[project @ 2001-11-30 09:32:27 by simonpj]
[ghc-hetmet.git] / ghc / compiler / typecheck / TcBinds.lhs
index a61b075..76fc669 100644 (file)
@@ -1,49 +1,62 @@
 %
-% (c) The GRASP/AQUA Project, Glasgow University, 1992-1996
+% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
 %
 \section[TcBinds]{TcBinds}
 
 \begin{code}
+module TcBinds ( tcBindsAndThen, tcTopBinds,
+                tcSpecSigs, tcBindWithSigs ) where
+
 #include "HsVersions.h"
 
-module TcBinds ( tcBindsAndThen, tcPragmaSigs ) where
-
-import Ubiq
-
-import HsSyn           ( HsBinds(..), Bind(..), Sig(..), MonoBinds(..), 
-                         HsExpr, Match, PolyType, InPat, OutPat,
-                         GRHSsAndBinds, ArithSeqInfo, HsLit, Fake,
-                         collectBinders )
-import RnHsSyn         ( RenamedHsBinds(..), RenamedBind(..), RenamedSig(..), 
-                         RenamedMonoBinds(..) )
-import TcHsSyn         ( TcHsBinds(..), TcBind(..), TcMonoBinds(..),
-                         TcIdOcc(..), TcIdBndr(..) )
-
-import TcMonad 
-import GenSpecEtc      ( checkSigTyVars, genBinds, TcSigInfo(..) )
-import Inst            ( Inst, LIE(..), emptyLIE, plusLIE, InstOrigin(..) )
-import TcEnv           ( tcExtendLocalValEnv, tcLookupLocalValueOK, newMonoIds )
-import TcLoop          ( tcGRHSsAndBinds )
-import TcMatches       ( tcMatchesFun )
-import TcMonoType      ( tcPolyType )
-import TcPat           ( tcPat )
+import {-# SOURCE #-} TcMatches ( tcGRHSs, tcMatchesFun )
+import {-# SOURCE #-} TcExpr  ( tcExpr )
+
+import CmdLineOpts     ( opt_NoMonomorphismRestriction )
+import HsSyn           ( HsExpr(..), HsBinds(..), MonoBinds(..), Sig(..), 
+                         Match(..), HsMatchContext(..), 
+                         collectMonoBinders, andMonoBinds,
+                         collectSigTysFromMonoBinds
+                       )
+import RnHsSyn         ( RenamedHsBinds, RenamedSig, RenamedMonoBinds )
+import TcHsSyn         ( TcMonoBinds, TcId, zonkId, mkHsLet )
+
+import TcMonad
+import Inst            ( LIE, emptyLIE, mkLIE, plusLIE, InstOrigin(..),
+                         newDicts, instToId
+                       )
+import TcEnv           ( tcExtendLocalValEnv, newLocalName )
+import TcUnify         ( unifyTauTyLists, checkSigTyVars, sigCtxt )
+import TcSimplify      ( tcSimplifyInfer, tcSimplifyInferCheck, tcSimplifyRestricted, tcSimplifyToDicts )
+import TcMonoType      ( tcHsSigType, UserTypeCtxt(..), 
+                         TcSigInfo(..), tcTySig, maybeSig, tcAddScopedTyVars
+                       )
+import TcPat           ( tcPat, tcSubPat, tcMonoPatBndr )
 import TcSimplify      ( bindInstsOfLocalFuns )
-import TcType          ( newTcTyVar, tcInstType )
-import Unify           ( unifyTauTy )
-
-import Kind            ( mkBoxedTypeKind, mkTypeKind )
-import Id              ( GenId, idType, mkUserId )
-import IdInfo          ( noIdInfo )
-import Name            ( Name )        -- instances
-import Maybes          ( assocMaybe, catMaybes, Maybe(..) )
-import Outputable      ( pprNonOp )
-import PragmaInfo      ( PragmaInfo(..) )
-import Pretty
-import Type            ( mkTyVarTy, isTyVarTy, mkSigmaTy, splitSigmaTy,
-                         splitRhoTy, mkForAllTy, splitForAllTy )
-import Util            ( panic )
+import TcMType         ( newTyVar, newTyVarTy, newHoleTyVarTy,
+                         zonkTcTyVarToTyVar
+                       )
+import TcType          ( mkTyVarTy, mkForAllTys, mkFunTys, tyVarsOfType, 
+                         mkPredTy, mkForAllTy, isUnLiftedType, 
+                         unliftedTypeKind, liftedTypeKind, openTypeKind, eqKind
+                       )
+
+import CoreFVs         ( idFreeTyVars )
+import Id              ( mkLocalId, mkSpecPragmaId, setInlinePragma )
+import Var             ( idType, idName )
+import Name            ( Name, getSrcLoc )
+import NameSet
+import Var             ( tyVarKind )
+import VarSet
+import Bag
+import Util            ( isIn, equalLength )
+import BasicTypes      ( TopLevelFlag(..), RecFlag(..), isNonRec, isNotTopLevel,
+                         isAlwaysActive )
+import FiniteMap       ( listToFM, lookupFM )
+import Outputable
 \end{code}
 
+
 %************************************************************************
 %*                                                                     *
 \subsection{Type-checking bindings}
@@ -61,7 +74,7 @@ specialising the things bound.
 @tcBindsAndThen@ also takes a "combiner" which glues together the
 bindings and the "thing" to make a new "thing".
 
-The real work is done by @tcBindAndThen@.
+The real work is done by @tcBindWithSigsAndThen@.
 
 Recursive and non-recursive binds are handled in essentially the same
 way: because of uniques there are no scoping issues left.  The only
@@ -76,214 +89,604 @@ At the top-level the LIE is sure to contain nothing but constant
 dictionaries, which we resolve at the module level.
 
 \begin{code}
-tcBindsAndThen
-       :: (TcHsBinds s -> thing -> thing)              -- Combinator
-       -> RenamedHsBinds
-       -> TcM s (thing, LIE s, thing_ty)
-       -> TcM s (thing, LIE s, thing_ty)
-
-tcBindsAndThen combiner EmptyBinds do_next
-  = do_next    `thenTc` \ (thing, lie, thing_ty) ->
-    returnTc (combiner EmptyBinds thing, lie, thing_ty)
-
-tcBindsAndThen combiner (SingleBind bind) do_next
-  = tcBindAndThen combiner bind [] do_next
-
-tcBindsAndThen combiner (BindWith bind sigs) do_next
-  = tcBindAndThen combiner bind sigs do_next
-
-tcBindsAndThen combiner (ThenBinds binds1 binds2) do_next
-  = tcBindsAndThen combiner binds1 (tcBindsAndThen combiner binds2 do_next)
-\end{code}
+tcTopBinds :: RenamedHsBinds -> TcM ((TcMonoBinds, TcEnv), LIE)
+tcTopBinds binds
+  = tc_binds_and_then TopLevel glue binds      $
+    tcGetEnv                                   `thenNF_Tc` \ env ->
+    returnTc ((EmptyMonoBinds, env), emptyLIE)
+  where
+    glue is_rec binds1 (binds2, thing) = (binds1 `AndMonoBinds` binds2, thing)
 
