[project @ 2005-03-01 21:40:40 by simonpj]
[ghc-hetmet.git] / ghc / compiler / typecheck / TcBinds.lhs
index 7bd91f9..c4e1b92 100644 (file)
@@ -1,51 +1,64 @@
 %
-% (c) The GRASP/AQUA Project, Glasgow University, 1992-1996
+% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
 %
 \section[TcBinds]{TcBinds}
 
 \begin{code}
-#include "HsVersions.h"
+module TcBinds ( tcBindsAndThen, tcTopBinds, tcHsBootSigs, tcMonoBinds, tcSpecSigs ) where
 
-module TcBinds ( tcBindsAndThen, tcPragmaSigs ) where
+#include "HsVersions.h"
 
-import Ubiq
+import {-# SOURCE #-} TcMatches ( tcGRHSsPat, tcMatchesFun )
+import {-# SOURCE #-} TcExpr  ( tcCheckSigma, tcCheckRho )
 
-import HsSyn           ( HsBinds(..), Bind(..), Sig(..), MonoBinds(..), 
-                         HsExpr, Match, PolyType, InPat, OutPat,
-                         GRHSsAndBinds, ArithSeqInfo, HsLit, Fake,
-                         collectBinders )
-import RnHsSyn         ( RenamedHsBinds(..), RenamedBind(..), RenamedSig(..), 
-                         RenamedMonoBinds(..), RnName(..)
+import CmdLineOpts     ( DynFlag(Opt_MonomorphismRestriction) )
+import HsSyn           ( HsExpr(..), HsBind(..), LHsBinds, Sig(..),
+                         LSig, Match(..), HsBindGroup(..), IPBind(..), 
+                         HsType(..), hsLTyVarNames, isVanillaLSig,
+                         LPat, GRHSs, MatchGroup(..), emptyLHsBinds, isEmptyLHsBinds,
+                         collectHsBindBinders, collectPatBinders, pprPatBind
+                       )
+import TcHsSyn         ( TcId, TcDictBinds, zonkId, mkHsLet )
+
+import TcRnMonad
+import Inst            ( InstOrigin(..), newDictsAtLoc, newIPDict, instToId )
+import TcEnv           ( tcExtendIdEnv, tcExtendIdEnv2, tcExtendTyVarEnv2, 
+                         newLocalName, tcLookupLocalIds, pprBinders,
+                         tcGetGlobalTyVars )
+import TcUnify         ( Expected(..), tcInfer, unifyTheta, 
+                         bleatEscapedTvs, sigCtxt )
+import TcSimplify      ( tcSimplifyInfer, tcSimplifyInferCheck, tcSimplifyRestricted, 
+                         tcSimplifyToDicts, tcSimplifyIPs )
+import TcHsType                ( tcHsSigType, UserTypeCtxt(..), tcAddLetBoundTyVars,
+                         TcSigInfo(..), TcSigFun, lookupSig
                        )
-import TcHsSyn         ( TcHsBinds(..), TcBind(..), TcMonoBinds(..),
-                         TcIdOcc(..), TcIdBndr(..) )
-
-import TcMonad 
-import GenSpecEtc      ( checkSigTyVars, genBinds, TcSigInfo(..) )
-import Inst            ( Inst, LIE(..), emptyLIE, plusLIE, InstOrigin(..) )
-import TcEnv           ( tcExtendLocalValEnv, tcLookupLocalValueOK, newMonoIds )
-import TcLoop          ( tcGRHSsAndBinds )
-import TcMatches       ( tcMatchesFun )
-import TcMonoType      ( tcPolyType )
-import TcPat           ( tcPat )
+import TcPat           ( tcPat, PatCtxt(..) )
 import TcSimplify      ( bindInstsOfLocalFuns )
-import TcType          ( newTcTyVar, tcInstType )
-import Unify           ( unifyTauTy )
-
-import Kind            ( mkBoxedTypeKind, mkTypeKind )
-import Id              ( GenId, idType, mkUserId )
-import IdInfo          ( noIdInfo )
-import Maybes          ( assocMaybe, catMaybes, Maybe(..) )
-import Name            ( pprNonOp )
-import PragmaInfo      ( PragmaInfo(..) )
-import Pretty
-import RnHsSyn         ( RnName )      -- instances
-import Type            ( mkTyVarTy, mkTyVarTys, isTyVarTy,
-                         mkSigmaTy, splitSigmaTy,
-                         splitRhoTy, mkForAllTy, splitForAllTy )
-import Util            ( panic )
+import TcMType         ( newTyFlexiVarTy, zonkQuantifiedTyVar, 
+                         tcInstSigType, zonkTcTypes, zonkTcTyVar )
+import TcType          ( TcTyVar, SkolemInfo(SigSkol), 
+                         TcTauType, TcSigmaType, 
+                         mkTyVarTy, mkForAllTys, mkFunTys, tyVarsOfType, 
+                         mkForAllTy, isUnLiftedType, tcGetTyVar, 
+                         mkTyVarTys, tidyOpenTyVar, tidyOpenType )
+import Kind            ( argTypeKind )
+import VarEnv          ( TyVarEnv, emptyVarEnv, lookupVarEnv, extendVarEnv, emptyTidyEnv ) 
+import TysPrim         ( alphaTyVar )
+import Id              ( mkLocalId, mkSpecPragmaId, setInlinePragma )
+import Var             ( idType, idName )
+import Name            ( Name )
+import NameSet
+import VarSet
+import SrcLoc          ( Located(..), unLoc, noLoc, getLoc )
+import Bag
+import Util            ( isIn )
+import BasicTypes      ( TopLevelFlag(..), RecFlag(..), isNonRec, isRec, 
+                         isNotTopLevel, isAlwaysActive )
+import FiniteMap       ( listToFM, lookupFM )
+import Outputable
 \end{code}
 
+
 %************************************************************************
 %*                                                                     *
 \subsection{Type-checking bindings}
@@ -63,7 +76,7 @@ specialising the things bound.
 @tcBindsAndThen@ also takes a "combiner" which glues together the
 bindings and the "thing" to make a new "thing".
 
-The real work is done by @tcBindAndThen@.
+The real work is done by @tcBindWithSigsAndThen@.
 
 Recursive and non-recursive binds are handled in essentially the same
 way: because of uniques there are no scoping issues left.  The only
@@ -78,239 +91,641 @@ At the top-level the LIE is sure to contain nothing but constant
 dictionaries, which we resolve at the module level.
 
 \begin{code}
+tcTopBinds :: [HsBindGroup Name] -> TcM (LHsBinds TcId, TcLclEnv)
+       -- Note: returning the TcLclEnv is more than we really
+       --       want.  The bit we care about is the local bindings
+       --       and the free type variables thereof
+tcTopBinds binds
+  = tc_binds_and_then TopLevel glue binds $
+           do  { env <- getLclEnv
+               ; return (emptyLHsBinds, env) }
+  where
+       -- The top level bindings are flattened into a giant 
+       -- implicitly-mutually-recursive MonoBinds
+    glue (HsBindGroup binds1 _ _) (binds2, env) = (binds1 `unionBags` binds2, env)
+    glue (HsIPBinds _)                   _             = panic "Top-level HsIpBinds"
+       -- Can't have a HsIPBinds at top level
+
+tcHsBootSigs :: [HsBindGroup Name] -> TcM (LHsBinds TcId, TcLclEnv)
+-- A hs-boot file has only one BindGroup, and it only has type
+-- signatures in it.  The renamer checked all this
+tcHsBootSigs [HsBindGroup _ sigs _]
+  = do { ids <- mapM (addLocM tc_sig) (filter isVanillaLSig sigs)
+       ; tcExtendIdEnv ids $ do 
+       { env <- getLclEnv
+       ; return (emptyLHsBinds, env) }}
+  where
+    tc_sig (Sig (L _ name) ty)
+      = do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
+          ; return (mkLocalId name sigma_ty) }
+
 tcBindsAndThen
-       :: (TcHsBinds s -> thing -> thing)              -- Combinator
-       -> RenamedHsBinds
-       -> TcM s (thing, LIE s, thing_ty)
-       -> TcM s (thing, LIE s, thing_ty)
+       :: (HsBindGroup TcId -> thing -> thing)         -- Combinator
+       -> [HsBindGroup Name]
+       -> TcM thing
+       -> TcM thing
+
+tcBindsAndThen = tc_binds_and_then NotTopLevel
+
+tc_binds_and_then top_lvl combiner [] do_next
+  = do_next
+tc_binds_and_then top_lvl combiner (group : groups) do_next
+  = tc_bind_and_then top_lvl combiner group $ 
+    tc_binds_and_then top_lvl combiner groups do_next
 
