] -> ...f'...
+
+Notice the the stupid construction of (f a d), which is of course
+identical to the function we're executing.  In this case, the
+polymorphic recursion isn't being used (but that's a very common case).
+We'd prefer
+
+       f = /\a -> \d::Eq a -> letrec
+                                fm = \ys:[a] -> ...fm...
+                              in
+                              fm
+
+This can lead to a massive space leak, from the following top-level defn
+(post-typechecking)
+
+       ff :: [Int] -> [Int]
+       ff = f Int dEqInt
+
+Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
+f' is another thunk which evaluates to the same thing... and you end
+up with a chain of identical values all hung onto by the CAF ff.
+
+       ff = f Int dEqInt
+
+          = let f' = f Int dEqInt in \ys. ...f'...
+
+          = let f' = let f' = f Int dEqInt in \ys. ...f'...
+                     in \ys. ...f'...
+
+Etc.
+Solution: when typechecking the RHSs we always have in hand the
+*monomorphic* Ids for each binding.  So we just need to make sure that
+if (Method f a d) shows up in the constraints emerging from (...f...)
+we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
+to the "givens" when simplifying constraints.  That's what the "lies_avail"
+is doing.
 
-  where
-    -- new_after :: E -> TcM ((TypecheckedBinds, thing), LIE, thing_ty)
-    -- Can't write this signature, cos it's monomorphic in thing and thing_ty
-    new_after e = tcBindsAndThen top_level e binds2 do_next
-\end{pseudocode}
 
 %************************************************************************
 %*                                                                     *
-\subsection{Bind}
+\subsection{getTyVarsToGen}
 %*                                                                     *
 %************************************************************************
 
 \begin{code}
-tcBindAndThen
-       :: Bool                                           -- At top level
-       -> E 
-       -> (TypecheckedBinds -> thing -> thing)           -- Combinator
-       -> RenamedBind                                    -- The Bind to typecheck
-       -> [RenamedSig]                                   -- ...and its signatures
-       -> (E -> TcM (thing, LIE, thing_ty))              -- Thing to type check in
-                                                         -- augmented envt
-       -> TcM (thing, LIE, thing_ty)                     -- Results, incl the 
-
-tcBindAndThen top_level e combiner bind sigs do_next
-  =    -- Deal with the bind
-    tcBind top_level e bind sigs    `thenTc` \ (poly_binds, poly_lie, poly_lve) ->
-
-       -- Now do whatever happens next, in the augmented envt
-    do_next (growE_LVE e poly_lve)  `thenTc` \ (thing, thing_lie, thing_ty) ->
-    let
-       bound_ids = map snd poly_lve
-    in
-       -- Create specialisations
-    specialiseBinds bound_ids thing_lie poly_binds poly_lie
-                                   `thenNF_Tc` \ (final_binds, final_lie) ->
-       -- All done
-    returnTc (combiner final_binds thing, final_lie, thing_ty)
-\end{code}
+generalise binder_names mbind tau_tvs lie_req sigs =
 
-\begin{code}
-tcBind :: Bool -> E 
-       -> RenamedBind -> [RenamedSig]
-       -> TcM (TypecheckedBinds, LIE, LVE)     -- LIE is a fixed point of substitution
+  -- check for -fno-monomorphism-restriction
+  doptM Opt_NoMonomorphismRestriction          `thenM` \ no_MR ->
+  let is_unrestricted | no_MR    = True
+                     | otherwise = isUnRestrictedGroup tysig_names mbind
+  in
 
-tcBind False e bind sigs                       -- Not top level
-  = tcBind_help False e bind sigs
+  if not is_unrestricted then  -- RESTRICTED CASE
+       -- Check signature contexts are empty 
+    checkTc (all is_mono_sig sigs)
+           (restrictedBindCtxtErr binder_names)        `thenM_`
 
-tcBind True  e bind sigs                       -- Top level!
-  = pruneSubstTc (tvOfE e) (
+       -- Now simplify with exactly that set of tyvars
+       -- We have to squash those Methods
+    tcSimplifyRestricted doc tau_tvs lie_req           `thenM` \ (qtvs, binds) ->
 
-        -- DO THE WORK
-    tcBind_help True e bind sigs       `thenTc` \ (new_binds, lie, lve) ->
+       -- Check that signature type variables are OK
+    checkSigsTyVars qtvs sigs                          `thenM` \ final_qtvs ->
 
-{-  Top-level unboxed values are now allowed
-    They will be lifted by the Desugarer (see CoreLift.lhs)
+    returnM (final_qtvs, binds, [])
 