-An aside.  The original version of @tcBindsAndThen@ which lacks a
-combiner function, appears below.  Though it is perfectly well
-behaved, it cannot be typed by Haskell, because the recursive call is
-at a different type to the definition itself.  There aren't too many
-examples of this, which is why I thought it worth preserving! [SLPJ]
 
-\begin{pseudocode}
 tcBindsAndThen
-       :: RenamedHsBinds
-       -> TcM s (thing, LIE s, thing_ty))
-       -> TcM s ((TcHsBinds s, thing), LIE s, thing_ty)
-
-tcBindsAndThen EmptyBinds do_next
-  = do_next            `thenTc` \ (thing, lie, thing_ty) ->
-    returnTc ((EmptyBinds, thing), lie, thing_ty)
-
-tcBindsAndThen (SingleBind bind) do_next
-  = tcBindAndThen bind [] do_next
+       :: (RecFlag -> TcMonoBinds -> thing -> thing)           -- Combinator
+       -> RenamedHsBinds
+       -> TcM (thing, LIE)
+       -> TcM (thing, LIE)
+
+tcBindsAndThen = tc_binds_and_then NotTopLevel
+
+tc_binds_and_then top_lvl combiner EmptyBinds do_next
+  = do_next
+tc_binds_and_then top_lvl combiner (MonoBind EmptyMonoBinds sigs is_rec) do_next
+  = do_next
+
+tc_binds_and_then top_lvl combiner (ThenBinds b1 b2) do_next
+  = tc_binds_and_then top_lvl combiner b1      $
+    tc_binds_and_then top_lvl combiner b2      $
+    do_next
+
+tc_binds_and_then top_lvl combiner (MonoBind bind sigs is_rec) do_next
+  =    -- BRING ANY SCOPED TYPE VARIABLES INTO SCOPE
+       -- Notice that they scope over 
+       --      a) the type signatures in the binding group
+       --      b) the bindings in the group
+       --      c) the scope of the binding group (the "in" part)
+      tcAddScopedTyVars (collectSigTysFromMonoBinds bind)      $
+
+       -- TYPECHECK THE SIGNATURES
+      mapTc tcTySig [sig | sig@(Sig name _ _) <- sigs] `thenTc` \ tc_ty_sigs ->
+  
+      tcBindWithSigs top_lvl bind tc_ty_sigs
+                    sigs is_rec                        `thenTc` \ (poly_binds, poly_lie, poly_ids) ->
+  
+         -- Extend the environment to bind the new polymorphic Ids
+      tcExtendLocalValEnv [(idName poly_id, poly_id) | poly_id <- poly_ids] $
+  
+         -- Build bindings and IdInfos corresponding to user pragmas
+      tcSpecSigs sigs          `thenTc` \ (prag_binds, prag_lie) ->
 
-tcBindsAndThen (BindWith bind sigs) do_next
-  = tcBindAndThen bind sigs do_next
+       -- Now do whatever happens next, in the augmented envt
+      do_next                  `thenTc` \ (thing, thing_lie) ->
 
-tcBindsAndThen (ThenBinds binds1 binds2) do_next
-  = tcBindsAndThen binds1 (tcBindsAndThen binds2 do_next)
-       `thenTc` \ ((binds1', (binds2', thing')), lie1, thing_ty) ->
+       -- Create specialisations of functions bound here
+       -- We want to keep non-recursive things non-recursive
+       -- so that we desugar unlifted bindings correctly
+      case (top_lvl, is_rec) of
+
+               -- For the top level don't bother will all this bindInstsOfLocalFuns stuff
+               -- All the top level things are rec'd together anyway, so it's fine to
+               -- leave them to the tcSimplifyTop, and quite a bit faster too
+       (TopLevel, _)
+               -> returnTc (combiner Recursive (poly_binds `andMonoBinds` prag_binds) thing,
+                            thing_lie `plusLIE` prag_lie `plusLIE` poly_lie)
+
+       (NotTopLevel, NonRecursive) 
+               -> bindInstsOfLocalFuns 
+                               (thing_lie `plusLIE` prag_lie)
+                               poly_ids                        `thenTc` \ (thing_lie', lie_binds) ->
+
+                  returnTc (
+                       combiner NonRecursive poly_binds $
+                       combiner NonRecursive prag_binds $
+                       combiner Recursive lie_binds  $
+                               -- NB: the binds returned by tcSimplify and bindInstsOfLocalFuns
+                               -- aren't guaranteed in dependency order (though we could change
+                               -- that); hence the Recursive marker.
+                       thing,
+
+                       thing_lie' `plusLIE` poly_lie
+                  )
+
+       (NotTopLevel, Recursive)
+               -> bindInstsOfLocalFuns 
+                               (thing_lie `plusLIE` poly_lie `plusLIE` prag_lie) 
+                               poly_ids                        `thenTc` \ (final_lie, lie_binds) ->
+
+                  returnTc (
+                       combiner Recursive (
+                               poly_binds `andMonoBinds`
+                               lie_binds  `andMonoBinds`
+                               prag_binds) thing,
+                       final_lie
+                  )
+\end{code}
 
-    returnTc ((binds1' `ThenBinds` binds2', thing'), lie1, thing_ty)
-\end{pseudocode}
 
 %************************************************************************
 %*                                                                     *
-\subsection{Bind}
+\subsection{tcBindWithSigs}
 %*                                                                     *
 %************************************************************************
 
-\begin{code}
-tcBindAndThen
-       :: (TcHsBinds s -> thing -> thing)                -- Combinator
-       -> RenamedBind                                    -- The Bind to typecheck
-       -> [RenamedSig]                                   -- ...and its signatures
-       -> TcM s (thing, LIE s, thing_ty)                 -- Thing to type check in
-                                                         -- augmented envt
-       -> TcM s (thing, LIE s, thing_ty)                 -- Results, incl the
-
-tcBindAndThen combiner bind sigs do_next
-  = fixTc (\ ~(prag_info_fn, _) ->
-       -- This is the usual prag_info fix; the PragmaInfo field of an Id
-       -- is not inspected till ages later in the compiler, so there
-       -- should be no black-hole problems here.
-    
-    tcBindAndSigs binder_names bind 
-                 sigs prag_info_fn     `thenTc` \ (poly_binds, poly_lie, poly_ids) ->
-
-       -- Extend the environment to bind the new polymorphic Ids
-    tcExtendLocalValEnv binder_names poly_ids $
+@tcBindWithSigs@ deals with a single binding group.  It does generalisation,
+so all the clever stuff is in here.
 