-tcBindsAndThen combiner EmptyBinds do_next
-  = do_next    `thenTc` \ (thing, lie, thing_ty) ->
-    returnTc (combiner EmptyBinds thing, lie, thing_ty)
+tc_bind_and_then top_lvl combiner (HsIPBinds binds) do_next
+  = getLIE do_next                             `thenM` \ (result, expr_lie) ->
+    mapAndUnzipM (wrapLocSndM tc_ip_bind) binds        `thenM` \ (avail_ips, binds') ->
 
-tcBindsAndThen combiner (SingleBind bind) do_next
-  = tcBindAndThen combiner bind [] do_next
+       -- If the binding binds ?x = E, we  must now 
+       -- discharge any ?x constraints in expr_lie
+    tcSimplifyIPs avail_ips expr_lie   `thenM` \ dict_binds ->
 
-tcBindsAndThen combiner (BindWith bind sigs) do_next
-  = tcBindAndThen combiner bind sigs do_next
+    returnM (combiner (HsIPBinds binds') $
+            combiner (HsBindGroup dict_binds [] Recursive) result)
+  where
+       -- I wonder if we should do these one at at time
+       -- Consider     ?x = 4
+       --              ?y = ?x + 1
+    tc_ip_bind (IPBind ip expr)
+      = newTyFlexiVarTy argTypeKind            `thenM` \ ty ->
+       newIPDict (IPBindOrigin ip) ip ty       `thenM` \ (ip', ip_inst) ->
+       tcCheckRho expr ty                      `thenM` \ expr' ->
+       returnM (ip_inst, (IPBind ip' expr'))
+
+tc_bind_and_then top_lvl combiner (HsBindGroup binds sigs is_rec) do_next
+  | isEmptyLHsBinds binds 
+  = do_next
+  | otherwise
+ =      -- BRING ANY SCOPED TYPE VARIABLES INTO SCOPE
+          -- Notice that they scope over 
+          --       a) the type signatures in the binding group
+          --       b) the bindings in the group
+          --       c) the scope of the binding group (the "in" part)
+      tcAddLetBoundTyVars binds  $
+      case top_lvl of
+          TopLevel       -- For the top level don't bother will all this
+                         --  bindInstsOfLocalFuns stuff. All the top level 
+                         -- things are rec'd together anyway, so it's fine to
+                         -- leave them to the tcSimplifyTop, and quite a bit faster too
+               -> tcBindWithSigs top_lvl binds sigs is_rec     `thenM` \ (poly_binds, poly_ids) ->
+                  tc_body poly_ids                             `thenM` \ (prag_binds, thing) ->
+                  returnM (combiner (HsBindGroup
+                                       (poly_binds `unionBags` prag_binds)
+                                        [] -- no sigs
+                                        Recursive)
+                                     thing)
+          NotTopLevel   -- For nested bindings we must do the bindInstsOfLocalFuns thing.
+               | not (isRec is_rec)            -- Non-recursive group
+               ->      -- We want to keep non-recursive things non-recursive
+                        -- so that we desugar unlifted bindings correctly
+                   tcBindWithSigs top_lvl binds sigs is_rec    `thenM` \ (poly_binds, poly_ids) ->
+                    getLIE (tc_body poly_ids)                  `thenM` \ ((prag_binds, thing), lie) ->
+                             -- Create specialisations of functions bound here
+                   bindInstsOfLocalFuns lie poly_ids `thenM` \ lie_binds ->
+                   returnM (
+                       combiner (HsBindGroup poly_binds [] NonRecursive) $
+                       combiner (HsBindGroup prag_binds [] NonRecursive) $
+                       combiner (HsBindGroup lie_binds  [] Recursive)    $
+                        -- NB: the binds returned by tcSimplify and
+                        -- bindInstsOfLocalFuns aren't guaranteed in
+                        -- dependency order (though we could change that);
+                        -- hence the Recursive marker.
+                        thing)
+
+               | otherwise
+               ->      -- NB: polymorphic recursion means that a function
+                       -- may use an instance of itself, we must look at the LIE arising
+                       -- from the function's own right hand side.  Hence the getLIE
+                       -- encloses the tcBindWithSigs.
+
+                  getLIE (
+                     tcBindWithSigs top_lvl binds sigs is_rec  `thenM` \ (poly_binds, poly_ids) ->
+                     tc_body poly_ids                          `thenM` \ (prag_binds, thing) ->
+                     returnM (poly_ids, poly_binds `unionBags` prag_binds, thing)
+                   )   `thenM` \ ((poly_ids, extra_binds, thing), lie) ->
+                  bindInstsOfLocalFuns lie poly_ids    `thenM` \ lie_binds ->
+
+                   returnM (combiner (HsBindGroup
+                                        (extra_binds `unionBags` lie_binds)
+                                        [] Recursive) thing
+                  )
+  where
+    tc_body poly_ids   -- Type check the pragmas and "thing inside"
+      =   -- Extend the environment to bind the new polymorphic Ids
+         tcExtendIdEnv poly_ids        $
+  
+         -- Build bindings and IdInfos corresponding to user pragmas
+         tcSpecSigs sigs               `thenM` \ prag_binds ->
 
-tcBindsAndThen combiner (ThenBinds binds1 binds2) do_next
-  = tcBindsAndThen combiner binds1 (tcBindsAndThen combiner binds2 do_next)
+         -- Now do whatever happens next, in the augmented envt
+         do_next                       `thenM` \ thing ->
+
+         returnM (prag_binds, thing)
 \end{code}
 
-An aside.  The original version of @tcBindsAndThen@ which lacks a
-combiner function, appears below.  Though it is perfectly well
-behaved, it cannot be typed by Haskell, because the recursive call is
-at a different type to the definition itself.  There aren't too many
-examples of this, which is why I thought it worth preserving! [SLPJ]
 
