[project @ 1998-06-08 11:45:09 by simonpj]
[ghc-hetmet.git] / ghc / compiler / typecheck / TcBinds.lhs
index 912a415..cb56629 100644 (file)
@@ -4,47 +4,67 @@
 \section[TcBinds]{TcBinds}
 
 \begin{code}
-#include "HsVersions.h"
-
-module TcBinds ( tcBindsAndThen, tcPragmaSigs ) where
-
-import Ubiq
+module TcBinds ( tcBindsAndThen, tcTopBindsAndThen, bindInstsOfLocalFuns,
+                tcPragmaSigs, checkSigTyVars, tcBindWithSigs, 
+                sigCtxt, TcSigInfo(..) ) where
 
-import HsSyn           ( HsBinds(..), Bind(..), Sig(..), MonoBinds(..), 
-                         HsExpr, Match, PolyType, InPat, OutPat,
-                         GRHSsAndBinds, ArithSeqInfo, HsLit, Fake,
-                         collectBinders )
-import RnHsSyn         ( RenamedHsBinds(..), RenamedBind(..), RenamedSig(..), 
-                         RenamedMonoBinds(..) )
-import TcHsSyn         ( TcHsBinds(..), TcBind(..), TcMonoBinds(..),
-                         TcIdOcc(..), TcIdBndr(..) )
+#include "HsVersions.h"
 
-import TcMonad 
-import GenSpecEtc      ( checkSigTyVars, genBinds, TcSigInfo(..) )
-import Inst            ( Inst, LIE(..), emptyLIE, plusLIE, InstOrigin(..) )
-import TcEnv           ( tcExtendLocalValEnv, tcLookupLocalValueOK, newMonoIds )
-import TcLoop          ( tcGRHSsAndBinds )
+import {-# SOURCE #-} TcGRHSs ( tcGRHSsAndBinds )
+import {-# SOURCE #-} TcExpr  ( tcExpr )
+
+import HsSyn           ( HsExpr(..), HsBinds(..), MonoBinds(..), Sig(..), InPat(..),
+                         collectMonoBinders, andMonoBinds
+                       )
+import RnHsSyn         ( RenamedHsBinds, RenamedSig, RenamedMonoBinds )
+import TcHsSyn         ( TcHsBinds, TcMonoBinds,
+                         TcIdOcc(..), TcIdBndr, 
+                         tcIdType
+                       )
+
+import TcMonad
+import Inst            ( Inst, LIE, emptyLIE, plusLIE, plusLIEs, InstOrigin(..),
+                         newDicts, tyVarsOfInst, instToId, newMethodWithGivenTy,
+                         zonkInst, pprInsts
+                       )
+import TcEnv           ( tcExtendLocalValEnv, tcLookupLocalValueOK,
+                         newLocalId, newSpecPragmaId,
+                         tcGetGlobalTyVars, tcExtendGlobalTyVars
+                       )
 import TcMatches       ( tcMatchesFun )
-import TcMonoType      ( tcPolyType )
+import TcSimplify      ( tcSimplify, tcSimplifyAndCheck )
+import TcMonoType      ( tcHsType )
 import TcPat           ( tcPat )
 import TcSimplify      ( bindInstsOfLocalFuns )
-import TcType          ( newTcTyVar, tcInstType )
-import Unify           ( unifyTauTy )
-
-import Kind            ( mkBoxedTypeKind, mkTypeKind )
-import Id              ( GenId, idType, mkUserId )
-import IdInfo          ( noIdInfo )
-import Name            ( Name )        -- instances
-import Maybes          ( assocMaybe, catMaybes, Maybe(..) )
-import Outputable      ( pprNonOp )
-import PragmaInfo      ( PragmaInfo(..) )
-import Pretty
-import Type            ( mkTyVarTy, mkTyVarTys, isTyVarTy,
-                         mkSigmaTy, splitSigmaTy,
-                         splitRhoTy, mkForAllTy, splitForAllTy )
-import Util            ( panic )
+import TcType          ( TcType, TcThetaType, TcTauType, 
+                         TcTyVarSet, TcTyVar,
+                         newTyVarTy, newTcTyVar, tcInstSigType, tcInstSigTcType,
+                         zonkTcType, zonkTcTypes, zonkTcThetaType, zonkTcTyVar
+                       )
+import Unify           ( unifyTauTy, unifyTauTyLists )
+
+import Kind            ( isUnboxedTypeKind, mkTypeKind, isTypeKind, mkBoxedTypeKind )
+import MkId            ( mkUserId )
+import Id              ( idType, idName, idInfo, replaceIdInfo )
+import IdInfo          ( IdInfo, noIdInfo, setInlinePragInfo, InlinePragInfo(..) )
+import Maybes          ( maybeToBool, assocMaybe )
+import Name            ( getOccName, getSrcLoc, Name )
+import Type            ( mkTyVarTy, mkTyVarTys, isTyVarTy, tyVarsOfTypes,
+                         splitSigmaTy, mkForAllTys, mkFunTys, getTyVar, mkDictTy,
+                         splitRhoTy, mkForAllTy, splitForAllTys
+                       )
+import TyVar           ( TyVar, tyVarKind, mkTyVarSet, minusTyVarSet, emptyTyVarSet,
+                         elementOfTyVarSet, unionTyVarSets, tyVarSetToList
+                       )
+import Bag             ( bagToList, foldrBag, )
+import Util            ( isIn, hasNoDups, assoc )
+import Unique          ( Unique )
+import BasicTypes      ( TopLevelFlag(..), RecFlag(..) )
+import SrcLoc           ( SrcLoc )
+import Outputable
 \end{code}
 