-       -- Build bindings and IdInfos corresponding to user pragmas
-    tcPragmaSigs sigs                  `thenTc` \ (prag_info_fn, prag_binds, prag_lie) ->
+* binder_names and mbind must define the same set of Names
 
-       -- Now do whatever happens next, in the augmented envt
-    do_next                            `thenTc` \ (thing, thing_lie, thing_ty) ->
+* The Names in tc_ty_sigs must be a subset of binder_names
 
-       -- Create specialisations of functions bound here
-    bindInstsOfLocalFuns (prag_lie `plusLIE` thing_lie)
-                         poly_ids      `thenTc` \ (lie2, inst_mbinds) ->
+* The Ids in tc_ty_sigs don't necessarily have to have the same name
+  as the Name in the tc_ty_sig
 
-       -- All done
-    let
-       final_lie   = lie2 `plusLIE` poly_lie
-       final_binds = poly_binds `ThenBinds`
-                     SingleBind (NonRecBind inst_mbinds) `ThenBinds`
-                     prag_binds
-    in
-    returnTc (prag_info_fn, (combiner final_binds thing, final_lie, thing_ty))
-    )                                  `thenTc` \ (_, result) ->
-    returnTc result
-  where
-    binder_names = collectBinders bind
-
-
-tcBindAndSigs binder_names bind sigs prag_info_fn
+\begin{code}
+tcBindWithSigs 
+       :: TopLevelFlag
+       -> RenamedMonoBinds
+       -> [TcSigInfo]
+       -> [RenamedSig]         -- Used solely to get INLINE, NOINLINE sigs
+       -> RecFlag
+       -> TcM (TcMonoBinds, LIE, [TcId])
+
+tcBindWithSigs top_lvl mbind tc_ty_sigs inline_sigs is_rec
   = recoverTc (
        -- If typechecking the binds fails, then return with each
-       -- binder given type (forall a.a), to minimise subsequent
+       -- signature-less binder given type (forall a.a), to minimise subsequent
        -- error messages
-       newTcTyVar Nothing mkBoxedTypeKind              `thenNF_Tc` \ alpha_tv ->
+       newTyVar liftedTypeKind         `thenNF_Tc` \ alpha_tv ->
        let
-         forall_a_a = mkForAllTy alpha_tv (mkTyVarTy alpha_tv)
-         poly_ids   = [ mkUserId name forall_a_a (prag_info_fn name)
-                      | name <- binder_names]
+         forall_a_a    = mkForAllTy alpha_tv (mkTyVarTy alpha_tv)
+          binder_names  = collectMonoBinders mbind
+         poly_ids      = map mk_dummy binder_names
+         mk_dummy name = case maybeSig tc_ty_sigs name of
+                           Just (TySigInfo _ poly_id _ _ _ _ _ _) -> poly_id   -- Signature
+                           Nothing -> mkLocalId name forall_a_a                -- No signature
        in
-       returnTc (EmptyBinds, emptyLIE, poly_ids)
-    ) $
-
-       -- Create a new identifier for each binder, with each being given
-       -- a type-variable type.
-    newMonoIds binder_names kind (\ mono_ids ->
-           tcTySigs sigs               `thenTc` \ sig_info ->
-           tc_bind bind                `thenTc` \ (bind', lie) ->
-           returnTc (mono_ids, bind', lie, sig_info)
+       returnTc (EmptyMonoBinds, emptyLIE, poly_ids)
+    )                                          $
+
+       -- TYPECHECK THE BINDINGS
+    tcMonoBinds mbind tc_ty_sigs is_rec                `thenTc` \ (mbind', lie_req, binder_names, mono_ids) ->
+    let
+       tau_tvs = foldr (unionVarSet . tyVarsOfType . idType) emptyVarSet mono_ids
+    in
+
+       -- GENERALISE
+    tcAddSrcLoc  (minimum (map getSrcLoc binder_names))                $
+    tcAddErrCtxt (genCtxt binder_names)                                $
+    generalise binder_names mbind tau_tvs lie_req tc_ty_sigs
+                               `thenTc` \ (tc_tyvars_to_gen, lie_free, dict_binds, dict_ids) ->
+
+
+       -- ZONK THE GENERALISED TYPE VARIABLES TO REAL TyVars
+       -- This commits any unbound kind variables to boxed kind, by unification
+       -- It's important that the final quanfified type variables
+       -- are fully zonked, *including boxity*, because they'll be 
+       -- included in the forall types of the polymorphic Ids.
+       -- At calls of these Ids we'll instantiate fresh type variables from
+       -- them, and we use their boxity then.
+    mapNF_Tc zonkTcTyVarToTyVar tc_tyvars_to_gen       `thenNF_Tc` \ real_tyvars_to_gen ->
+
+       -- ZONK THE Ids
+       -- It's important that the dict Ids are zonked, including the boxity set
+       -- in the previous step, because they are later used to form the type of 
+       -- the polymorphic thing, and forall-types must be zonked so far as 
+       -- their bound variables are concerned
+    mapNF_Tc zonkId dict_ids                           `thenNF_Tc` \ zonked_dict_ids ->
+    mapNF_Tc zonkId mono_ids                           `thenNF_Tc` \ zonked_mono_ids ->
+
+       -- CHECK FOR BOGUS UNLIFTED BINDINGS
+    checkUnliftedBinds top_lvl is_rec real_tyvars_to_gen mbind zonked_mono_ids `thenTc_`
+
+       -- BUILD THE POLYMORPHIC RESULT IDs
+    let
+       exports  = zipWith mk_export binder_names zonked_mono_ids
+       dict_tys = map idType zonked_dict_ids
+
+       inlines    = mkNameSet [name | InlineSig True name _ loc <- inline_sigs]
+        no_inlines = listToFM [(name, phase) | InlineSig _ name phase _ <- inline_sigs, 
+                                              not (isAlwaysActive phase)]
+                       -- AlwaysActive is the default, so don't bother with them
+
+       mk_export binder_name zonked_mono_id
+         = (tyvars, 
+            attachNoInlinePrag no_inlines poly_id,
+            zonked_mono_id)
+         where
+           (tyvars, poly_id) = 
+               case maybeSig tc_ty_sigs binder_name of
+                 Just (TySigInfo _ sig_poly_id sig_tyvars _ _ _ _ _) -> 
+                       (sig_tyvars, sig_poly_id)
+                 Nothing -> (real_tyvars_to_gen, new_poly_id)
+
+           new_poly_id = mkLocalId binder_name poly_ty
+           poly_ty = mkForAllTys real_tyvars_to_gen
+                   $ mkFunTys dict_tys 
+                   $ idType zonked_mono_id
+               -- It's important to build a fully-zonked poly_ty, because
+               -- we'll slurp out its free type variables when extending the
+               -- local environment (tcExtendLocalValEnv); if it's not zonked
+               -- it appears to have free tyvars that aren't actually free 
+               -- at all.
+    in
+
+    traceTc (text "binding:" <+> ppr ((zonked_dict_ids, dict_binds),
+            exports, [idType poly_id | (_, poly_id, _) <- exports])) `thenTc_`
+
+        -- BUILD RESULTS
+    returnTc (
+       AbsBinds real_tyvars_to_gen
+                zonked_dict_ids
+                exports
+                inlines
+                (dict_binds `andMonoBinds` mbind'),
+       lie_free,
+       [poly_id | (_, poly_id, _) <- exports]
     )
-           `thenTc` \ (mono_ids, bind', lie, sig_info) ->
 