-\begin{pseudocode}
-tcBindsAndThen
-       :: RenamedHsBinds
-       -> TcM s (thing, LIE s, thing_ty))
-       -> TcM s ((TcHsBinds s, thing), LIE s, thing_ty)
+%************************************************************************
+%*                                                                     *
+\subsection{tcBindWithSigs}
+%*                                                                     *
+%************************************************************************
+
+@tcBindWithSigs@ deals with a single binding group.  It does generalisation,
+so all the clever stuff is in here.
+
+* binder_names and mbind must define the same set of Names
+
+* The Names in tc_ty_sigs must be a subset of binder_names
+
+* The Ids in tc_ty_sigs don't necessarily have to have the same name
+  as the Name in the tc_ty_sig
+
+\begin{code}
+tcBindWithSigs :: TopLevelFlag
+               -> LHsBinds Name
+               -> [LSig Name]
+               -> RecFlag
+               -> TcM (LHsBinds TcId, [TcId])
+       -- The returned TcIds are guaranteed zonked
+
+tcBindWithSigs top_lvl mbind sigs is_rec = do  
+  {    -- TYPECHECK THE SIGNATURES
+    tc_ty_sigs <- recoverM (returnM []) $
+                 tcTySigs (filter isVanillaLSig sigs)
+  ; let lookup_sig = lookupSig tc_ty_sigs
+
+       -- SET UP THE MAIN RECOVERY; take advantage of any type sigs
+  ; recoverM (recoveryCode mbind lookup_sig) $ do
+
+  { traceTc (ptext SLIT("--------------------------------------------------------"))
+  ; traceTc (ptext SLIT("Bindings for") <+> ppr (collectHsBindBinders mbind))
+
+       -- TYPECHECK THE BINDINGS
+  ; ((mbind', mono_bind_infos), lie_req) 
+       <- getLIE (tcMonoBinds mbind lookup_sig is_rec)
+
+       -- CHECK FOR UNLIFTED BINDINGS
+       -- These must be non-recursive etc, and are not generalised
+       -- They desugar to a case expression in the end
+  ; zonked_mono_tys <- zonkTcTypes (map getMonoType mono_bind_infos)
+  ; if any isUnLiftedType zonked_mono_tys then
+    do {       -- Unlifted bindings
+         checkUnliftedBinds top_lvl is_rec mbind
+       ; extendLIEs lie_req
+       ; let exports  = zipWith mk_export mono_bind_infos zonked_mono_tys
+             mk_export (name, Nothing,  mono_id) mono_ty = ([], mkLocalId name mono_ty, mono_id)
+             mk_export (name, Just sig, mono_id) mono_ty = ([], sig_id sig,             mono_id)
+
+       ; return ( unitBag $ noLoc $ AbsBinds [] [] exports emptyNameSet mbind',
+                  [poly_id | (_, poly_id, _) <- exports]) }    -- Guaranteed zonked
+
+    else do    -- The normal lifted case: GENERALISE
+  { is_unres <- isUnRestrictedGroup mbind tc_ty_sigs
+  ; (tyvars_to_gen, dict_binds, dict_ids)
+       <- setSrcSpan (getLoc (head (bagToList mbind)))     $
+               -- TODO: location a bit awkward, but the mbinds have been
+               --       dependency analysed and may no longer be adjacent
+          addErrCtxt (genCtxt (bndrNames mono_bind_infos)) $
+          generalise top_lvl is_unres mono_bind_infos tc_ty_sigs lie_req
+
+       -- FINALISE THE QUANTIFIED TYPE VARIABLES
+       -- The quantified type variables often include meta type variables
+       -- we want to freeze them into ordinary type variables, and
+       -- default their kind (e.g. from OpenTypeKind to TypeKind)
+  ; tyvars_to_gen' <- mappM zonkQuantifiedTyVar tyvars_to_gen
+
+       -- BUILD THE POLYMORPHIC RESULT IDs
+  ; let
+       exports  = map mk_export mono_bind_infos
+       poly_ids = [poly_id | (_, poly_id, _) <- exports]
+       dict_tys = map idType dict_ids
+
+       inlines = mkNameSet [ name
+                           | L _ (InlineSig True (L _ name) _) <- sigs]
+                       -- Any INLINE sig (regardless of phase control) 
+                       -- makes the RHS look small
+        inline_phases = listToFM [ (name, phase)
+                                | L _ (InlineSig _ (L _ name) phase) <- sigs, 
+                                  not (isAlwaysActive phase)]
+                       -- Set the IdInfo field to control the inline phase
+                       -- AlwaysActive is the default, so don't bother with them
+       add_inlines id = attachInlinePhase inline_phases id
+
+       mk_export (binder_name, mb_sig, mono_id)
+         = case mb_sig of
+             Just sig -> (sig_tvs sig, add_inlines (sig_id sig),  mono_id)
+             Nothing  -> (tyvars_to_gen', add_inlines new_poly_id, mono_id)
+         where
+           new_poly_id = mkLocalId binder_name poly_ty
+           poly_ty = mkForAllTys tyvars_to_gen'
+                   $ mkFunTys dict_tys 
+                   $ idType mono_id
+
+       -- ZONK THE poly_ids, because they are used to extend the type 
+       -- environment; see the invariant on TcEnv.tcExtendIdEnv 
+  ; zonked_poly_ids <- mappM zonkId poly_ids
+
+  ; traceTc (text "binding:" <+> ppr ((dict_ids, dict_binds),
+                                     exports, map idType zonked_poly_ids))
+
+  ; return (
+           unitBag $ noLoc $
+           AbsBinds tyvars_to_gen'
+                    dict_ids
+                    exports
+                    inlines
+                    (dict_binds `unionBags` mbind'),
+           zonked_poly_ids
+        )
+  } } }
+
+-- If typechecking the binds fails, then return with each
+-- signature-less binder given type (forall a.a), to minimise 
+-- subsequent error messages
+recoveryCode mbind lookup_sig
+  = do { traceTc (text "tcBindsWithSigs: error recovery" <+> ppr binder_names)
+       ; return (emptyLHsBinds, poly_ids) }
+  where
+    forall_a_a    = mkForAllTy alphaTyVar (mkTyVarTy alphaTyVar)
+    binder_names  = collectHsBindBinders mbind
+    poly_ids      = map mk_dummy binder_names
+    mk_dummy name = case lookup_sig name of
+                     Just sig -> sig_id sig                    -- Signature
+                     Nothing  -> mkLocalId name forall_a_a     -- No signature
+
+attachInlinePhase inline_phases bndr
+  = case lookupFM inline_phases (idName bndr) of
+       Just prag -> bndr `setInlinePragma` prag
+       Nothing   -> bndr
+
+-- Check that non-overloaded unlifted bindings are
+--     a) non-recursive,
+--     b) not top level, 
+--     c) not a multiple-binding group (more or less implied by (a))
+
+checkUnliftedBinds top_lvl is_rec mbind
+  = checkTc (isNotTopLevel top_lvl)
+           (unliftedBindErr "Top-level" mbind)         `thenM_`
+    checkTc (isNonRec is_rec)
+           (unliftedBindErr "Recursive" mbind)         `thenM_`
+    checkTc (isSingletonBag mbind)
+           (unliftedBindErr "Multiple" mbind)
+\end{code}
+
+
+Polymorphic recursion
+~~~~~~~~~~~~~~~~~~~~~
+The game plan for polymorphic recursion in the code above is 
+
+       * Bind any variable for which we have a type signature
+         to an Id with a polymorphic type.  Then when type-checking 
+         the RHSs we'll make a full polymorphic call.
+
+This fine, but if you aren't a bit careful you end up with a horrendous
+amount of partial application and (worse) a huge space leak. For example:
+
+       f :: Eq a => [a] -> [a]
+       f xs = ...f...
+
+If we don't take care, after typechecking we get
+
+       f = /\a -> \d::Eq a -> let f' = f a d
+                              in
+                              \ys:[a] -> ...f'...
+
+Notice the the stupid construction of (f a d), which is of course
+identical to the function we're executing.  In this case, the
+polymorphic recursion isn't being used (but that's a very common case).
+We'd prefer
+
+       f = /\a -> \d::Eq a -> letrec
+                                fm = \ys:[a] -> ...fm...
+                              in
+                              fm
 
-tcBindsAndThen EmptyBinds do_next
-  = do_next            `thenTc` \ (thing, lie, thing_ty) ->
-    returnTc ((EmptyBinds, thing), lie, thing_ty)
+This can lead to a massive space leak, from the following top-level defn
+(post-typechecking)
 
-tcBindsAndThen (SingleBind bind) do_next
-  = tcBindAndThen bind [] do_next
+       ff :: [Int] -> [Int]
+       ff = f Int dEqInt
 
-tcBindsAndThen (BindWith bind sigs) do_next
-  = tcBindAndThen bind sigs do_next
+Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
+f' is another thunk which evaluates to the same thing... and you end
+up with a chain of identical values all hung onto by the CAF ff.
 
-tcBindsAndThen (ThenBinds binds1 binds2) do_next
-  = tcBindsAndThen binds1 (tcBindsAndThen binds2 do_next)
-       `thenTc` \ ((binds1', (binds2', thing')), lie1, thing_ty) ->
+       ff = f Int dEqInt
+
+          = let f' = f Int dEqInt in \ys. ...f'...
+
+          = let f' = let f' = f Int dEqInt in \ys. ...f'...
+                     in \ys. ...f'...
+
+Etc.
+Solution: when typechecking the RHSs we always have in hand the
+*monomorphic* Ids for each binding.  So we just need to make sure that
+if (Method f a d) shows up in the constraints emerging from (...f...)
+we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
+to the "givens" when simplifying constraints.  That's what the "lies_avail"
+is doing.
 
-    returnTc ((binds1' `ThenBinds` binds2', thing'), lie1, thing_ty)
-\end{pseudocode}
 
 %************************************************************************
 %*                                                                     *
-\subsection{Bind}
+\subsection{tcMonoBind}
 %*                                                                     *
 %************************************************************************
 