-       -- CHECK FOR PRIMITIVE TOP-LEVEL BINDS
-       listTc [ checkTc (isUnboxedDataType (getIdUniType id))
-                        (topLevelUnboxedDeclErr id (getSrcLoc id))
-              | (_,id) <- lve ]        `thenTc_`
--}
+  else if null sigs then       -- UNRESTRICTED CASE, NO TYPE SIGS
+    tcSimplifyInfer doc tau_tvs lie_req
 
-    -- Back-substitute over the binds, since we are about to discard
-    -- a good chunk of the substitution.
-    applyTcSubstToBinds new_binds      `thenNF_Tc` \ final_binds ->
+  else                                 -- UNRESTRICTED CASE, WITH TYPE SIGS
+       -- CHECKING CASE: Unrestricted group, there are type signatures
+       -- Check signature contexts are identical
+    checkSigsCtxts sigs                        `thenM` \ (sig_avails, sig_dicts) ->
+    
+       -- Check that the needed dicts can be
+       -- expressed in terms of the signature ones
+    tcSimplifyInferCheck doc tau_tvs sig_avails lie_req        `thenM` \ (forall_tvs, dict_binds) ->
+       
+       -- Check that signature type variables are OK
+    checkSigsTyVars forall_tvs sigs                    `thenM` \ final_qtvs ->
 
-    -- The lie is already a fixed point of the substitution; it just turns out
-    -- that almost always this happens automatically, and so we made it part of
-    -- the specification of genBinds.
-    returnTc (final_binds, lie, lve)
-    )
-\end{code}
+    returnM (final_qtvs, dict_binds, sig_dicts)
 
-\begin{code}
-tcBind_help top_level e bind sigs
-  =    -- Create an LVE binding each identifier to an appropriate type variable
-    new_locals binders         `thenNF_Tc` \ bound_ids ->
-    let  lve = binders `zip` bound_ids  in
-
-       -- Now deal with type signatures, if any
-    tcSigs e lve sigs          `thenTc`    \ sig_info ->
-
-       -- Check the bindings: this is the point at which we can use
-       -- error recovery.  If checking the bind fails we just
-       -- return the empty bindings.  The variables will still be in
-       -- scope, but bound to completely free type variables, which
-       -- is just what we want to minimise subsequent error messages.
-    recoverTc (NonRecBind EmptyMonoBinds, nullLIE)
-             (tc_bind (growE_LVE e lve) bind)  `thenNF_Tc` \ (bind', lie) ->
-
-       -- Notice that genBinds gets the old (non-extended) environment
-    genBinds top_level e bind' lie lve sig_info        `thenTc` \ (binds', lie, lve) ->
-
-       -- Add bindings corresponding to SPECIALIZE pragmas in the code
-    mapAndUnzipTc (doSpecPragma e (assoc "doSpecPragma" lve))
-                 (get_spec_pragmas sig_info)
-                       `thenTc` \ (spec_binds_s, spec_lie_s) ->
-
-    returnTc (binds' `ThenBinds` (SingleBind (NonRecBind (
-               foldr AndMonoBinds EmptyMonoBinds spec_binds_s))),
-             lie `plusLIE` (foldr plusLIE nullLIE spec_lie_s),
-             lve)
   where
-    binders = collectBinders bind
-
-    new_locals binders
-      = case bind of
-         NonRecBind _ -> -- Recursive, so no unboxed types
-                         newLocalsWithOpenTyVarTys binders
+    tysig_names = map (idName . tcSigPolyId) sigs
+    is_mono_sig (TySigInfo _ _ theta _ _ _ _) = null theta
+
+    doc = ptext SLIT("type signature(s) for") <+> pprBinders binder_names
+
+-----------------------
+       -- CHECK THAT ALL THE SIGNATURE CONTEXTS ARE UNIFIABLE
+       -- The type signatures on a mutually-recursive group of definitions
+       -- must all have the same context (or none).
+       --
+       -- We unify them because, with polymorphic recursion, their types
+       -- might not otherwise be related.  This is a rather subtle issue.
+       -- ToDo: amplify
+checkSigsCtxts sigs@(TySigInfo id1 sig_tvs theta1 _ _ _ src_loc : other_sigs)
+  = addSrcLoc src_loc                  $
+    mappM_ check_one other_sigs                `thenM_` 
+    if null theta1 then
+       returnM ([], [])                -- Non-overloaded type signatures
+    else
+    newDicts SignatureOrigin theta1    `thenM` \ sig_dicts ->
+    let
+       -- The "sig_avails" is the stuff available.  We get that from
+       -- the context of the type signature, BUT ALSO the lie_avail
+       -- so that polymorphic recursion works right (see comments at end of fn)
+       sig_avails = sig_dicts ++ sig_meths
+    in
+    returnM (sig_avails, map instToId sig_dicts)
+  where
+    sig1_dict_tys = map mkPredTy theta1
+    sig_meths    = concat [insts | TySigInfo _ _ _ _ _ insts _ <- sigs]
 