-           -- Notice that genBinds gets the old (non-extended) environment
-    genBinds binder_names mono_ids bind' lie sig_info prag_info_fn
+attachNoInlinePrag no_inlines bndr
+  = case lookupFM no_inlines (idName bndr) of
+       Just prag -> bndr `setInlinePragma` prag
+       Nothing   -> bndr
+
+checkUnliftedBinds top_lvl is_rec real_tyvars_to_gen mbind zonked_mono_ids
+  = ASSERT( not (any ((eqKind unliftedTypeKind) . tyVarKind) real_tyvars_to_gen) )
+               -- The instCantBeGeneralised stuff in tcSimplify should have
+               -- already raised an error if we're trying to generalise an 
+               -- unboxed tyvar (NB: unboxed tyvars are always introduced 
+               -- along with a class constraint) and it's better done there 
+               -- because we have more precise origin information.
+               -- That's why we just use an ASSERT here.
+
+       -- Check that pattern-bound variables are not unlifted
+    (if or [ (idName id `elem` pat_binders) && isUnLiftedType (idType id) 
+          | id <- zonked_mono_ids ] then
+       addErrTc (unliftedBindErr "Pattern" mbind)
+     else
+       returnTc ()
+    )                                                          `thenTc_`
+
+       -- Unlifted bindings must be non-recursive,
+       -- not top level, non-polymorphic, and not pattern bound
+    if any (isUnLiftedType . idType) zonked_mono_ids then
+       checkTc (isNotTopLevel top_lvl)
+               (unliftedBindErr "Top-level" mbind)             `thenTc_`
+       checkTc (isNonRec is_rec)
+               (unliftedBindErr "Recursive" mbind)             `thenTc_`
+       checkTc (null real_tyvars_to_gen)
+               (unliftedBindErr "Polymorphic" mbind)
+     else
+       returnTc ()
+
   where
-    kind = case bind of
-               NonRecBind _ -> mkBoxedTypeKind -- Recursive, so no unboxed types
-               RecBind _    -> mkTypeKind      -- Non-recursive, so we permit unboxed types
+    pat_binders :: [Name]
+    pat_binders = collectMonoBinders (justPatBindings mbind EmptyMonoBinds)
+
+    justPatBindings bind@(PatMonoBind _ _ _) binds = bind `andMonoBinds` binds
+    justPatBindings (AndMonoBinds b1 b2) binds = 
+           justPatBindings b1 (justPatBindings b2 binds) 
+    justPatBindings other_bind binds = binds
 \end{code}
 
-\begin{code}
-tc_bind :: RenamedBind -> TcM s (TcBind s, LIE s)
 
-tc_bind (NonRecBind mono_binds)
-  = tcMonoBinds mono_binds     `thenTc` \ (mono_binds2, lie) ->
-    returnTc  (NonRecBind mono_binds2, lie)
+Polymorphic recursion
+~~~~~~~~~~~~~~~~~~~~~
+The game plan for polymorphic recursion in the code above is 
 
-tc_bind (RecBind mono_binds)
-  = tcMonoBinds mono_binds     `thenTc` \ (mono_binds2, lie) ->
-    returnTc  (RecBind mono_binds2, lie)
-\end{code}
+       * Bind any variable for which we have a type signature
+         to an Id with a polymorphic type.  Then when type-checking 
+         the RHSs we'll make a full polymorphic call.
+
+This fine, but if you aren't a bit careful you end up with a horrendous
+amount of partial application and (worse) a huge space leak. For example:
+
+       f :: Eq a => [a] -> [a]
+       f xs = ...f...
+
+If we don't take care, after typechecking we get
+
+       f = /\a -> \d::Eq a -> let f' = f a d
+                              in
+                              \ys:[a] -> ...f'...
+
+Notice the the stupid construction of (f a d), which is of course
+identical to the function we're executing.  In this case, the
+polymorphic recursion isn't being used (but that's a very common case).
+We'd prefer
+
+       f = /\a -> \d::Eq a -> letrec
+                                fm = \ys:[a] -> ...fm...
+                              in
+                              fm
+
+This can lead to a massive space leak, from the following top-level defn
+(post-typechecking)
+
+       ff :: [Int] -> [Int]
+       ff = f Int dEqInt
+
+Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
+f' is another thunk which evaluates to the same thing... and you end
+up with a chain of identical values all hung onto by the CAF ff.
+
+       ff = f Int dEqInt
+
+          = let f' = f Int dEqInt in \ys. ...f'...
+
+          = let f' = let f' = f Int dEqInt in \ys. ...f'...
+                     in \ys. ...f'...
+
+Etc.
+Solution: when typechecking the RHSs we always have in hand the
+*monomorphic* Ids for each binding.  So we just need to make sure that
+if (Method f a d) shows up in the constraints emerging from (...f...)
+we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
+to the "givens" when simplifying constraints.  That's what the "lies_avail"
+is doing.
+
+
+%************************************************************************
+%*                                                                     *
+\subsection{getTyVarsToGen}
+%*                                                                     *
+%************************************************************************
 
 \begin{code}
-tcMonoBinds :: RenamedMonoBinds -> TcM s (TcMonoBinds s, LIE s)
+generalise binder_names mbind tau_tvs lie_req sigs
+  | not is_unrestricted        -- RESTRICTED CASE
+  =    -- Check signature contexts are empty 
+    checkTc (all is_mono_sig sigs)
+           (restrictedBindCtxtErr binder_names)        `thenTc_`
 
-tcMonoBinds EmptyMonoBinds = returnTc (EmptyMonoBinds, emptyLIE)
+       -- Now simplify with exactly that set of tyvars
+       -- We have to squash those Methods
+    tcSimplifyRestricted doc tau_tvs lie_req           `thenTc` \ (qtvs, lie_free, binds) ->
 
-tcMonoBinds (AndMonoBinds mb1 mb2)
-  = tcMonoBinds mb1            `thenTc` \ (mb1a, lie1) ->
-    tcMonoBinds mb2            `thenTc` \ (mb2a, lie2) ->
-    returnTc (AndMonoBinds mb1a mb2a, lie1 `plusLIE` lie2)
+       -- Check that signature type variables are OK
+    checkSigsTyVars sigs                               `thenTc_`
 
-tcMonoBinds bind@(PatMonoBind pat grhss_and_binds locn)
-  = tcAddSrcLoc locn            $
+    returnTc (qtvs, lie_free, binds, [])
 
-       -- LEFT HAND SIDE
-    tcPat pat                          `thenTc` \ (pat2, lie_pat, pat_ty) ->
+  | null sigs                  -- UNRESTRICTED CASE, NO TYPE SIGS
+  = tcSimplifyInfer doc tau_tvs lie_req
 
-       -- BINDINGS AND GRHSS
-    tcGRHSsAndBinds grhss_and_binds    `thenTc` \ (grhss_and_binds2, lie, grhss_ty) ->
+  | otherwise                  -- UNRESTRICTED CASE, WITH TYPE SIGS
+  =    -- CHECKING CASE: Unrestricted group, there are type signatures
+       -- Check signature contexts are empty 
+    checkSigsCtxts sigs                                `thenTc` \ (sig_avails, sig_dicts) ->
+    
+       -- Check that the needed dicts can be
+       -- expressed in terms of the signature ones
+    tcSimplifyInferCheck doc tau_tvs sig_avails lie_req        `thenTc` \ (forall_tvs, lie_free, dict_binds) ->
+       
+       -- Check that signature type variables are OK
+    checkSigsTyVars sigs                                       `thenTc_`
 