+
 %************************************************************************
 %*                                                                     *
 \subsection{Type-checking bindings}
@@ -62,7 +82,7 @@ specialising the things bound.
 @tcBindsAndThen@ also takes a "combiner" which glues together the
 bindings and the "thing" to make a new "thing".
 
-The real work is done by @tcBindAndThen@.
+The real work is done by @tcBindWithSigsAndThen@.
 
 Recursive and non-recursive binds are handled in essentially the same
 way: because of uniques there are no scoping issues left.  The only
@@ -77,24 +97,85 @@ At the top-level the LIE is sure to contain nothing but constant
 dictionaries, which we resolve at the module level.
 
 \begin{code}
-tcBindsAndThen
-       :: (TcHsBinds s -> thing -> thing)              -- Combinator
+tcTopBindsAndThen, tcBindsAndThen
+       :: (RecFlag -> TcMonoBinds s -> this -> that)           -- Combinator
        -> RenamedHsBinds
-       -> TcM s (thing, LIE s, thing_ty)
-       -> TcM s (thing, LIE s, thing_ty)
+       -> TcM s (this, LIE s)
+       -> TcM s (that, LIE s)
+
+tcTopBindsAndThen = tc_binds_and_then TopLevel
+tcBindsAndThen    = tc_binds_and_then NotTopLevel
+
+tc_binds_and_then top_lvl combiner binds do_next
+  = tcBinds top_lvl binds      `thenTc` \ (mbinds1, binds_lie, env, ids) ->
+    tcSetEnv env               $
+
+       -- Now do whatever happens next, in the augmented envt
+    do_next                    `thenTc` \ (thing, thing_lie) ->
 
-tcBindsAndThen combiner EmptyBinds do_next
-  = do_next    `thenTc` \ (thing, lie, thing_ty) ->
-    returnTc (combiner EmptyBinds thing, lie, thing_ty)
+       -- Create specialisations of functions bound here
+       -- Nota Bene: we glom the bindings all together in a single
+       -- recursive group ("recursive" passed to combiner, below)
+       -- so that we can do thsi bindInsts thing once for all the bindings
+       -- and the thing inside.  This saves a quadratic-cost algorithm
+       -- when there's a long sequence of bindings.
+    bindInstsOfLocalFuns (binds_lie `plusLIE` thing_lie) ids   `thenTc` \ (final_lie, mbinds2) ->
 
-tcBindsAndThen combiner (SingleBind bind) do_next
-  = tcBindAndThen combiner bind [] do_next
+       -- All done
+    let
+       final_mbinds = mbinds1 `AndMonoBinds` mbinds2
+    in
+    returnTc (combiner Recursive final_mbinds thing, final_lie)
 
-tcBindsAndThen combiner (BindWith bind sigs) do_next
-  = tcBindAndThen combiner bind sigs do_next
+tcBinds :: TopLevelFlag
+       -> RenamedHsBinds
+       -> TcM s (TcMonoBinds s, LIE s, TcEnv s, [TcIdBndr s])
+          -- The envt is the envt with binders in scope
+          -- The binders are those bound by this group of bindings
+
+tcBinds top_lvl EmptyBinds
+  = tcGetEnv           `thenNF_Tc` \ env ->
+    returnTc (EmptyMonoBinds, emptyLIE, env, [])
+
+  -- Short-cut for the rather common case of an empty bunch of bindings
+tcBinds top_lvl (MonoBind EmptyMonoBinds sigs is_rec)
+  = tcGetEnv           `thenNF_Tc` \ env ->
+    returnTc (EmptyMonoBinds, emptyLIE, env, [])
+
+tcBinds top_lvl (ThenBinds binds1 binds2)
+  = tcBinds top_lvl binds1       `thenTc` \ (mbinds1, lie1, env1, ids1) ->
+    tcSetEnv env1                $
+    tcBinds top_lvl binds2       `thenTc` \ (mbinds2, lie2, env2, ids2) ->
+    returnTc (mbinds1 `AndMonoBinds` mbinds2, lie1 `plusLIE` lie2, env2, ids1++ids2)
+    
+tcBinds top_lvl (MonoBind bind sigs is_rec)
+  = fixTc (\ ~(prag_info_fn, _) ->
+       -- This is the usual prag_info fix; the PragmaInfo field of an Id
+       -- is not inspected till ages later in the compiler, so there
+       -- should be no black-hole problems here.
 