-         RecBind _    -> -- Non-recursive, so we permit unboxed types
-                         newLocalsWithPolyTyVarTys binders
+    check_one sig@(TySigInfo id _ theta _ _ _ _)
+       = addErrCtxt (sigContextsCtxt id1 id)                   $
+        checkTc (equalLength theta theta1) sigContextsErr      `thenM_`
+        unifyTauTyLists sig1_dict_tys (map mkPredTy theta)
 
-    get_spec_pragmas sig_info
-      = catMaybes (map get_pragma_maybe sig_info)
-      where
-       get_pragma_maybe s@(ValSpecInfo _ _ _ _) = Just s
-       get_pragma_maybe _                       = Nothing
+checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
+checkSigsTyVars qtvs sigs 
+  = mappM check_one sigs       `thenM` \ sig_tvs_s ->
+    let
+       -- Sigh.  Make sure that all the tyvars in the type sigs
+       -- appear in the returned ty var list, which is what we are
+       -- going to generalise over.  Reason: we occasionally get
+       -- silly types like
+       --      type T a = () -> ()
+       --      f :: T a
+       --      f () = ()
+       -- Here, 'a' won't appear in qtvs, so we have to add it
+
+       sig_tvs = foldr (unionVarSet . mkVarSet) emptyVarSet sig_tvs_s
+       all_tvs = mkVarSet qtvs `unionVarSet` sig_tvs
+    in
+    returnM (varSetElems all_tvs)
+  where
+    check_one (TySigInfo id sig_tyvars sig_theta sig_tau _ _ src_loc)
+      = addSrcLoc src_loc                                              $
+       addErrCtxt (ptext SLIT("When checking the type signature for") 
+                     <+> quotes (ppr id))                              $
+       addErrCtxtM (sigCtxt id sig_tyvars sig_theta sig_tau)           $
+       checkSigTyVarsWrt (idFreeTyVars id) sig_tyvars
 \end{code}
 
-\begin{verbatim}
-       f :: Ord a => [a] -> b -> b
-       {-# SPECIALIZE f :: [Int] -> b -> b #-}
-\end{verbatim}
-We generate:
-\begin{verbatim}
-       f@Int = /\ b -> let d1 = ...
-                       in f Int b d1
+@getTyVarsToGen@ decides what type variables to generalise over.
+
+For a "restricted group" -- see the monomorphism restriction
+for a definition -- we bind no dictionaries, and
+remove from tyvars_to_gen any constrained type variables
+
+*Don't* simplify dicts at this point, because we aren't going
+to generalise over these dicts.  By the time we do simplify them
+we may well know more.  For example (this actually came up)
+       f :: Array Int Int
+       f x = array ... xs where xs = [1,2,3,4,5]
+We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
+stuff.  If we simplify only at the f-binding (not the xs-binding)
+we'll know that the literals are all Ints, and we can just produce
+Int literals!
+
+Find all the type variables involved in overloading, the
+"constrained_tyvars".  These are the ones we *aren't* going to
+generalise.  We must be careful about doing this:
+
+ (a) If we fail to generalise a tyvar which is not actually
+       constrained, then it will never, ever get bound, and lands
+       up printed out in interface files!  Notorious example:
+               instance Eq a => Eq (Foo a b) where ..
+       Here, b is not constrained, even though it looks as if it is.
+       Another, more common, example is when there's a Method inst in
+       the LIE, whose type might very well involve non-overloaded
+       type variables.
+  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
+       the simple thing instead]
+
+ (b) On the other hand, we mustn't generalise tyvars which are constrained,
+       because we are going to pass on out the unmodified LIE, with those
+       tyvars in it.  They won't be in scope if we've generalised them.
+
+So we are careful, and do a complete simplification just to find the
+constrained tyvars. We don't use any of the results, except to
+find which tyvars are constrained.
 