-       -- Unify the two sides
-    tcAddErrCtxt (patMonoBindsCtxt bind) $
-       unifyTauTy pat_ty grhss_ty                      `thenTc_`
+    returnTc (forall_tvs, lie_free, dict_binds, sig_dicts)
 
-       -- RETURN
-    returnTc (PatMonoBind pat2 grhss_and_binds2 locn,
-             plusLIE lie_pat lie)
+  where
+    is_unrestricted | opt_NoMonomorphismRestriction = True
+                   | otherwise                     = isUnRestrictedGroup tysig_names mbind
+
+    tysig_names = [name | (TySigInfo name _ _ _ _ _ _ _) <- sigs]
+    is_mono_sig (TySigInfo _ _ _ theta _ _ _ _) = null theta
+
+    doc = ptext SLIT("type signature(s) for") <+> pprBinders binder_names
+
+-----------------------
+       -- CHECK THAT ALL THE SIGNATURE CONTEXTS ARE UNIFIABLE
+       -- The type signatures on a mutually-recursive group of definitions
+       -- must all have the same context (or none).
+       --
+       -- We unify them because, with polymorphic recursion, their types
+       -- might not otherwise be related.  This is a rather subtle issue.
+       -- ToDo: amplify
+checkSigsCtxts sigs@(TySigInfo _ id1 sig_tvs theta1 _ _ _ src_loc : other_sigs)
+  = tcAddSrcLoc src_loc                        $
+    mapTc_ check_one other_sigs                `thenTc_` 
+    if null theta1 then
+       returnTc ([], [])               -- Non-overloaded type signatures
+    else
+    newDicts SignatureOrigin theta1    `thenNF_Tc` \ sig_dicts ->
+    let
+       -- The "sig_avails" is the stuff available.  We get that from
+       -- the context of the type signature, BUT ALSO the lie_avail
+       -- so that polymorphic recursion works right (see comments at end of fn)
+       sig_avails = sig_dicts ++ sig_meths
+    in
+    returnTc (sig_avails, map instToId sig_dicts)
+  where
+    sig1_dict_tys = map mkPredTy theta1
+    sig_meths    = concat [insts | TySigInfo _ _ _ _ _ _ insts _ <- sigs]
+
+    check_one sig@(TySigInfo _ id _ theta _ _ _ src_loc)
+       = tcAddErrCtxt (sigContextsCtxt id1 id)                 $
+        checkTc (equalLength theta theta1) sigContextsErr      `thenTc_`
+        unifyTauTyLists sig1_dict_tys (map mkPredTy theta)
+
+checkSigsTyVars sigs = mapTc_ check_one sigs
+  where
+    check_one (TySigInfo _ id sig_tyvars sig_theta sig_tau _ _ src_loc)
+      = tcAddSrcLoc src_loc                                            $
+       tcAddErrCtxt (ptext SLIT("When checking the type signature for") 
+                     <+> quotes (ppr id))                              $
+       tcAddErrCtxtM (sigCtxt sig_tyvars sig_theta sig_tau)            $
+       checkSigTyVars sig_tyvars (idFreeTyVars id)
+\end{code}
 
-tcMonoBinds (FunMonoBind name matches locn)
-  = tcAddSrcLoc locn                           $
-    tcLookupLocalValueOK "tcMonoBinds" name    `thenNF_Tc` \ id ->
-    tcMatchesFun name (idType id) matches      `thenTc` \ (matches', lie) ->
-    returnTc (FunMonoBind (TcId id) matches' locn, lie)
+@getTyVarsToGen@ decides what type variables to generalise over.
+
+For a "restricted group" -- see the monomorphism restriction
+for a definition -- we bind no dictionaries, and
+remove from tyvars_to_gen any constrained type variables
+
+*Don't* simplify dicts at this point, because we aren't going
+to generalise over these dicts.  By the time we do simplify them
+we may well know more.  For example (this actually came up)
+       f :: Array Int Int
+       f x = array ... xs where xs = [1,2,3,4,5]
+We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
+stuff.  If we simplify only at the f-binding (not the xs-binding)
+we'll know that the literals are all Ints, and we can just produce
+Int literals!
+
+Find all the type variables involved in overloading, the
+"constrained_tyvars".  These are the ones we *aren't* going to
+generalise.  We must be careful about doing this:
+
+ (a) If we fail to generalise a tyvar which is not actually
+       constrained, then it will never, ever get bound, and lands
+       up printed out in interface files!  Notorious example:
+               instance Eq a => Eq (Foo a b) where ..
+       Here, b is not constrained, even though it looks as if it is.
+       Another, more common, example is when there's a Method inst in
+       the LIE, whose type might very well involve non-overloaded
+       type variables.
+  [NOTE: Jan 2001: I don't understand the problem here so I'm doing 
+       the simple thing instead]
+
+ (b) On the other hand, we mustn't generalise tyvars which are constrained,
+       because we are going to pass on out the unmodified LIE, with those
+       tyvars in it.  They won't be in scope if we've generalised them.
+
+So we are careful, and do a complete simplification just to find the
+constrained tyvars. We don't use any of the results, except to
+find which tyvars are constrained.
+
+\begin{code}
+isUnRestrictedGroup :: [Name]          -- Signatures given for these
+                   -> RenamedMonoBinds
+                   -> Bool
+
+is_elem v vs = isIn "isUnResMono" v vs
+
+isUnRestrictedGroup sigs (PatMonoBind other        _ _) = False
+isUnRestrictedGroup sigs (VarMonoBind v _)             = v `is_elem` sigs
+isUnRestrictedGroup sigs (FunMonoBind v _ matches _)   = isUnRestrictedMatch matches || 
+                                                         v `is_elem` sigs
+isUnRestrictedGroup sigs (AndMonoBinds mb1 mb2)                = isUnRestrictedGroup sigs mb1 &&
+                                                         isUnRestrictedGroup sigs mb2
+isUnRestrictedGroup sigs EmptyMonoBinds                        = True
+
+isUnRestrictedMatch (Match [] _ _ : _) = False -- No args => like a pattern binding
+isUnRestrictedMatch other             = True   -- Some args => a function binding
 \end{code}
 
+
 %************************************************************************
 %*                                                                     *
-\subsection{Signatures}
+\subsection{tcMonoBind}
 %*                                                                     *
 %************************************************************************
 
-@tcSigs@ checks the signatures for validity, and returns a list of
-{\em freshly-instantiated} signatures.  That is, the types are already
-split up, and have fresh type variables installed.  All non-type-signature
-"RenamedSigs" are ignored.
+@tcMonoBinds@ deals with a single @MonoBind@.  
+The signatures have been dealt with already.
 