+@tcMonoBinds@ deals with a single @MonoBind@.  
+The signatures have been dealt with already.
+
 \begin{code}
-tcBindAndThen
-       :: (TcHsBinds s -> thing -> thing)                -- Combinator
-       -> RenamedBind                                    -- The Bind to typecheck
-       -> [RenamedSig]                                   -- ...and its signatures
-       -> TcM s (thing, LIE s, thing_ty)                 -- Thing to type check in
-                                                         -- augmented envt
-       -> TcM s (thing, LIE s, thing_ty)                 -- Results, incl the
-
-tcBindAndThen combiner bind sigs do_next
-  = fixTc (\ ~(prag_info_fn, _) ->
-       -- This is the usual prag_info fix; the PragmaInfo field of an Id
-       -- is not inspected till ages later in the compiler, so there
-       -- should be no black-hole problems here.
-    
-    tcBindAndSigs binder_names bind 
-                 sigs prag_info_fn     `thenTc` \ (poly_binds, poly_lie, poly_ids) ->
-
-       -- Extend the environment to bind the new polymorphic Ids
-    tcExtendLocalValEnv binder_names poly_ids $
-
-       -- Build bindings and IdInfos corresponding to user pragmas
-    tcPragmaSigs sigs                  `thenTc` \ (prag_info_fn, prag_binds, prag_lie) ->
-
-       -- Now do whatever happens next, in the augmented envt
-    do_next                            `thenTc` \ (thing, thing_lie, thing_ty) ->
-
-       -- Create specialisations of functions bound here
-    bindInstsOfLocalFuns (prag_lie `plusLIE` thing_lie)
-                         poly_ids      `thenTc` \ (lie2, inst_mbinds) ->
-
-       -- All done
-    let
-       final_lie   = lie2 `plusLIE` poly_lie
-       final_binds = poly_binds `ThenBinds`
-                     SingleBind (NonRecBind inst_mbinds) `ThenBinds`
-                     prag_binds
-    in
-    returnTc (prag_info_fn, (combiner final_binds thing, final_lie, thing_ty))
-    )                                  `thenTc` \ (_, result) ->
-    returnTc result
+tcMonoBinds :: LHsBinds Name
+           -> TcSigFun -> RecFlag
+           -> TcM (LHsBinds TcId, [MonoBindInfo])
+
+tcMonoBinds binds lookup_sig is_rec
+  = do { tc_binds <- mapBagM (wrapLocM (tcLhs lookup_sig)) binds
+
+       -- Bring (a) the scoped type variables, and (b) the Ids, into scope for the RHSs
+       -- For (a) it's ok to bring them all into scope at once, even
+       -- though each type sig should scope only over its own RHS,
+       -- because the renamer has sorted all that out.
+       ; let mono_info  = getMonoBindInfo tc_binds
+             rhs_tvs    = [ (name, mkTyVarTy tv)
+                          | (_, Just sig, _) <- mono_info, 
+                            (name, tv) <- sig_scoped sig `zip` sig_tvs sig ]
+             rhs_id_env = map mk mono_info     -- A binding for each term variable
+
+       ; binds' <- tcExtendTyVarEnv2 rhs_tvs   $
+                   tcExtendIdEnv2   rhs_id_env $
+                   traceTc (text "tcMonoBinds" <+> vcat [ppr n <+> ppr id <+> ppr (idType id) | (n,id) <- rhs_id_env]) `thenM_`
+                   mapBagM (wrapLocM tcRhs) tc_binds
+       ; return (binds', mono_info) }
+   where
+    mk (name, Just sig, _)       = (name, sig_id sig)  -- Use the type sig if there is one
+    mk (name, Nothing,  mono_id) = (name, mono_id)     -- otherwise use a monomorphic version
+
+------------------------
+-- tcLhs typechecks the LHS of the bindings, to construct the environment in which
+-- we typecheck the RHSs.  Basically what we are doing is this: for each binder:
+--     if there's a signature for it, use the instantiated signature type
+--     otherwise invent a type variable
+-- You see that quite directly in the FunBind case.
+-- 
+-- But there's a complication for pattern bindings:
+--     data T = MkT (forall a. a->a)
+--     MkT f = e
+-- Here we can guess a type variable for the entire LHS (which will be refined to T)
+-- but we want to get (f::forall a. a->a) as the RHS environment.
+-- The simplest way to do this is to typecheck the pattern, and then look up the
+-- bound mono-ids.  Then we want to retain the typechecked pattern to avoid re-doing
+-- it; hence the TcMonoBind data type in which the LHS is done but the RHS isn't
+
+data TcMonoBind                -- Half completed; LHS done, RHS not done
+  = TcFunBind  MonoBindInfo  (Located TcId) Bool (MatchGroup Name) 
+  | TcPatBind [MonoBindInfo] (LPat TcId) (GRHSs Name) TcSigmaType
+
+type MonoBindInfo = (Name, Maybe TcSigInfo, TcId)
+       -- Type signature (if any), and
+       -- the monomorphic bound things
+
+bndrNames :: [MonoBindInfo] -> [Name]
+bndrNames mbi = [n | (n,_,_) <- mbi]
+
+getMonoType :: MonoBindInfo -> TcTauType
+getMonoType (_,_,mono_id) = idType mono_id
+
+tcLhs :: TcSigFun -> HsBind Name -> TcM TcMonoBind
+tcLhs lookup_sig (FunBind (L nm_loc name) inf matches)
+  = do { let mb_sig = lookup_sig name
+       ; mono_name <- newLocalName name
+       ; mono_ty   <- mk_mono_ty mb_sig
+       ; let mono_id = mkLocalId mono_name mono_ty
+       ; return (TcFunBind (name, mb_sig, mono_id) (L nm_loc mono_id) inf matches) }
   where
-    binder_names = collectBinders bind
+    mk_mono_ty (Just sig) = return (sig_tau sig)
+    mk_mono_ty Nothing    = newTyFlexiVarTy argTypeKind
 
+tcLhs lookup_sig bind@(PatBind pat grhss _)
+  = do { let tc_pat exp_ty = tcPat (LetPat lookup_sig) pat exp_ty lookup_infos
+       ; ((pat', ex_tvs, infos), pat_ty) 
+               <- addErrCtxt (patMonoBindsCtxt pat grhss)
+                             (tcInfer tc_pat)
 
-tcBindAndSigs binder_rn_names bind sigs prag_info_fn
-  = let
-       binder_names = map de_rn binder_rn_names
-       de_rn (RnName n) = n
-    in
-    recoverTc (
-       -- If typechecking the binds fails, then return with each
-       -- binder given type (forall a.a), to minimise subsequent
-       -- error messages
-       newTcTyVar mkBoxedTypeKind              `thenNF_Tc` \ alpha_tv ->
-       let
-         forall_a_a = mkForAllTy alpha_tv (mkTyVarTy alpha_tv)
-         poly_ids   = [ mkUserId name forall_a_a (prag_info_fn name)
-                      | name <- binder_names]
-       in
-       returnTc (EmptyBinds, emptyLIE, poly_ids)
-    ) $
-
-       -- Create a new identifier for each binder, with each being given
-       -- a type-variable type.
-    newMonoIds binder_rn_names kind (\ mono_ids ->
-           tcTySigs sigs               `thenTc` \ sig_info ->
-           tc_bind bind                `thenTc` \ (bind', lie) ->
-           returnTc (mono_ids, bind', lie, sig_info)
-    )
-           `thenTc` \ (mono_ids, bind', lie, sig_info) ->
-
-           -- Notice that genBinds gets the old (non-extended) environment
-    genBinds binder_names mono_ids bind' lie sig_info prag_info_fn
+       -- Don't know how to deal with pattern-bound existentials yet
+       ; checkTc (null ex_tvs) (existentialExplode bind)
+
+       ; return (TcPatBind infos pat' grhss pat_ty) }
+  where
+    names = collectPatBinders pat
+
+       -- After typechecking the pattern, look up the binder
+       -- names, which the pattern has brought into scope.
+    lookup_infos :: TcM [MonoBindInfo]
+    lookup_infos = do { mono_ids <- tcLookupLocalIds names
+                     ; return [ (name, lookup_sig name, mono_id)
+                              | (name, mono_id) <- names `zip` mono_ids] }
+
+-------------------
+tcRhs :: TcMonoBind -> TcM (HsBind TcId)
+tcRhs (TcFunBind info fun'@(L _ mono_id) inf matches)
+  = do { matches' <- tcMatchesFun (idName mono_id) matches 
+                                  (Check (idType mono_id))
+       ; return (FunBind fun' inf matches') }
+
+tcRhs bind@(TcPatBind _ pat' grhss pat_ty)
+  = do { grhss' <- addErrCtxt (patMonoBindsCtxt pat' grhss) $
+                   tcGRHSsPat grhss (Check pat_ty)
+       ; return (PatBind pat' grhss' pat_ty) }
+
+
+---------------------
+getMonoBindInfo :: Bag (Located TcMonoBind) -> [MonoBindInfo]
+getMonoBindInfo tc_binds
+  = foldrBag (get_info . unLoc) [] tc_binds
   where
-    kind = case bind of
-               NonRecBind _ -> mkBoxedTypeKind -- Recursive, so no unboxed types
-               RecBind _    -> mkTypeKind      -- Non-recursive, so we permit unboxed types
+    get_info (TcFunBind info _ _ _)  rest = info : rest
+    get_info (TcPatBind infos _ _ _) rest = infos ++ rest
 \end{code}
 