+\begin{code}
+isUnRestrictedGroup :: [Name]          -- Signatures given for these
+                   -> RenamedMonoBinds
+                   -> Bool
+
+is_elem v vs = isIn "isUnResMono" v vs
+
+isUnRestrictedGroup sigs (PatMonoBind other        _ _) = False
+isUnRestrictedGroup sigs (VarMonoBind v _)             = v `is_elem` sigs
+isUnRestrictedGroup sigs (FunMonoBind v _ matches _)   = isUnRestrictedMatch matches || 
+                                                         v `is_elem` sigs
+isUnRestrictedGroup sigs (AndMonoBinds mb1 mb2)                = isUnRestrictedGroup sigs mb1 &&
+                                                         isUnRestrictedGroup sigs mb2
+isUnRestrictedGroup sigs EmptyMonoBinds                        = True
+
+isUnRestrictedMatch (Match [] _ _ : _) = False -- No args => like a pattern binding
+isUnRestrictedMatch other             = True   -- Some args => a function binding
+\end{code}
 
-       h :: Ord a => [a] -> b -> b
-       {-# SPECIALIZE h :: [Int] -> b -> b #-}
 
-       spec_h = /\b -> h [Int] b dListOfInt
-                       ^^^^^^^^^^^^^^^^^^^^ This bit created by specId
-\end{verbatim}
+%************************************************************************
+%*                                                                     *
+\subsection{tcMonoBind}
+%*                                                                     *
+%************************************************************************
+
+@tcMonoBinds@ deals with a single @MonoBind@.  
+The signatures have been dealt with already.
 
 \begin{code}
-doSpecPragma :: E
-            -> (Name -> Id)
-            -> SignatureInfo
-            -> TcM (TypecheckedMonoBinds, LIE)
-
-doSpecPragma e name_to_id (ValSpecInfo name spec_ty using src_loc)
-  = let
-       main_id = name_to_id name    -- Get the parent Id
-
-       main_id_ty = getIdUniType main_id
-       main_id_free_tyvars = extractTyVarsFromTy main_id_ty
-       origin = ValSpecOrigin name src_loc
-       err_ctxt = ValSpecSigCtxt name spec_ty src_loc
-    in
-    addSrcLocTc src_loc                 (
-    specTy origin spec_ty `thenNF_Tc` \ (spec_tyvars, spec_dicts, spec_tau) ->
-
-       -- Check that the SPECIALIZE pragma had an empty context
-    checkTc (not (null spec_dicts))
-           (panic "SPECIALIZE non-empty context (ToDo: msg)") `thenTc_`
-
-       -- Make an instance of this id
-    specTy origin main_id_ty `thenNF_Tc` \ (main_tyvars, main_dicts, main_tau) ->
-
-       -- Check that the specialised type is indeed an instance of
-       -- the inferred type.
-       -- The unification should leave all type vars which are
-       -- currently free in the environment still free, and likewise
-       -- the signature type vars.
-       -- The only way type vars free in the envt could possibly be affected
-       -- is if main_id_ty has free type variables.  So we just extract them,
-       -- and check that they are not constrained in any way by the unification.
-    applyTcSubstAndCollectTyVars main_id_free_tyvars  `thenNF_Tc` \ free_tyvars' ->
-    unifyTauTy spec_tau main_tau err_ctxt   `thenTc_`
-    checkSigTyVars [] (spec_tyvars ++ free_tyvars')
-                  spec_tau main_tau err_ctxt `thenTc_`
-
-       -- Check that the type variables of the polymorphic function are
-       -- either left polymorphic, or instantiate to ground type.
-       -- Also check that the overloaded type variables are instantiated to
-       -- ground type; or equivalently that all dictionaries have ground type
-    applyTcSubstToTyVars main_tyvars   `thenNF_Tc` \ main_arg_tys ->
-    applyTcSubstToInsts  main_dicts    `thenNF_Tc` \ main_dicts' ->
-
-    checkTc (not (all isGroundOrTyVarTy main_arg_tys))
-           (specGroundnessErr err_ctxt main_arg_tys)
-                                       `thenTc_`
-
-    checkTc (not (and [isGroundTy ty | (_,ty) <- map getDictClassAndType main_dicts']))
-           (specCtxtGroundnessErr err_ctxt main_dicts')
-                                       `thenTc_`
-
-       -- Build a suitable binding; depending on whether we were given
-       -- a value (Maybe Name) to be used as the specialisation.
-    case using of
-      Nothing ->
-
-           -- Make a specPragmaId to which to bind the new call-instance
-       newSpecPragmaId name spec_ty Nothing
-                                       `thenNF_Tc` \ pseudo_spec_id ->
-       let
-           pseudo_bind = VarMonoBind pseudo_spec_id pseudo_rhs
-           pseudo_rhs  = mkTyLam spec_tyvars (mkDictApp (mkTyApp (Var main_id) main_arg_tys)
-                                                        (map mkInstId main_dicts'))
-       in
-       returnTc (pseudo_bind, mkLIE main_dicts')
+tcMonoBinds :: RenamedMonoBinds 
+           -> [TcSigInfo] -> RecFlag
+           -> TcM (TcMonoBinds, 
+                   Bag (Name,          -- Bound names
+                        TcId))         -- Corresponding monomorphic bound things
+
+tcMonoBinds mbinds tc_ty_sigs is_rec
+       -- Three stages: 
+       -- 1. Check the patterns, building up an environment binding
+       --    the variables in this group (in the recursive case)
+       -- 2. Extend the environment
+       -- 3. Check the RHSs
+  = tc_mb_pats mbinds          `thenM` \ (complete_it, xve) ->
+    tcExtendLocalValEnv2 (bagToList xve) complete_it
+  where
+    tc_mb_pats EmptyMonoBinds 
+      = returnM (returnM (EmptyMonoBinds, emptyBag), emptyBag)
 