 \begin{code}
-tcTySigs :: [RenamedSig] -> TcM s [TcSigInfo s]
+tcMonoBinds :: RenamedMonoBinds 
+           -> [TcSigInfo]
+           -> RecFlag
+           -> TcM (TcMonoBinds, 
+                     LIE,              -- LIE required
+                     [Name],           -- Bound names
+                     [TcId])           -- Corresponding monomorphic bound things
+
+tcMonoBinds mbinds tc_ty_sigs is_rec
+  = tc_mb_pats mbinds          `thenTc` \ (complete_it, lie_req_pat, tvs, ids, lie_avail) ->
+    let
+       id_list           = bagToList ids
+       (names, mono_ids) = unzip id_list
+
+               -- This last defn is the key one:
+               -- extend the val envt with bindings for the 
+               -- things bound in this group, overriding the monomorphic
+               -- ids with the polymorphic ones from the pattern
+       extra_val_env = case is_rec of
+                         Recursive    -> map mk_bind id_list
+                         NonRecursive -> []
+    in
+       -- Don't know how to deal with pattern-bound existentials yet
+    checkTc (isEmptyBag tvs && isEmptyBag lie_avail) 
+           (existentialExplode mbinds)                 `thenTc_` 
+
+       -- *Before* checking the RHSs, but *after* checking *all* the patterns,
+       -- extend the envt with bindings for all the bound ids;
+       --   and *then* override with the polymorphic Ids from the signatures
+       -- That is the whole point of the "complete_it" stuff.
+       --
+       -- There's a further wrinkle: we have to delay extending the environment
+       -- until after we've dealt with any pattern-bound signature type variables
+       -- Consider  f (x::a) = ...f...
+       -- We're going to check that a isn't unified with anything in the envt, 
+       -- so f itself had better not be!  So we pass the envt binding f into
+       -- complete_it, which extends the actual envt in TcMatches.tcMatch, after
+       -- dealing with the signature tyvars
+
+    complete_it extra_val_env                          `thenTc` \ (mbinds', lie_req_rhss) ->
+
+    returnTc (mbinds', lie_req_pat `plusLIE` lie_req_rhss, names, mono_ids)
+  where
 
-tcTySigs (Sig v ty _ src_loc : other_sigs)
- = tcAddSrcLoc src_loc (
-       tcPolyType ty                   `thenTc` \ sigma_ty ->
-       tcInstType [] sigma_ty          `thenNF_Tc` \ tc_sigma_ty ->
+    mk_bind (name, mono_id) = case maybeSig tc_ty_sigs name of
+                               Nothing                                   -> (name, mono_id)
+                               Just (TySigInfo name poly_id _ _ _ _ _ _) -> (name, poly_id)
+
+    tc_mb_pats EmptyMonoBinds
+      = returnTc (\ xve -> returnTc (EmptyMonoBinds, emptyLIE), emptyLIE, emptyBag, emptyBag, emptyLIE)
+
+    tc_mb_pats (AndMonoBinds mb1 mb2)
+      = tc_mb_pats mb1         `thenTc` \ (complete_it1, lie_req1, tvs1, ids1, lie_avail1) ->
+        tc_mb_pats mb2         `thenTc` \ (complete_it2, lie_req2, tvs2, ids2, lie_avail2) ->
+       let
+          complete_it xve = complete_it1 xve   `thenTc` \ (mb1', lie1) ->
+                            complete_it2 xve   `thenTc` \ (mb2', lie2) ->
+                            returnTc (AndMonoBinds mb1' mb2', lie1 `plusLIE` lie2)
+       in
+       returnTc (complete_it,
+                 lie_req1 `plusLIE` lie_req2,
+                 tvs1 `unionBags` tvs2,
+                 ids1 `unionBags` ids2,
+                 lie_avail1 `plusLIE` lie_avail2)
+
+    tc_mb_pats (FunMonoBind name inf matches locn)
+      = (case maybeSig tc_ty_sigs name of
+           Just (TySigInfo _ _ _ _ _ mono_id _ _) 
+                   -> returnNF_Tc mono_id
+           Nothing -> newLocalName name        `thenNF_Tc` \ bndr_name ->
+                      newTyVarTy openTypeKind  `thenNF_Tc` \ bndr_ty -> 
+                       -- NB: not a 'hole' tyvar; since there is no type 
+                       -- signature, we revert to ordinary H-M typechecking
+                       -- which means the variable gets an inferred tau-type
+                      returnNF_Tc (mkLocalId bndr_name bndr_ty)
+       )                                       `thenNF_Tc` \ bndr_id ->
        let
-           (tyvars, theta, tau_ty) = splitSigmaTy tc_sigma_ty
+          bndr_ty         = idType bndr_id
+          complete_it xve = tcAddSrcLoc locn                           $
+                            tcMatchesFun xve name bndr_ty  matches     `thenTc` \ (matches', lie) ->
+                            returnTc (FunMonoBind bndr_id inf matches' locn, lie)
        in
-       tcLookupLocalValueOK "tcSig1" v `thenNF_Tc` \ val ->
-       unifyTauTy (idType val) tau_ty  `thenTc_`
-       returnTc (TySigInfo val tyvars theta tau_ty src_loc)
-   )           `thenTc` \ sig_info1 ->
+       returnTc (complete_it, emptyLIE, emptyBag, unitBag (name, bndr_id), emptyLIE)
+
+    tc_mb_pats bind@(PatMonoBind pat grhss locn)
+      = tcAddSrcLoc locn               $
+       newHoleTyVarTy                  `thenNF_Tc` \ pat_ty -> 
 
-   tcTySigs other_sigs `thenTc` \ sig_infos ->
-   returnTc (sig_info1 : sig_infos)
+               --      Now typecheck the pattern
+               -- We do now support binding fresh (not-already-in-scope) scoped 
+               -- type variables in the pattern of a pattern binding.  
+               -- For example, this is now legal:
+               --      (x::a, y::b) = e
+               -- The type variables are brought into scope in tc_binds_and_then,
+               -- so we don't have to do anything here.
 
-tcTySigs (other : sigs) = tcTySigs sigs
-tcTySigs []            = returnTc []
+       tcPat tc_pat_bndr pat pat_ty            `thenTc` \ (pat', lie_req, tvs, ids, lie_avail) ->
+       let
+          complete_it xve = tcAddSrcLoc locn                           $
+                            tcAddErrCtxt (patMonoBindsCtxt bind)       $
+                            tcExtendLocalValEnv xve                    $
+                            tcGRHSs PatBindRhs grhss pat_ty            `thenTc` \ (grhss', lie) ->
+                            returnTc (PatMonoBind pat' grhss' locn, lie)
+       in
+       returnTc (complete_it, lie_req, tvs, ids, lie_avail)
+
+       -- tc_pat_bndr is used when dealing with a LHS binder in a pattern.
+       -- If there was a type sig for that Id, we want to make it much
+       -- as if that type signature had been on the binder as a SigPatIn.
+       -- We check for a type signature; if there is one, we use the mono_id
+       -- from the signature.  This is how we make sure the tau part of the
+       -- signature actually matches the type of the LHS; then tc_mb_pats
+       -- ensures the LHS and RHS have the same type
+       
+    tc_pat_bndr name pat_ty
+       = case maybeSig tc_ty_sigs name of
+           Nothing
+               -> newLocalName name    `thenNF_Tc` \ bndr_name ->
+                  tcMonoPatBndr bndr_name pat_ty
+
+           Just (TySigInfo _ _ _ _ _ mono_id _ _)
+               -> tcAddSrcLoc (getSrcLoc name)         $
+                  tcSubPat pat_ty (idType mono_id)     `thenTc` \ (co_fn, lie) ->
+                  returnTc (co_fn, lie, mono_id)
 \end{code}
 
 
@@ -293,45 +696,13 @@ tcTySigs []               = returnTc []
 %*                                                                     *
 %************************************************************************
 
-
-@tcPragmaSigs@ munches up the "signatures" that arise through *user*
+@tcSpecSigs@ munches up the specialisation "signatures" that arise through *user*
 pragmas.  It is convenient for them to appear in the @[RenamedSig]@
 part of a binding because then the same machinery can be used for
 moving them into place as is done for type signatures.
 