 
-===========
-\begin{code}
-{-
-
-data SigInfo
-  = SigInfo    RnName
-               (TcIdBndr s)            -- Polymorpic version
-               (TcIdBndr s)            -- Monomorphic verstion
-               [TcType s] [TcIdOcc s]  -- Instance information for the monomorphic version
-
-
-
-       -- Deal with type signatures
-    tcTySigs sigs              `thenTc` \ sig_infos ->
-    let
-       sig_binders   = [binder      | SigInfo binder _ _ _ _  <- sig_infos]
-       poly_sigs     = [(name,poly) | SigInfo name poly _ _ _ <- sig_infos]
-       mono_sigs     = [(name,mono) | SigInfo name _ mono _ _ <- sig_infos]
-       nosig_binders = binders `minusList` sig_binders
-    in
+%************************************************************************
+%*                                                                     *
+\subsection{getTyVarsToGen}
+%*                                                                     *
+%************************************************************************
 
+Type signatures are tricky.  See Note [Signature skolems] in TcType
 
-       -- Typecheck the binding group
-    tcExtendLocalEnv poly_sigs         (
-    newMonoIds nosig_binders kind      (\ nosig_local_ids ->
-           tcMonoBinds mono_sigs mono_binds    `thenTc` \ binds_w_lies ->
-           returnTc (nosig_local_ids, binds_w_lies)
-    ))                                 `thenTc` \ (nosig_local_ids, binds_w_lies) ->
+\begin{code}
+tcTySigs :: [LSig Name] -> TcM [TcSigInfo]
+-- The trick here is that all the signatures should have the same
+-- context, and we want to share type variables for that context, so that
+-- all the right hand sides agree a common vocabulary for their type
+-- constraints
+tcTySigs [] = return []
+
+tcTySigs sigs
+  = do { (tc_sig1 : tc_sigs) <- mappM tcTySig sigs
+       ; mapM (check_ctxt tc_sig1) tc_sigs
+        ; return (tc_sig1 : tc_sigs) }
+  where
+       -- Check tha all the signature contexts are the same
+       -- The type signatures on a mutually-recursive group of definitions
+       -- must all have the same context (or none).
+       --
+       -- We unify them because, with polymorphic recursion, their types
+       -- might not otherwise be related.  This is a rather subtle issue.
+    check_ctxt :: TcSigInfo -> TcSigInfo -> TcM ()
+    check_ctxt sig1@(TcSigInfo { sig_theta = theta1 }) sig@(TcSigInfo { sig_theta = theta })
+       = setSrcSpan (instLocSrcSpan (sig_loc sig))     $
+         addErrCtxt (sigContextsCtxt sig1 sig)         $
+         unifyTheta theta1 theta
+
+
+tcTySig :: LSig Name -> TcM TcSigInfo
+tcTySig (L span (Sig (L _ name) ty))
+  = setSrcSpan span            $
+    do { sigma_ty <- tcHsSigType (FunSigCtxt name) ty
+       ; (tvs, theta, tau) <- tcInstSigType name sigma_ty
+       ; loc <- getInstLoc (SigOrigin (SigSkol name))
+
+       ; let poly_id = mkLocalId name sigma_ty
+
+               -- The scoped names are the ones explicitly mentioned
+               -- in the HsForAll.  (There may be more in sigma_ty, because
+               -- of nested type synonyms.  See Note [Scoped] with TcSigInfo.)
+             scoped_names = case ty of
+                               L _ (HsForAllTy _ tvs _ _) -> hsLTyVarNames tvs
+                               other                      -> []
+
+       ; return (TcSigInfo { sig_id = poly_id, sig_scoped = scoped_names,
+                             sig_tvs = tvs, sig_theta = theta, sig_tau = tau, 
+                             sig_loc = loc }) }
+\end{code}
 
+\begin{code}
+generalise :: TopLevelFlag -> Bool -> [MonoBindInfo] -> [TcSigInfo] -> [Inst]
+          -> TcM ([TcTyVar], TcDictBinds, [TcId])
+generalise top_lvl is_unrestricted mono_infos sigs lie_req
+  | not is_unrestricted        -- RESTRICTED CASE
+  =    -- Check signature contexts are empty 
+    do { checkTc (all is_mono_sig sigs)
+                 (restrictedBindCtxtErr bndr_names)
+
+       -- Now simplify with exactly that set of tyvars
+       -- We have to squash those Methods
+       ; (qtvs, binds) <- tcSimplifyRestricted doc top_lvl bndr_names 
+                                               tau_tvs lie_req
+
+       -- Check that signature type variables are OK
+       ; final_qtvs <- checkSigsTyVars qtvs sigs
+
+       ; return (final_qtvs, binds, []) }
+
+  | null sigs  -- UNRESTRICTED CASE, NO TYPE SIGS
+  = tcSimplifyInfer doc tau_tvs lie_req
+
+  | otherwise  -- UNRESTRICTED CASE, WITH TYPE SIGS
+  = do { let sig1 = head sigs
+       ; sig_lie <- newDictsAtLoc (sig_loc sig1) (sig_theta sig1)
+       ; let   -- The "sig_avails" is the stuff available.  We get that from
+               -- the context of the type signature, BUT ALSO the lie_avail
+               -- so that polymorphic recursion works right (see comments at end of fn)
+               local_meths = [mkMethInst sig mono_id | (_, Just sig, mono_id) <- mono_infos]
+               sig_avails = sig_lie ++ local_meths
+
+       -- Check that the needed dicts can be
+       -- expressed in terms of the signature ones
+       ; (forall_tvs, dict_binds) <- tcSimplifyInferCheck doc tau_tvs sig_avails lie_req
+       
+       -- Check that signature type variables are OK
+       ; final_qtvs <- checkSigsTyVars forall_tvs sigs
+
+       ; returnM (final_qtvs, dict_binds, map instToId sig_lie) }
 
-       -- Decide what to generalise over
-    getImplicitStuffToGen sig_ids binds_w_lies 
-                       `thenTc` \ (tyvars_not_to_gen, tyvars_to_gen, lie_to_gen) ->
+  where
+    bndr_names = bndrNames mono_infos
+    tau_tvs = foldr (unionVarSet . tyVarsOfType . getMonoType) emptyVarSet mono_infos
+    is_mono_sig sig = null (sig_theta sig)
+    doc = ptext SLIT("type signature(s) for") <+> pprBinders bndr_names
+
+    mkMethInst (TcSigInfo { sig_id = poly_id, sig_tvs = tvs, 
+                           sig_theta = theta, sig_tau = tau, sig_loc = loc }) mono_id
+      = Method mono_id poly_id (mkTyVarTys tvs) theta tau loc
+
+checkSigsTyVars :: [TcTyVar] -> [TcSigInfo] -> TcM [TcTyVar]
+checkSigsTyVars qtvs sigs 
+  = do { gbl_tvs <- tcGetGlobalTyVars
+       ; sig_tvs_s <- mappM (check_sig gbl_tvs) sigs
+
+       ; let   -- Sigh.  Make sure that all the tyvars in the type sigs
+               -- appear in the returned ty var list, which is what we are
+               -- going to generalise over.  Reason: we occasionally get
+               -- silly types like
+               --      type T a = () -> ()
+               --      f :: T a
+               --      f () = ()
+               -- Here, 'a' won't appear in qtvs, so we have to add it
+               sig_tvs = foldl extendVarSetList emptyVarSet sig_tvs_s
+               all_tvs = varSetElems (extendVarSetList sig_tvs qtvs)
+       ; returnM all_tvs }
+  where
+    check_sig gbl_tvs (TcSigInfo {sig_id = id, sig_tvs = tvs, 
+                                 sig_theta = theta, sig_tau = tau})
+      = addErrCtxt (ptext SLIT("In the type signature for") <+> quotes (ppr id))       $
+       addErrCtxtM (sigCtxt id tvs theta tau)                                          $
+       do { tvs' <- checkDistinctTyVars tvs
+          ; ifM (any (`elemVarSet` gbl_tvs) tvs')
+                (bleatEscapedTvs gbl_tvs tvs tvs') 
+          ; return tvs' }
+
+checkDistinctTyVars :: [TcTyVar] -> TcM [TcTyVar]
+-- (checkDistinctTyVars tvs) checks that the tvs from one type signature
+-- are still all type variables, and all distinct from each other.  
+-- It returns a zonked set of type variables.
+-- For example, if the type sig is
+--     f :: forall a b. a -> b -> b
+-- we want to check that 'a' and 'b' haven't 
+--     (a) been unified with a non-tyvar type
+--     (b) been unified with each other (all distinct)
+
+checkDistinctTyVars sig_tvs
+  = do { zonked_tvs <- mapM zonk_one sig_tvs
+       ; foldlM check_dup emptyVarEnv (sig_tvs `zip` zonked_tvs)
+       ; return zonked_tvs }
+  where
+    zonk_one sig_tv = do { ty <- zonkTcTyVar sig_tv
+                        ; return (tcGetTyVar "checkDistinctTyVars" ty) }
+       -- 'ty' is bound to be a type variable, because SigSkolTvs
+       -- can only be unified with type variables
 