-      Just spec_name -> -- use spec_name as the specialisation value ...
+    tc_mb_pats (AndMonoBinds mb1 mb2)
+      = tc_mb_pats mb1         `thenM` \ (complete_it1, xve1) ->
+        tc_mb_pats mb2         `thenM` \ (complete_it2, xve2) ->
        let
-           spec_id      = lookupE_Value e spec_name
-           spec_id_ty   = getIdUniType spec_id
-
-           spec_id_free_tyvars = extractTyVarsFromTy spec_id_ty
-           spec_id_ctxt = ValSpecSpecIdCtxt name spec_ty spec_name src_loc
-
-           spec_tys    = map maybe_ty main_arg_tys
-            maybe_ty ty | isTyVarTy ty = Nothing
-                       | otherwise    = Just ty
+          complete_it = complete_it1   `thenM` \ (mb1', bs1) ->
+                        complete_it2   `thenM` \ (mb2', bs2) ->
+                        returnM (AndMonoBinds mb1' mb2', bs1 `unionBags` bs2)
        in
-           -- Make an instance of the spec_id
-       specTy origin spec_id_ty `thenNF_Tc` \ (spec_id_tyvars, spec_id_dicts, spec_id_tau) ->
-
-           -- Check that the specialised type is indeed an instance of
-           -- the type inferred for spec_id
-           -- The unification should leave all type vars which are
-           -- currently free in the environment still free, and likewise
-           -- the signature type vars.
-           -- The only way type vars free in the envt could possibly be affected
-           -- is if spec_id_ty has free type variables.  So we just extract them,
-           -- and check that they are not constrained in any way by the unification.
-        applyTcSubstAndCollectTyVars spec_id_free_tyvars  `thenNF_Tc` \ spec_id_free_tyvars' ->
-        unifyTauTy spec_tau spec_id_tau spec_id_ctxt             `thenTc_`
-        checkSigTyVars [] (spec_tyvars ++ spec_id_free_tyvars')
-                      spec_tau spec_id_tau spec_id_ctxt  `thenTc_`
-
-           -- Check that the type variables of the explicit spec_id are
-           -- either left polymorphic, or instantiate to ground type.
-           -- Also check that the overloaded type variables are instantiated to
-           -- ground type; or equivalently that all dictionaries have ground type
-       applyTcSubstToTyVars spec_id_tyvars     `thenNF_Tc` \ spec_id_arg_tys ->
-       applyTcSubstToInsts  spec_id_dicts      `thenNF_Tc` \ spec_id_dicts' ->
-
-       checkTc (not (all isGroundOrTyVarTy spec_id_arg_tys))
-               (specGroundnessErr spec_id_ctxt spec_id_arg_tys)
-                                               `thenTc_`
-
-       checkTc (not (and [isGroundTy ty | (_,ty) <- map getDictClassAndType spec_id_dicts']))
-               (specCtxtGroundnessErr spec_id_ctxt spec_id_dicts')
-                                               `thenTc_`
-
-           -- Make a local SpecId to bind to applied spec_id
-       newSpecId main_id spec_tys spec_ty      `thenNF_Tc` \ local_spec_id ->
-
-           -- Make a specPragmaId id with a spec_info for local_spec_id
-           -- This is bound to local_spec_id
-           -- The SpecInfo will be extracted by the specialiser and
-           -- used to create a call instance for main_id (which is
-           -- extracted from the spec_id)
-           -- NB: the pseudo_local_id must stay in the scope of main_id !!!
-       let
-           spec_info = SpecInfo spec_tys (length main_dicts') local_spec_id
+       returnM (complete_it, xve1 `unionBags` xve2)
+
+    tc_mb_pats (FunMonoBind name inf matches locn)
+               -- Three cases:
+               --      a) Type sig supplied
+               --      b) No type sig and recursive
+               --      c) No type sig and non-recursive
+
+      | Just sig <- maybeSig tc_ty_sigs name 
+      = let    -- (a) There is a type signature
+               -- Use it for the environment extension, and check
+               -- the RHS has the appropriate type (with outer for-alls stripped off)
+          mono_id = tcSigMonoId sig
+          mono_ty = idType mono_id
+          complete_it = addSrcLoc locn                                 $
+                        tcMatchesFun name matches (Check mono_ty)      `thenM` \ matches' ->
+                        returnM (FunMonoBind mono_id inf matches' locn, 
+                                 unitBag (name, mono_id))
        in
-       newSpecPragmaId name spec_ty (Just spec_info)   `thenNF_Tc` \ pseudo_spec_id ->
+       returnM (complete_it, if isRec is_rec then unitBag (name,tcSigPolyId sig) 
+                                             else emptyBag)
+
+      | isRec is_rec
+      =                -- (b) No type signature, and recursive
+               -- So we must use an ordinary H-M type variable
+               -- which means the variable gets an inferred tau-type
+       newLocalName name               `thenM` \ mono_name ->
+       newTyVarTy openTypeKind         `thenM` \ mono_ty ->
        let
-           spec_bind   = VarMonoBind local_spec_id spec_rhs
-           spec_rhs    = mkTyLam spec_tyvars (mkDictApp (mkTyApp (Var spec_id) spec_id_arg_tys)
-                                                        (map mkInstId spec_id_dicts'))
-           pseudo_bind = VarMonoBind pseudo_spec_id (Var local_spec_id)
+          mono_id     = mkLocalId mono_name mono_ty
+          complete_it = addSrcLoc locn                                 $
+                        tcMatchesFun name matches (Check mono_ty)      `thenM` \ matches' ->
+                        returnM (FunMonoBind mono_id inf matches' locn, 
+                                 unitBag (name, mono_id))
        in
-       returnTc (spec_bind `AndMonoBinds` pseudo_bind, mkLIE spec_id_dicts')
-    )
-\end{code}
-
-\begin{code}
-tc_bind :: E
-       -> RenamedBind
-       -> TcM (TypecheckedBind, LIE)
-
-tc_bind e (NonRecBind mono_binds)
-  = tcMonoBinds e mono_binds   `thenTc` \ (mono_binds2, lie) ->
-    returnTc  (NonRecBind mono_binds2, lie)
+       returnM (complete_it, unitBag (name, mono_id))
+
+      | otherwise      -- (c) No type signature, and non-recursive
+      =        let             -- So we can use a 'hole' type to infer a higher-rank type
+          complete_it 
+               = addSrcLoc locn                                $
+                 newHole                                       `thenM` \ hole -> 
+                 tcMatchesFun name matches (Infer hole)        `thenM` \ matches' ->
+                 readMutVar hole                               `thenM` \ fun_ty ->
+                 newLocalName name                             `thenM` \ mono_name ->
+                 let
+                    mono_id = mkLocalId mono_name fun_ty
+                 in
+                 returnM (FunMonoBind mono_id inf matches' locn, 
+                          unitBag (name, mono_id))
+       in
+       returnM (complete_it, emptyBag)
+       
+    tc_mb_pats bind@(PatMonoBind pat grhss locn)
+      = addSrcLoc locn         $
+
+               --      Now typecheck the pattern
+               -- We do now support binding fresh (not-already-in-scope) scoped 
+               -- type variables in the pattern of a pattern binding.  
+               -- For example, this is now legal:
+               --      (x::a, y::b) = e
+               -- The type variables are brought into scope in tc_binds_and_then,
+               -- so we don't have to do anything here.
+
+       newHole                                 `thenM` \ hole -> 
+       tcPat tc_pat_bndr pat (Infer hole)      `thenM` \ (pat', tvs, ids, lie_avail) ->
+       readMutVar hole                         `thenM` \ pat_ty ->
+
+       -- Don't know how to deal with pattern-bound existentials yet
+        checkTc (isEmptyBag tvs && null lie_avail) 
+               (existentialExplode bind)       `thenM_` 
 