-\begin{code}
-tcPragmaSigs :: [RenamedSig]                   -- The pragma signatures
-            -> TcM s (Name -> PragmaInfo,      -- Maps name to the appropriate PragmaInfo
-                      TcHsBinds s,
-                      LIE s)
-
-tcPragmaSigs sigs = returnTc ( \name -> NoPragmaInfo, EmptyBinds, emptyLIE )
-
-{- 
-tcPragmaSigs sigs
-  = mapAndUnzip3Tc tcPragmaSig sigs    `thenTc` \ (names_w_id_infos, binds, lies) ->
-    let
-       name_to_info name = foldr ($) noIdInfo
-                                 [info_fn | (n,info_fn) <- names_w_id_infos, n==name]
-    in
-    returnTc (name_to_info,
-             foldr ThenBinds EmptyBinds binds,
-             foldr plusLIE emptyLIE lies)
-\end{code}
-
-Here are the easy cases for tcPragmaSigs
-
-\begin{code}
-tcPragmaSig (DeforestSig name loc)
-  = returnTc ((name, addInfo DoDeforest),EmptyBinds,emptyLIE)
-tcPragmaSig (InlineSig name loc)
-  = returnTc ((name, addInfo_UF (iWantToBeINLINEd UnfoldAlways)), EmptyBinds, emptyLIE)
-tcPragmaSig (MagicUnfoldingSig name string loc)
-  = returnTc ((name, addInfo_UF (mkMagicUnfolding string)), EmptyBinds, emptyLIE)
-\end{code}
+They look like this:
 
-The interesting case is for SPECIALISE pragmas.  There are two forms.
-Here's the first form:
 \begin{verbatim}
        f :: Ord a => [a] -> b -> b
        {-# SPECIALIZE f :: [Int] -> b -> b #-}
@@ -354,151 +725,96 @@ specialiser will subsequently discover that there's a call of @f@ at
 Int, and will create a specialisation for @f@.  After that, the
 binding for @f*@ can be discarded.
 
-The second form is this:
-\begin{verbatim}
-       f :: Ord a => [a] -> b -> b
-       {-# SPECIALIZE f :: [Int] -> b -> b = g #-}
-\end{verbatim}
-
-Here @g@ is specified as a function that implements the specialised
-version of @f@.  Suppose that g has type (a->b->b); that is, g's type
-is more general than that required.  For this we generate
-\begin{verbatim}
-       f@Int = /\b -> g Int b
-       f* = f@Int
-\end{verbatim}
-
-Here @f@@Int@ is a SpecId, the specialised version of @f@.  It inherits
-f's export status etc.  @f*@ is a SpecPragmaId, as before, which just serves
-to prevent @f@@Int@ from being discarded prematurely.  After specialisation,
-if @f@@Int@ is going to be used at all it will be used explicitly, so the simplifier can
-discard the f* binding.
-
-Actually, there is really only point in giving a SPECIALISE pragma on exported things,
-and the simplifer won't discard SpecIds for exporte things anyway, so maybe this is
-a bit of overkill.
+We used to have a form
+       {-# SPECIALISE f :: <type> = g #-}
+which promised that g implemented f at <type>, but we do that with 
+a RULE now:
+       {-# SPECIALISE (f::<type) = g #-}
 
 \begin{code}
-tcPragmaSig (SpecSig name poly_ty maybe_spec_name src_loc)
-  = tcAddSrcLoc src_loc                                $
-    tcAddErrCtxt (valSpecSigCtxt name spec_ty) $
+tcSpecSigs :: [RenamedSig] -> TcM (TcMonoBinds, LIE)
+tcSpecSigs (SpecSig name poly_ty src_loc : sigs)
+  =    -- SPECIALISE f :: forall b. theta => tau  =  g
+    tcAddSrcLoc src_loc                                $
+    tcAddErrCtxt (valSpecSigCtxt name poly_ty) $
 
        -- Get and instantiate its alleged specialised type
-    tcPolyType poly_ty                         `thenTc` \ sig_sigma ->
-    tcInstType [] (idType sig_sigma)           `thenNF_Tc` \ sig_ty ->
-    let
-       (sig_tyvars, sig_theta, sig_tau) = splitSigmaTy sig_ty
-       origin = ValSpecOrigin name
-    in
+    tcHsSigType (FunSigCtxt name) poly_ty      `thenTc` \ sig_ty ->
 
-       -- Check that the SPECIALIZE pragma had an empty context
-    checkTc (null sig_theta)
-           (panic "SPECIALIZE non-empty context (ToDo: msg)") `thenTc_`
+       -- Check that f has a more general type, and build a RHS for
+       -- the spec-pragma-id at the same time
+    tcExpr (HsVar name) sig_ty                 `thenTc` \ (spec_expr, spec_lie) ->
 
-       -- Get and instantiate the type of the id mentioned
-    tcLookupLocalValueOK "tcPragmaSig" name    `thenNF_Tc` \ main_id ->
-    tcInstType [] (idType main_id)             `thenNF_Tc` \ main_ty ->
+       -- Squeeze out any Methods (see comments with tcSimplifyToDicts)
+    tcSimplifyToDicts spec_lie                 `thenTc` \ (spec_dicts, spec_binds) ->
+
+       -- Just specialise "f" by building a SpecPragmaId binding
+       -- It is the thing that makes sure we don't prematurely 
+       -- dead-code-eliminate the binding we are really interested in.
+    newLocalName name                  `thenNF_Tc` \ spec_name ->
     let
-       (main_tyvars, main_rho) = splitForAllTy main_ty
-       (main_theta,main_tau)   = splitRhoTy main_rho
-       main_arg_tys            = map mkTyVarTy main_tyvars
+       spec_bind = VarMonoBind (mkSpecPragmaId spec_name sig_ty)
+                               (mkHsLet spec_binds spec_expr)
     in
 