-tcBindsAndThen combiner (ThenBinds binds1 binds2) do_next
-  = tcBindsAndThen combiner binds1 (tcBindsAndThen combiner binds2 do_next)
+       -- TYPECHECK THE SIGNATURES
+      mapTc tcTySig ty_sigs            `thenTc` \ tc_ty_sigs ->
+  
+      tcBindWithSigs top_lvl binder_names bind 
+                    tc_ty_sigs is_rec prag_info_fn     `thenTc` \ (poly_binds, poly_lie, poly_ids) ->
+  
+         -- Extend the environment to bind the new polymorphic Ids
+      tcExtendLocalValEnv binder_names poly_ids $
+  
+         -- Build bindings and IdInfos corresponding to user pragmas
+      tcPragmaSigs sigs                        `thenTc` \ (prag_info_fn, prag_binds, prag_lie) ->
+  
+         -- Catch the environment and return
+      tcGetEnv                      `thenNF_Tc` \ env ->
+      returnTc (prag_info_fn, (poly_binds `AndMonoBinds` prag_binds, 
+                              poly_lie `plusLIE` prag_lie, 
+                              env, poly_ids)
+    ) )                                        `thenTc` \ (_, result) ->
+    returnTc result
+  where
+    binder_names = map fst (bagToList (collectMonoBinders bind))
+    ty_sigs      = [sig  | sig@(Sig name _ _) <- sigs]
 \end{code}
 
 An aside.  The original version of @tcBindsAndThen@ which lacks a
@@ -113,145 +194,399 @@ tcBindsAndThen EmptyBinds do_next
   = do_next            `thenTc` \ (thing, lie, thing_ty) ->
     returnTc ((EmptyBinds, thing), lie, thing_ty)
 
-tcBindsAndThen (SingleBind bind) do_next
-  = tcBindAndThen bind [] do_next
-
-tcBindsAndThen (BindWith bind sigs) do_next
-  = tcBindAndThen bind sigs do_next
-
 tcBindsAndThen (ThenBinds binds1 binds2) do_next
   = tcBindsAndThen binds1 (tcBindsAndThen binds2 do_next)
        `thenTc` \ ((binds1', (binds2', thing')), lie1, thing_ty) ->
 
     returnTc ((binds1' `ThenBinds` binds2', thing'), lie1, thing_ty)
+
+tcBindsAndThen (MonoBind bind sigs is_rec) do_next
+  = tcBindAndThen bind sigs do_next
 \end{pseudocode}
 
+
 %************************************************************************
 %*                                                                     *
-\subsection{Bind}
+\subsection{tcBindWithSigs}
 %*                                                                     *
 %************************************************************************
 
-\begin{code}
-tcBindAndThen
-       :: (TcHsBinds s -> thing -> thing)                -- Combinator
-       -> RenamedBind                                    -- The Bind to typecheck
-       -> [RenamedSig]                                   -- ...and its signatures
-       -> TcM s (thing, LIE s, thing_ty)                 -- Thing to type check in
-                                                         -- augmented envt
-       -> TcM s (thing, LIE s, thing_ty)                 -- Results, incl the
-
-tcBindAndThen combiner bind sigs do_next
-  = fixTc (\ ~(prag_info_fn, _) ->
-       -- This is the usual prag_info fix; the PragmaInfo field of an Id
-       -- is not inspected till ages later in the compiler, so there
-       -- should be no black-hole problems here.
-    
-    tcBindAndSigs binder_names bind 
-                 sigs prag_info_fn     `thenTc` \ (poly_binds, poly_lie, poly_ids) ->
-
-       -- Extend the environment to bind the new polymorphic Ids
-    tcExtendLocalValEnv binder_names poly_ids $
+@tcBindWithSigs@ deals with a single binding group.  It does generalisation,
+so all the clever stuff is in here.
 