-tc_bind e (RecBind mono_binds)
-  = tcMonoBinds e mono_binds   `thenTc` \ (mono_binds2, lie) ->
-    returnTc  (RecBind mono_binds2, lie)
+       let
+          complete_it = addSrcLoc locn                                 $
+                        addErrCtxt (patMonoBindsCtxt bind)             $
+                        tcGRHSsPat grhss (Check pat_ty)        `thenM` \ grhss' ->
+                        returnM (PatMonoBind pat' grhss' locn, ids)
+       in
+       returnM (complete_it, if isRec is_rec then ids else emptyBag)
+
+       -- tc_pat_bndr is used when dealing with a LHS binder in a pattern.
+       -- If there was a type sig for that Id, we want to make it much
+       -- as if that type signature had been on the binder as a SigPatIn.
+       -- We check for a type signature; if there is one, we use the mono_id
+       -- from the signature.  This is how we make sure the tau part of the
+       -- signature actually matches the type of the LHS; then tc_mb_pats
+       -- ensures the LHS and RHS have the same type
+       
+    tc_pat_bndr name pat_ty
+       = case maybeSig tc_ty_sigs name of
+           Nothing  -> newLocalName name                       `thenM` \ bndr_name ->
+                       tcMonoPatBndr bndr_name pat_ty
+
+           Just sig -> addSrcLoc (getSrcLoc name)              $
+                       tcSubPat (idType mono_id) pat_ty        `thenM` \ co_fn ->
+                       returnM (co_fn, mono_id)
+                    where
+                       mono_id = tcSigMonoId sig
 \end{code}
 