+    check_dup :: TyVarEnv TcTyVar -> (TcTyVar, TcTyVar) -> TcM (TyVarEnv TcTyVar)
+       -- The TyVarEnv maps each zonked type variable back to its
+       -- corresponding user-written signature type variable
+    check_dup acc (sig_tv, zonked_tv)
+       = case lookupVarEnv acc zonked_tv of
+               Just sig_tv' -> bomb_out sig_tv sig_tv'
 
-       -- Make poly_ids for all the binders that don't have type signatures
-    let
-       dicts_to_gen = map instToId (bagToList lie_to_gen)
-       dict_tys = map tcIdType dicts_to_gen
-
-       mk_poly binder local_id = mkUserId (getName binder) ty noPragmaInfo
-                      where
-                         ty = mkForAllTys tyvars_to_gen $
-                              mkFunTys dict_tys $
-                              tcIdType local_id
-
-       tys_to_gen     = mkTyVarTys tyvars_to_gen
-       more_sig_infos = [ SigInfo binder (mk_poly binder local_id) 
-                                  local_id tys_to_gen dicts_to_gen lie_to_gen
-                        | (binder, local_id) <- nosig_binders `zipEqual` nosig_local_ids
-                        ]
-
-       local_binds = [ (local_id, DictApp (mkHsTyApp (HsVar local_id) inst_tys) dicts)
-                     | SigInfo _ _ local_id inst_tys dicts <- more_sig_infos
-                     ]
-
-       all_sig_infos = sig_infos ++ more_sig_infos     -- Contains a "signature" for each binder
-    in
+               Nothing -> return (extendVarEnv acc zonked_tv sig_tv)
 
+    bomb_out sig_tv1 sig_tv2
+       = failWithTc (ptext SLIT("Quantified type variable") <+> quotes (ppr tidy_tv1) 
+                    <+> ptext SLIT("is unified with another quantified type variable") 
+                    <+> ppr tidy_tv2)
+       where
+        (env1,  tidy_tv1) = tidyOpenTyVar emptyTidyEnv sig_tv1
+        (_env2, tidy_tv2) = tidyOpenTyVar env1         sig_tv2
+\end{code}    
 
-       -- Now generalise the bindings
-    let
-      find_sig lid = head [ (pid, tvs, ds, lie) 
-                         | SigInfo _ pid lid' tvs ds lie, 
-                           lid==lid'
-                         ]
-       -- Do it again, but with increased free_tyvars/reduced_tyvars_to_gen:
-       -- We still need to do this simplification, because some dictionaries 
-       -- may gratuitously constrain some tyvars over which we *are* going 
-       -- to generalise. 
-       -- For example d::Eq (Foo a b), where Foo is instanced as above.
-      gen_bind (bind, lie)
-       = tcSimplifyWithExtraGlobals tyvars_not_to_gen tyvars_to_gen avail lie
-                                   `thenTc` \ (lie_free, dict_binds) ->
-         returnTc (AbsBind tyvars_to_gen_here
-                           dicts
-                           (local_ids `zipEqual` poly_ids)
-                           (dict_binds ++ local_binds)
-                           bind,
-                   lie_free)
-       where
-         local_ids  = bindersOf bind
-         local_sigs = [sig | sig@(SigInfo _ _ local_id _ _) <- all_sig_infos,
-                             local_id `elem` local_ids
-                      ]
-
-         (tyvars_to_gen_here, dicts, avail) 
-               = case (local_ids, sigs) of
-
-                   ([local_id], [SigInfo _ _ _ tyvars_to_gen dicts lie])
-                         -> (tyvars_to_gen, dicts, lie)
-
-                   other -> (tyvars_to_gen, dicts, avail)
-\end{code}
 
-@getImplicitStuffToGen@ decides what type variables
-and LIE to generalise over.
+@getTyVarsToGen@ decides what type variables to generalise over.
 
 For a "restricted group" -- see the monomorphism restriction
 for a definition -- we bind no dictionaries, and
@@ -326,9 +741,10 @@ stuff.  If we simplify only at the f-binding (not the xs-binding)
 we'll know that the literals are all Ints, and we can just produce
 Int literals!
 
-Find all the type variables involved in overloading, the "constrained_tyvars"
-These are the ones we *aren't* going to generalise.
-We must be careful about doing this:
+Find all the type variables involved in overloading, the
+"constrained_tyvars".  These are the ones we *aren't* going to
+generalise.  We must be careful about doing this:
+
  (a) If we fail to generalise a tyvar which is not actually
        constrained, then it will never, ever get bound, and lands
        up printed out in interface files!  Notorious example:
@@ -337,6 +753,9 @@ We must be careful about doing this:
        Another, more common, example is when there's a Method inst in
        the LIE, whose type might very well involve non-overloaded
        type variables.
+  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
+       the simple thing instead]
+
  (b) On the other hand, we mustn't generalise tyvars which are constrained,
        because we are going to pass on out the unmodified LIE, with those
        tyvars in it.  They won't be in scope if we've generalised them.
@@ -346,121 +765,25 @@ constrained tyvars. We don't use any of the results, except to
 find which tyvars are constrained.
 