-       -- Build bindings and IdInfos corresponding to user pragmas
-    tcPragmaSigs sigs                  `thenTc` \ (prag_info_fn, prag_binds, prag_lie) ->
+* binder_names and mbind must define the same set of Names
 
-       -- Now do whatever happens next, in the augmented envt
-    do_next                            `thenTc` \ (thing, thing_lie, thing_ty) ->
-
-       -- Create specialisations of functions bound here
-    bindInstsOfLocalFuns (prag_lie `plusLIE` thing_lie)
-                         poly_ids      `thenTc` \ (lie2, inst_mbinds) ->
-
-       -- All done
-    let
-       final_lie   = lie2 `plusLIE` poly_lie
-       final_binds = poly_binds `ThenBinds`
-                     SingleBind (NonRecBind inst_mbinds) `ThenBinds`
-                     prag_binds
-    in
-    returnTc (prag_info_fn, (combiner final_binds thing, final_lie, thing_ty))
-    )                                  `thenTc` \ (_, result) ->
-    returnTc result
-  where
-    binder_names = collectBinders bind
+* The Names in tc_ty_sigs must be a subset of binder_names
 
+* The Ids in tc_ty_sigs don't necessarily have to have the same name
+  as the Name in the tc_ty_sig
 
-tcBindAndSigs binder_names bind sigs prag_info_fn
+\begin{code}
+tcBindWithSigs 
+       :: TopLevelFlag
+       -> [Name]
+       -> RenamedMonoBinds
+       -> [TcSigInfo s]
+       -> RecFlag
+       -> (Name -> IdInfo)
+       -> TcM s (TcMonoBinds s, LIE s, [TcIdBndr s])
+
+tcBindWithSigs top_lvl binder_names mbind tc_ty_sigs is_rec prag_info_fn
   = recoverTc (
        -- If typechecking the binds fails, then return with each
-       -- binder given type (forall a.a), to minimise subsequent
+       -- signature-less binder given type (forall a.a), to minimise subsequent
        -- error messages
        newTcTyVar mkBoxedTypeKind              `thenNF_Tc` \ alpha_tv ->
        let
          forall_a_a = mkForAllTy alpha_tv (mkTyVarTy alpha_tv)
-         poly_ids   = [ mkUserId name forall_a_a (prag_info_fn name)
-                      | name <- binder_names]
+         poly_ids   = map mk_dummy binder_names
+         mk_dummy name = case maybeSig tc_ty_sigs name of
+                           Just (TySigInfo _ poly_id _ _ _ _) -> poly_id       -- Signature
+                           Nothing -> mkUserId name forall_a_a                 -- No signature
        in
-       returnTc (EmptyBinds, emptyLIE, poly_ids)
+       returnTc (EmptyMonoBinds, emptyLIE, poly_ids)
     ) $
 
-       -- Create a new identifier for each binder, with each being given
-       -- a type-variable type.
-    newMonoIds binder_names kind (\ mono_ids ->
-           tcTySigs sigs               `thenTc` \ sig_info ->
-           tc_bind bind                `thenTc` \ (bind', lie) ->
-           returnTc (mono_ids, bind', lie, sig_info)
-    )
-           `thenTc` \ (mono_ids, bind', lie, sig_info) ->
+       -- Create a new identifier for each binder, with each being given
+       -- a fresh unique, and a type-variable type.
+       -- For "mono_lies" see comments about polymorphic recursion at the 
+       -- end of the function.
+    mapAndUnzipNF_Tc mk_mono_id binder_names   `thenNF_Tc` \ (mono_lies, mono_ids) ->
+    let
+       mono_lie = plusLIEs mono_lies
+       mono_id_tys = map idType mono_ids
+    in
+
+       -- TYPECHECK THE BINDINGS
+    tcMonoBinds mbind binder_names mono_ids tc_ty_sigs `thenTc` \ (mbind', lie) ->
+
+       -- CHECK THAT THE SIGNATURES MATCH
+       -- (must do this before getTyVarsToGen)
+    checkSigMatch tc_ty_sigs                           `thenTc` \ sig_theta ->
+       
+       -- COMPUTE VARIABLES OVER WHICH TO QUANTIFY, namely tyvars_to_gen
+       -- The tyvars_not_to_gen are free in the environment, and hence
+       -- candidates for generalisation, but sometimes the monomorphism
+       -- restriction means we can't generalise them nevertheless
+    getTyVarsToGen is_unrestricted mono_id_tys lie     `thenNF_Tc` \ (tyvars_not_to_gen, tyvars_to_gen) ->
+
+       -- DEAL WITH TYPE VARIABLE KINDS
+       -- **** This step can do unification => keep other zonking after this ****
+    mapTc defaultUncommittedTyVar (tyVarSetToList tyvars_to_gen)  `thenTc` \ real_tyvars_to_gen_list ->
+    let
+       real_tyvars_to_gen = mkTyVarSet real_tyvars_to_gen_list
+               -- It's important that the final list 
+               -- (real_tyvars_to_gen and real_tyvars_to_gen_list) is fully
+               -- zonked, *including boxity*, because they'll be included in the forall types of
+               -- the polymorphic Ids, and instances of these Ids will be generated from them.
+               -- 
+               -- Also NB that tcSimplify takes zonked tyvars as its arg, hence we pass
+               -- real_tyvars_to_gen
+    in
 