-       -- Check that the specialised type is indeed an instance of
-       -- the type of the main function.
-    unifyTauTy sig_tau main_tau                        `thenTc_`
-    checkSigTyVars sig_tyvars sig_tau main_tau `thenTc_`
-
-       -- Check that the type variables of the polymorphic function are
-       -- either left polymorphic, or instantiate to ground type.
-       -- Also check that the overloaded type variables are instantiated to
-       -- ground type; or equivalently that all dictionaries have ground type
-    mapTc zonkTcType main_arg_tys      `thenNF_Tc` \ main_arg_tys' ->
-    zonkTcThetaType main_theta         `thenNF_Tc` \ main_theta' ->
-    tcAddErrCtxt (specGroundnessCtxt main_arg_tys')
-             (checkTc (all isGroundOrTyVarTy main_arg_tys'))           `thenTc_`
-    tcAddErrCtxt (specContextGroundnessCtxt main_theta')
-             (checkTc (and [isGroundTy ty | (_,ty) <- theta']))        `thenTc_`
-
-       -- Build the SpecPragmaId; it is the thing that makes sure we
-       -- don't prematurely dead-code-eliminate the binding we are really interested in.
-    newSpecPragmaId name sig_ty                `thenNF_Tc` \ spec_pragma_id ->
-
-       -- Build a suitable binding; depending on whether we were given
-       -- a value (Maybe Name) to be used as the specialisation.
-    case using of
-      Nothing ->               -- No implementation function specified
-
-               -- Make a Method inst for the occurrence of the overloaded function
-       newMethodWithGivenTy (OccurrenceOf name)
-                 (TcId main_id) main_arg_tys main_rho  `thenNF_Tc` \ (lie, meth_id) ->
+       -- Do the rest and combine
+    tcSpecSigs sigs                    `thenTc` \ (binds_rest, lie_rest) ->
+    returnTc (binds_rest `andMonoBinds` spec_bind,
+             lie_rest   `plusLIE`      mkLIE spec_dicts)
 
-       let
-           pseudo_bind = VarMonoBind spec_pragma_id pseudo_rhs
-           pseudo_rhs  = mkHsTyLam sig_tyvars (HsVar (TcId meth_id))
-       in
-       returnTc (pseudo_bind, lie, \ info -> info)
+tcSpecSigs (other_sig : sigs) = tcSpecSigs sigs
+tcSpecSigs []                = returnTc (EmptyMonoBinds, emptyLIE)
+\end{code}
 
-      Just spec_name ->                -- Use spec_name as the specialisation value ...
 
-               -- Type check a simple occurrence of the specialised Id
-       tcId spec_name          `thenTc` \ (spec_body, spec_lie, spec_tau) ->
+%************************************************************************
+%*                                                                     *
+\subsection[TcBinds-errors]{Error contexts and messages}
+%*                                                                     *
+%************************************************************************
 
-               -- Check that it has the correct type, and doesn't constrain the
-               -- signature variables at all
-       unifyTauTy sig_tau spec_tau                     `thenTc_`
-       checkSigTyVars sig_tyvars sig_tau spec_tau      `thenTc_`
 
-           -- Make a local SpecId to bind to applied spec_id
-       newSpecId main_id main_arg_tys sig_ty   `thenNF_Tc` \ local_spec_id ->
+\begin{code}
+patMonoBindsCtxt bind
+  = hang (ptext SLIT("In a pattern binding:")) 4 (ppr bind)
 
-       let
-           spec_rhs   = mkHsTyLam sig_tyvars spec_body
-           spec_binds = VarMonoBind local_spec_id spec_rhs
-                          `AndMonoBinds`
-                        VarMonoBind spec_pragma_id (HsVar (TcId local_spec_id))
-           spec_info  = SpecInfo spec_tys (length main_theta) local_spec_id
-       in
-       returnTc ((name, addInfo spec_info), spec_binds, spec_lie)
--}
-\end{code}
+-----------------------------------------------
+valSpecSigCtxt v ty
+  = sep [ptext SLIT("In a SPECIALIZE pragma for a value:"),
+        nest 4 (ppr v <+> dcolon <+> ppr ty)]
 
+-----------------------------------------------
+sigContextsErr = ptext SLIT("Mismatched contexts")
 
-Error contexts and messages
-~~~~~~~~~~~~~~~~~~~~~~~~~~~
-\begin{code}
-patMonoBindsCtxt bind sty
-  = ppHang (ppPStr SLIT("In a pattern binding:")) 4 (ppr sty bind)
-
---------------------------------------------
-specContextGroundnessCtxt -- err_ctxt dicts sty
-  = panic "specContextGroundnessCtxt"
-{-
-  = ppHang (
-       ppSep [ppBesides [ppStr "In the SPECIALIZE pragma for `", ppr sty name, ppStr "'"],
-              ppBesides [ppStr " specialised to the type `", ppr sty spec_ty,  ppStr "'"],
-              pp_spec_id sty,
-              ppStr "... not all overloaded type variables were instantiated",
-              ppStr "to ground types:"])
-      4 (ppAboves [ppCat [ppr sty c, ppr sty t]
-                 | (c,t) <- map getDictClassAndType dicts])
-  where
-    (name, spec_ty, locn, pp_spec_id)
-      = case err_ctxt of
-         ValSpecSigCtxt    n ty loc      -> (n, ty, loc, \ x -> ppNil)
-         ValSpecSpecIdCtxt n ty spec loc ->
-           (n, ty, loc,
-            \ sty -> ppBesides [ppStr "... type of explicit id `", ppr sty spec, ppStr "'"])
--}
+sigContextsCtxt s1 s2
+  = vcat [ptext SLIT("When matching the contexts of the signatures for"), 
+         nest 2 (vcat [ppr s1 <+> dcolon <+> ppr (idType s1),
+                       ppr s2 <+> dcolon <+> ppr (idType s2)]),
+         ptext SLIT("The signature contexts in a mutually recursive group should all be identical")]
 
 -----------------------------------------------
-specGroundnessCtxt
-  = panic "specGroundnessCtxt"
+unliftedBindErr flavour mbind
+  = hang (text flavour <+> ptext SLIT("bindings for unlifted types aren't allowed:"))
+        4 (ppr mbind)
 
+-----------------------------------------------
+existentialExplode mbinds
+  = hang (vcat [text "My brain just exploded.",
+               text "I can't handle pattern bindings for existentially-quantified constructors.",
+               text "In the binding group"])
+       4 (ppr mbinds)
 
-valSpecSigCtxt v ty sty
-  = ppHang (ppPStr SLIT("In a SPECIALIZE pragma for a value:"))
-        4 (ppSep [ppBeside (pprNonOp sty v) (ppPStr SLIT(" ::")),
-                 ppr sty ty])
+-----------------------------------------------
+restrictedBindCtxtErr binder_names
+  = hang (ptext SLIT("Illegal overloaded type signature(s)"))
+       4 (vcat [ptext SLIT("in a binding group for") <+> pprBinders binder_names,
+               ptext SLIT("that falls under the monomorphism restriction")])
+
+genCtxt binder_names
+  = ptext SLIT("When generalising the type(s) for") <+> pprBinders binder_names
+
+-- Used in error messages
+-- Use quotes for a single one; they look a bit "busy" for several
+pprBinders [bndr] = quotes (ppr bndr)
+pprBinders bndrs  = pprWithCommas ppr bndrs
 \end{code}
-