 \begin{code}
-getImplicitStuffToGen is_restricted sig_ids binds_w_lies
-  | isUnRestrictedGroup tysig_vars bind
-  = tcSimplify tyvars_to_gen lie       `thenTc` \ (_, _, dicts_to_gen) ->
-    returnNF_Tc (emptyTyVarSet, tyvars_to_gen, dicts_to_gen)
-
-  | otherwise
-  = tcSimplify tyvars_to_gen lie           `thenTc` \ (_, _, constrained_dicts) ->
-     let
-         -- ASSERT: dicts_sig is already zonked!
-         constrained_tyvars    = foldBag unionTyVarSets tyVarsOfInst emptyTyVarSet constrained_dicts
-         reduced_tyvars_to_gen = tyvars_to_gen `minusTyVarSet` constrained_tyvars
-     in
-     returnTc (constrained_tyvars, reduced_tyvars_to_gen, emptyLIE)
-
-  where
-    sig_ids   = [sig_var | (TySigInfo sig_id _ _ _ _) <- ty_sigs]
-
-    (tyvars_to_gen, lie) = foldBag (\(tv1,lie2) (tv2,lie2) -> (tv1 `unionTyVarSets` tv2,
-                                                              lie1 `plusLIE` lie2))
-                                   get
-                                   (emptyTyVarSet, emptyLIE)
-                                   binds_w_lies
-    get (bind, lie)
-      = case bindersOf bind of
-         [local_id] | local_id `in` sig_ids ->         -- A simple binding with
-                                                       -- a type signature
-                       (emptyTyVarSet, emptyLIE)
-
-         local_ids ->                                  -- Complex binding or no type sig
-                       (foldr (unionTyVarSets . tcIdType) emptyTyVarSet local_ids, 
-                        lie)
--}
-\end{code}
-                          
-
-
-\begin{code}
-tc_bind :: RenamedBind -> TcM s (TcBind s, LIE s)
-
-tc_bind (NonRecBind mono_binds)
-  = tcMonoBinds mono_binds     `thenTc` \ (mono_binds2, lie) ->
-    returnTc  (NonRecBind mono_binds2, lie)
-
-tc_bind (RecBind mono_binds)
-  = tcMonoBinds mono_binds     `thenTc` \ (mono_binds2, lie) ->
-    returnTc  (RecBind mono_binds2, lie)
-\end{code}
-
-\begin{code}
-tcMonoBinds :: RenamedMonoBinds -> TcM s (TcMonoBinds s, LIE s)
-
-tcMonoBinds EmptyMonoBinds = returnTc (EmptyMonoBinds, emptyLIE)
-
-tcMonoBinds (AndMonoBinds mb1 mb2)
-  = tcMonoBinds mb1            `thenTc` \ (mb1a, lie1) ->
-    tcMonoBinds mb2            `thenTc` \ (mb2a, lie2) ->
-    returnTc (AndMonoBinds mb1a mb2a, lie1 `plusLIE` lie2)
-
-tcMonoBinds bind@(PatMonoBind pat grhss_and_binds locn)
-  = tcAddSrcLoc locn            $
-
-       -- LEFT HAND SIDE
-    tcPat pat                          `thenTc` \ (pat2, lie_pat, pat_ty) ->
-
-       -- BINDINGS AND GRHSS
-    tcGRHSsAndBinds grhss_and_binds    `thenTc` \ (grhss_and_binds2, lie, grhss_ty) ->
-
-       -- Unify the two sides
-    tcAddErrCtxt (patMonoBindsCtxt bind) $
-       unifyTauTy pat_ty grhss_ty                      `thenTc_`
-
-       -- RETURN
-    returnTc (PatMonoBind pat2 grhss_and_binds2 locn,
-             plusLIE lie_pat lie)
-
-tcMonoBinds (FunMonoBind name matches locn)
-  = tcAddSrcLoc locn                           $
-    tcLookupLocalValueOK "tcMonoBinds" name    `thenNF_Tc` \ id ->
-    tcMatchesFun name (idType id) matches      `thenTc` \ (matches', lie) ->
-    returnTc (FunMonoBind (TcId id) matches' locn, lie)
-\end{code}
-
-%************************************************************************
-%*                                                                     *
-\subsection{Signatures}
-%*                                                                     *
-%************************************************************************
-
-@tcSigs@ checks the signatures for validity, and returns a list of
-{\em freshly-instantiated} signatures.  That is, the types are already
-split up, and have fresh type variables installed.  All non-type-signature
-"RenamedSigs" are ignored.
-
-\begin{code}
-tcTySigs :: [RenamedSig] -> TcM s [TcSigInfo s]
-
-tcTySigs (Sig v ty _ src_loc : other_sigs)
- = tcAddSrcLoc src_loc (
-       tcPolyType ty                   `thenTc` \ sigma_ty ->
-       tcInstType [] sigma_ty          `thenNF_Tc` \ sigma_ty' ->
-       let
-           (tyvars', theta', tau') = splitSigmaTy sigma_ty'
-       in
-
-       tcLookupLocalValueOK "tcSig1" v `thenNF_Tc` \ val ->
-       unifyTauTy (idType val) tau'    `thenTc_`
-
-       returnTc (TySigInfo val tyvars' theta' tau' src_loc)
-   )           `thenTc` \ sig_info1 ->
-
-   tcTySigs other_sigs `thenTc` \ sig_infos ->
-   returnTc (sig_info1 : sig_infos)
-
-tcTySigs (other : sigs) = tcTySigs sigs
-tcTySigs []            = returnTc []
+isUnRestrictedGroup :: LHsBinds Name -> [TcSigInfo] -> TcM Bool
+isUnRestrictedGroup binds sigs
+  = do { mono_restriction <- doptM Opt_MonomorphismRestriction
+       ; return (not mono_restriction || all_unrestricted) }
+  where 
+    all_unrestricted = all (unrestricted . unLoc) (bagToList binds)
+    tysig_names      = map (idName . sig_id) sigs
+
+    unrestricted (PatBind other _ _)   = False
+    unrestricted (VarBind v _)        = v `is_elem` tysig_names
+    unrestricted (FunBind v _ matches) = unrestricted_match matches 
+                                        || unLoc v `is_elem` tysig_names
+
+    unrestricted_match (MatchGroup (L _ (Match [] _ _) : _) _) = False
+       -- No args => like a pattern binding
+    unrestricted_match other             = True
+       -- Some args => a function binding
+
+is_elem v vs = isIn "isUnResMono" v vs
 \end{code}
 
 
@@ -470,45 +793,13 @@ tcTySigs []               = returnTc []
 %*                                                                     *
 %************************************************************************
 
-
-@tcPragmaSigs@ munches up the "signatures" that arise through *user*
+@tcSpecSigs@ munches up the specialisation "signatures" that arise through *user*
 pragmas.  It is convenient for them to appear in the @[RenamedSig]@
 part of a binding because then the same machinery can be used for
 moving them into place as is done for type signatures.
 
-\begin{code}
-tcPragmaSigs :: [RenamedSig]                   -- The pragma signatures
-            -> TcM s (Name -> PragmaInfo,      -- Maps name to the appropriate PragmaInfo
-                      TcHsBinds s,
-                      LIE s)
-
-tcPragmaSigs sigs = returnTc ( \name -> NoPragmaInfo, EmptyBinds, emptyLIE )
-
-{- 
-tcPragmaSigs sigs
-  = mapAndUnzip3Tc tcPragmaSig sigs    `thenTc` \ (names_w_id_infos, binds, lies) ->
-    let
-       name_to_info name = foldr ($) noIdInfo
-                                 [info_fn | (n,info_fn) <- names_w_id_infos, n==name]
-    in
-    returnTc (name_to_info,
-             foldr ThenBinds EmptyBinds binds,
-             foldr plusLIE emptyLIE lies)
-\end{code}
-
-Here are the easy cases for tcPragmaSigs
-
-\begin{code}
-tcPragmaSig (DeforestSig name loc)
-  = returnTc ((name, addInfo DoDeforest),EmptyBinds,emptyLIE)
-tcPragmaSig (InlineSig name loc)
-  = returnTc ((name, addInfo_UF (iWantToBeINLINEd UnfoldAlways)), EmptyBinds, emptyLIE)
-tcPragmaSig (MagicUnfoldingSig name string loc)
-  = returnTc ((name, addInfo_UF (mkMagicUnfolding string)), EmptyBinds, emptyLIE)
-\end{code}
+They look like this:
 
-The interesting case is for SPECIALISE pragmas.  There are two forms.
-Here's the first form:
 \begin{verbatim}
        f :: Ord a => [a] -> b -> b
        {-# SPECIALIZE f :: [Int] -> b -> b #-}
@@ -531,151 +822,93 @@ specialiser will subsequently discover that there's a call of @f@ at
 Int, and will create a specialisation for @f@.  After that, the
 binding for @f*@ can be discarded.
 
-The second form is this:
-\begin{verbatim}
-       f :: Ord a => [a] -> b -> b
-       {-# SPECIALIZE f :: [Int] -> b -> b = g #-}
-\end{verbatim}
-
-Here @g@ is specified as a function that implements the specialised
-version of @f@.  Suppose that g has type (a->b->b); that is, g's type
-is more general than that required.  For this we generate
-\begin{verbatim}
-       f@Int = /\b -> g Int b
-       f* = f@Int
-\end{verbatim}
-
-Here @f@@Int@ is a SpecId, the specialised version of @f@.  It inherits
-f's export status etc.  @f*@ is a SpecPragmaId, as before, which just serves
-to prevent @f@@Int@ from being discarded prematurely.  After specialisation,
-if @f@@Int@ is going to be used at all it will be used explicitly, so the simplifier can
-discard the f* binding.
-
-Actually, there is really only point in giving a SPECIALISE pragma on exported things,
-and the simplifer won't discard SpecIds for exporte things anyway, so maybe this is
-a bit of overkill.
+We used to have a form
+       {-# SPECIALISE f :: <type> = g #-}
+which promised that g implemented f at <type>, but we do that with 
+a RULE now:
+       {-# RULES (f::<type>) = g #-}
 
 \begin{code}
-tcPragmaSig (SpecSig name poly_ty maybe_spec_name src_loc)
-  = tcAddSrcLoc src_loc                                $
-    tcAddErrCtxt (valSpecSigCtxt name spec_ty) $
+tcSpecSigs :: [LSig Name] -> TcM (LHsBinds TcId)
+tcSpecSigs (L loc (SpecSig (L nm_loc name) poly_ty) : sigs)
+  =    -- SPECIALISE f :: forall b. theta => tau  =  g
+    setSrcSpan loc                             $
+    addErrCtxt (valSpecSigCtxt name poly_ty)   $
 
        -- Get and instantiate its alleged specialised type
-    tcPolyType poly_ty                         `thenTc` \ sig_sigma ->
-    tcInstType [] sig_sigma                    `thenNF_Tc` \ sig_ty ->
-    let
-       (sig_tyvars, sig_theta, sig_tau) = splitSigmaTy sig_ty
-       origin = ValSpecOrigin name
-    in
+    tcHsSigType (FunSigCtxt name) poly_ty      `thenM` \ sig_ty ->
+
+       -- Check that f has a more general type, and build a RHS for
+       -- the spec-pragma-id at the same time
+    getLIE (tcCheckSigma (L nm_loc (HsVar name)) sig_ty)       `thenM` \ (spec_expr, spec_lie) ->
 