-\begin{code}
-specialiseBinds
-       :: [Id]                 -- Ids bound in this group
-       -> LIE                  -- LIE of scope of these bindings
-       -> TypecheckedBinds
-       -> LIE
-       -> NF_TcM (TypecheckedBinds, LIE)
-
-specialiseBinds bound_ids lie_of_scope poly_binds poly_lie
-  = bindInstsOfLocalFuns lie_of_scope bound_ids
-                                       `thenNF_Tc` \ (lie2, inst_mbinds) ->
-
-    returnNF_Tc (poly_binds `ThenBinds` (SingleBind (NonRecBind inst_mbinds)),
-                lie2 `plusLIE` poly_lie)
-\end{code}
 
 %************************************************************************
 %*                                                                     *
-\subsection{Signatures}
+\subsection{SPECIALIZE pragmas}
 %*                                                                     *
 %************************************************************************
 
-@tcSigs@ checks the signatures for validity, and returns a list of
-{\em freshly-instantiated} signatures.  That is, the types are already
-split up, and have fresh type variables (not @TyVarTemplate@s)
-installed.
+@tcSpecSigs@ munches up the specialisation "signatures" that arise through *user*
+pragmas.  It is convenient for them to appear in the @[RenamedSig]@
+part of a binding because then the same machinery can be used for
+moving them into place as is done for type signatures.
 
-\begin{code}
-tcSigs :: E -> LVE
-       -> [RenamedSig] 
-       -> TcM [SignatureInfo]
+They look like this:
 
-tcSigs e lve [] = returnTc []
+\begin{verbatim}
+       f :: Ord a => [a] -> b -> b
+       {-# SPECIALIZE f :: [Int] -> b -> b #-}
+\end{verbatim}
 
-tcSigs e lve (s:ss)
-  = tc_sig      s      `thenTc` \ sig_info1 ->
-    tcSigs e lve ss    `thenTc` \ sig_info2 ->
-    returnTc (sig_info1 : sig_info2)
-  where
-    tc_sig (Sig v ty _ src_loc)        -- no interesting pragmas on non-iface sigs
-      = addSrcLocTc src_loc (
+For this we generate:
+\begin{verbatim}
+       f* = /\ b -> let d1 = ...
+                    in f Int b d1
+\end{verbatim}
 
-       babyTcMtoTcM
-         (tcPolyType (getE_CE e) (getE_TCE e) nullTVE ty) `thenTc` \ sigma_ty ->
+where f* is a SpecPragmaId.  The **sole** purpose of SpecPragmaIds is to
+retain a right-hand-side that the simplifier will otherwise discard as
+dead code... the simplifier has a flag that tells it not to discard
+SpecPragmaId bindings.
 
-       let  val = assoc "tcSigs" lve v  in
-           -- (The renamer/dependency-analyser should have ensured
-           -- that there are only signatures for which there is a
-           -- corresponding binding.)
+In this case the f* retains a call-instance of the overloaded
+function, f, (including appropriate dictionaries) so that the
+specialiser will subsequently discover that there's a call of @f@ at
+Int, and will create a specialisation for @f@.  After that, the
+binding for @f*@ can be discarded.
 
-           -- Instantiate the type, and unify with the type variable
-           -- found in the Id.
-       specTy SignatureOrigin sigma_ty `thenNF_Tc` \ (tyvars, dicts, tau_ty) ->
-       unifyTauTy (getIdUniType val) tau_ty
-                  (panic "ToDo: unifyTauTy(tcSigs)") `thenTc_`
+We used to have a form
+       {-# SPECIALISE f :: <type> = g #-}
+which promised that g implemented f at <type>, but we do that with 
+a RULE now:
+       {-# SPECIALISE (f::<type) = g #-}
 
-       returnTc (TySigInfo val tyvars dicts tau_ty src_loc)
-       )
+\begin{code}
+tcSpecSigs :: [RenamedSig] -> TcM TcMonoBinds
+tcSpecSigs (SpecSig name poly_ty src_loc : sigs)
+  =    -- SPECIALISE f :: forall b. theta => tau  =  g
+    addSrcLoc src_loc                          $
+    addErrCtxt (valSpecSigCtxt name poly_ty)   $
+
+       -- Get and instantiate its alleged specialised type
+    tcHsSigType (FunSigCtxt name) poly_ty      `thenM` \ sig_ty ->
+
+       -- Check that f has a more general type, and build a RHS for
+       -- the spec-pragma-id at the same time
+    getLIE (tcCheckSigma (HsVar name) sig_ty)  `thenM` \ (spec_expr, spec_lie) ->
+
+       -- Squeeze out any Methods (see comments with tcSimplifyToDicts)
+    tcSimplifyToDicts spec_lie                 `thenM` \ spec_binds ->
+
+       -- Just specialise "f" by building a SpecPragmaId binding
+       -- It is the thing that makes sure we don't prematurely 
+       -- dead-code-eliminate the binding we are really interested in.
+    newLocalName name                  `thenM` \ spec_name ->
+    let
+       spec_bind = VarMonoBind (mkSpecPragmaId spec_name sig_ty)
+                               (mkHsLet spec_binds spec_expr)
+    in
 
-    tc_sig (SpecSig v ty using src_loc)
-      = addSrcLocTc src_loc (
+       -- Do the rest and combine
+    tcSpecSigs sigs                    `thenM` \ binds_rest ->
+    returnM (binds_rest `andMonoBinds` spec_bind)
 
-       babyTcMtoTcM
-         (tcPolyType (getE_CE e) (getE_TCE e) nullTVE ty) `thenTc` \ sigma_ty ->
+tcSpecSigs (other_sig : sigs) = tcSpecSigs sigs
+tcSpecSigs []                = returnM EmptyMonoBinds
+\end{code}
 
-       returnTc (ValSpecInfo v sigma_ty using src_loc)
-       )
 
-    tc_sig (InlineSig v guide locn)
-      = returnTc (ValInlineInfo v guide locn)
+%************************************************************************
+%*                                                                     *
+\subsection[TcBinds-errors]{Error contexts and messages}
+%*                                                                     *
+%************************************************************************
 
-    tc_sig (DeforestSig v locn)
-      = returnTc (ValDeforestInfo v locn)
 
-    tc_sig (MagicUnfoldingSig v str locn)
-      = returnTc (ValMagicUnfoldingInfo v str locn)
+\begin{code}
+patMonoBindsCtxt bind
+  = hang (ptext SLIT("In a pattern binding:")) 4 (ppr bind)
+
+-----------------------------------------------
+valSpecSigCtxt v ty
+  = sep [ptext SLIT("In a SPECIALIZE pragma for a value:"),
+        nest 4 (ppr v <+> dcolon <+> ppr ty)]
+
+-----------------------------------------------
+sigContextsErr = ptext SLIT("Mismatched contexts")
+
+sigContextsCtxt s1 s2
+  = vcat [ptext SLIT("When matching the contexts of the signatures for"), 
+         nest 2 (vcat [ppr s1 <+> dcolon <+> ppr (idType s1),
+                       ppr s2 <+> dcolon <+> ppr (idType s2)]),
+         ptext SLIT("The signature contexts in a mutually recursive group should all be identical")]
+
+-----------------------------------------------
+unliftedBindErr flavour mbind
+  = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed:"))
+        4 (ppr mbind)
+
+-----------------------------------------------
+existentialExplode mbinds
+  = hang (vcat [text "My brain just exploded.",
+               text "I can't handle pattern bindings for existentially-quantified constructors.",
+               text "In the binding group"])
+       4 (ppr mbinds)
+
+-----------------------------------------------
+restrictedBindCtxtErr binder_names
+  = hang (ptext SLIT("Illegal overloaded type signature(s)"))
+       4 (vcat [ptext SLIT("in a binding group for") <+> pprBinders binder_names,
+               ptext SLIT("that falls under the monomorphism restriction")])
+
+genCtxt binder_names
+  = ptext SLIT("When generalising the type(s) for") <+> pprBinders binder_names
+
+-- Used in error messages
+-- Use quotes for a single one; they look a bit "busy" for several
+pprBinders [bndr] = quotes (ppr bndr)
+pprBinders bndrs  = pprWithCommas ppr bndrs
 \end{code}