-       -- Check that the SPECIALIZE pragma had an empty context
-    checkTc (null sig_theta)
-           (panic "SPECIALIZE non-empty context (ToDo: msg)") `thenTc_`
+       -- Squeeze out any Methods (see comments with tcSimplifyToDicts)
+    tcSimplifyToDicts spec_lie                 `thenM` \ spec_binds ->
 
-       -- Get and instantiate the type of the id mentioned
-    tcLookupLocalValueOK "tcPragmaSig" name    `thenNF_Tc` \ main_id ->
-    tcInstType [] (idType main_id)             `thenNF_Tc` \ main_ty ->
+       -- Just specialise "f" by building a SpecPragmaId binding
+       -- It is the thing that makes sure we don't prematurely 
+       -- dead-code-eliminate the binding we are really interested in.
+    newLocalName name                  `thenM` \ spec_name ->
     let
-       (main_tyvars, main_rho) = splitForAllTy main_ty
-       (main_theta,main_tau)   = splitRhoTy main_rho
-       main_arg_tys            = mkTyVarTys main_tyvars
+       spec_bind = VarBind (mkSpecPragmaId spec_name sig_ty)
+                               (mkHsLet spec_binds spec_expr)
     in
 
-       -- Check that the specialised type is indeed an instance of
-       -- the type of the main function.
-    unifyTauTy sig_tau main_tau                `thenTc_`
-    checkSigTyVars sig_tyvars sig_tau  `thenTc_`
-
-       -- Check that the type variables of the polymorphic function are
-       -- either left polymorphic, or instantiate to ground type.
-       -- Also check that the overloaded type variables are instantiated to
-       -- ground type; or equivalently that all dictionaries have ground type
-    mapTc zonkTcType main_arg_tys      `thenNF_Tc` \ main_arg_tys' ->
-    zonkTcThetaType main_theta         `thenNF_Tc` \ main_theta' ->
-    tcAddErrCtxt (specGroundnessCtxt main_arg_tys')
-             (checkTc (all isGroundOrTyVarTy main_arg_tys'))           `thenTc_`
-    tcAddErrCtxt (specContextGroundnessCtxt main_theta')
-             (checkTc (and [isGroundTy ty | (_,ty) <- theta']))        `thenTc_`
-
-       -- Build the SpecPragmaId; it is the thing that makes sure we
-       -- don't prematurely dead-code-eliminate the binding we are really interested in.
-    newSpecPragmaId name sig_ty                `thenNF_Tc` \ spec_pragma_id ->
-
-       -- Build a suitable binding; depending on whether we were given
-       -- a value (Maybe Name) to be used as the specialisation.
-    case using of
-      Nothing ->               -- No implementation function specified
-
-               -- Make a Method inst for the occurrence of the overloaded function
-       newMethodWithGivenTy (OccurrenceOf name)
-                 (TcId main_id) main_arg_tys main_rho  `thenNF_Tc` \ (lie, meth_id) ->
-
-       let
-           pseudo_bind = VarMonoBind spec_pragma_id pseudo_rhs
-           pseudo_rhs  = mkHsTyLam sig_tyvars (HsVar (TcId meth_id))
-       in
-       returnTc (pseudo_bind, lie, \ info -> info)
-
-      Just spec_name ->                -- Use spec_name as the specialisation value ...
-
-               -- Type check a simple occurrence of the specialised Id
-       tcId spec_name          `thenTc` \ (spec_body, spec_lie, spec_tau) ->
-
-               -- Check that it has the correct type, and doesn't constrain the
-               -- signature variables at all
-       unifyTauTy sig_tau spec_tau             `thenTc_`
-       checkSigTyVars sig_tyvars sig_tau       `thenTc_`
-
-           -- Make a local SpecId to bind to applied spec_id
-       newSpecId main_id main_arg_tys sig_ty   `thenNF_Tc` \ local_spec_id ->
-
-       let
-           spec_rhs   = mkHsTyLam sig_tyvars spec_body
-           spec_binds = VarMonoBind local_spec_id spec_rhs
-                          `AndMonoBinds`
-                        VarMonoBind spec_pragma_id (HsVar (TcId local_spec_id))
-           spec_info  = SpecInfo spec_tys (length main_theta) local_spec_id
-       in
-       returnTc ((name, addInfo spec_info), spec_binds, spec_lie)
--}
+       -- Do the rest and combine
+    tcSpecSigs sigs                    `thenM` \ binds_rest ->
+    returnM (binds_rest `snocBag` L loc spec_bind)
+
+tcSpecSigs (other_sig : sigs) = tcSpecSigs sigs
+tcSpecSigs []                = returnM emptyLHsBinds
 \end{code}
 
+%************************************************************************
+%*                                                                     *
+\subsection[TcBinds-errors]{Error contexts and messages}
+%*                                                                     *
+%************************************************************************
+
 
-Error contexts and messages
-~~~~~~~~~~~~~~~~~~~~~~~~~~~
 \begin{code}
-patMonoBindsCtxt bind sty
-  = ppHang (ppPStr SLIT("In a pattern binding:")) 4 (ppr sty bind)
-
---------------------------------------------
-specContextGroundnessCtxt -- err_ctxt dicts sty
-  = panic "specContextGroundnessCtxt"
-{-
-  = ppHang (
-       ppSep [ppBesides [ppStr "In the SPECIALIZE pragma for `", ppr sty name, ppStr "'"],
-              ppBesides [ppStr " specialised to the type `", ppr sty spec_ty,  ppStr "'"],
-              pp_spec_id sty,
-              ppStr "... not all overloaded type variables were instantiated",
-              ppStr "to ground types:"])
-      4 (ppAboves [ppCat [ppr sty c, ppr sty t]
-                 | (c,t) <- map getDictClassAndType dicts])
+-- This one is called on LHS, when pat and grhss are both Name 
+-- and on RHS, when pat is TcId and grhss is still Name
+patMonoBindsCtxt pat grhss
+  = hang (ptext SLIT("In a pattern binding:")) 4 (pprPatBind pat grhss)
+
+-----------------------------------------------
+valSpecSigCtxt v ty
+  = sep [ptext SLIT("In a SPECIALIZE pragma for a value:"),
+        nest 4 (ppr v <+> dcolon <+> ppr ty)]
+
+-----------------------------------------------
+sigContextsCtxt sig1 sig2
+  = vcat [ptext SLIT("When matching the contexts of the signatures for"), 
+         nest 2 (vcat [ppr id1 <+> dcolon <+> ppr (idType id1),
+                       ppr id2 <+> dcolon <+> ppr (idType id2)]),
+         ptext SLIT("The signature contexts in a mutually recursive group should all be identical")]
   where
-    (name, spec_ty, locn, pp_spec_id)
-      = case err_ctxt of
-         ValSpecSigCtxt    n ty loc      -> (n, ty, loc, \ x -> ppNil)
-         ValSpecSpecIdCtxt n ty spec loc ->
-           (n, ty, loc,
-            \ sty -> ppBesides [ppStr "... type of explicit id `", ppr sty spec, ppStr "'"])
--}
+    id1 = sig_id sig1
+    id2 = sig_id sig2
+
 
 -----------------------------------------------
-specGroundnessCtxt
-  = panic "specGroundnessCtxt"
+unliftedBindErr flavour mbind
+  = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed:"))
+        4 (ppr mbind)
 
+-----------------------------------------------
+existentialExplode mbinds
+  = hang (vcat [text "My brain just exploded.",
+               text "I can't handle pattern bindings for existentially-quantified constructors.",
+               text "In the binding group"])
+       4 (ppr mbinds)
 
-valSpecSigCtxt v ty sty
-  = ppHang (ppPStr SLIT("In a SPECIALIZE pragma for a value:"))
-        4 (ppSep [ppBeside (pprNonOp sty v) (ppPStr SLIT(" ::")),
-                 ppr sty ty])
-\end{code}
+-----------------------------------------------
+restrictedBindCtxtErr binder_names
+  = hang (ptext SLIT("Illegal overloaded type signature(s)"))
+       4 (vcat [ptext SLIT("in a binding group for") <+> pprBinders binder_names,
+               ptext SLIT("that falls under the monomorphism restriction")])
 
+genCtxt binder_names
+  = ptext SLIT("When generalising the type(s) for") <+> pprBinders binder_names
+\end{code}