-           -- Notice that genBinds gets the old (non-extended) environment
-    genBinds binder_names mono_ids bind' lie sig_info prag_info_fn
+       -- SIMPLIFY THE LIE
+    tcExtendGlobalTyVars (tyVarSetToList tyvars_not_to_gen) (
+       if null tc_ty_sigs then
+               -- No signatures, so just simplify the lie
+               -- NB: no signatures => no polymorphic recursion, so no
+               -- need to use mono_lies (which will be empty anyway)
+           tcSimplify (text "tcBinds1" <+> ppr binder_names)
+                      top_lvl real_tyvars_to_gen lie   `thenTc` \ (lie_free, dict_binds, lie_bound) ->
+           returnTc (lie_free, dict_binds, map instToId (bagToList lie_bound))
+
+       else
+           zonkTcThetaType sig_theta                   `thenNF_Tc` \ sig_theta' ->
+           newDicts SignatureOrigin sig_theta'         `thenNF_Tc` \ (dicts_sig, dict_ids) ->
+               -- It's important that sig_theta is zonked, because
+               -- dict_id is later used to form the type of the polymorphic thing,
+               -- and forall-types must be zonked so far as their bound variables
+               -- are concerned
+
+           let
+               -- The "givens" is the stuff available.  We get that from
+               -- the context of the type signature, BUT ALSO the mono_lie
+               -- so that polymorphic recursion works right (see comments at end of fn)
+               givens = dicts_sig `plusLIE` mono_lie
+           in
+
+               -- Check that the needed dicts can be expressed in
+               -- terms of the signature ones
+           tcAddErrCtxt  (bindSigsCtxt tysig_names) $
+           tcSimplifyAndCheck
+               (ptext SLIT("type signature for") <+> 
+                hsep (punctuate comma (map (quotes . ppr) binder_names)))
+               real_tyvars_to_gen givens lie           `thenTc` \ (lie_free, dict_binds) ->
+
+           returnTc (lie_free, dict_binds, dict_ids)
+
+    )                                          `thenTc` \ (lie_free, dict_binds, dicts_bound) ->
+
+    ASSERT( not (any (isUnboxedTypeKind . tyVarKind) real_tyvars_to_gen_list) )
+               -- The instCantBeGeneralised stuff in tcSimplify should have
+               -- already raised an error if we're trying to generalise an unboxed tyvar
+               -- (NB: unboxed tyvars are always introduced along with a class constraint)
+               -- and it's better done there because we have more precise origin information.
+               -- That's why we just use an ASSERT here.
+
+        -- BUILD THE POLYMORPHIC RESULT IDs
+    zonkTcTypes mono_id_tys                    `thenNF_Tc` \ zonked_mono_id_types ->
+    let
+       exports  = zipWith3 mk_export binder_names mono_ids zonked_mono_id_types
+       dict_tys = map tcIdType dicts_bound
+
+       mk_export binder_name mono_id zonked_mono_id_ty
+         = (tyvars, TcId (replaceIdInfo poly_id (prag_info_fn binder_name)), TcId mono_id)
+         where
+           (tyvars, poly_id) = case maybeSig tc_ty_sigs binder_name of
+                                 Just (TySigInfo _ sig_poly_id sig_tyvars _ _ _) -> (sig_tyvars, sig_poly_id)
+                                 Nothing ->                            (real_tyvars_to_gen_list, new_poly_id)
+
+           new_poly_id = mkUserId binder_name poly_ty
+           poly_ty     = mkForAllTys real_tyvars_to_gen_list $ mkFunTys dict_tys $ zonked_mono_id_ty
+                               -- It's important to build a fully-zonked poly_ty, because
+                               -- we'll slurp out its free type variables when extending the
+                               -- local environment (tcExtendLocalValEnv); if it's not zonked
+                               -- it appears to have free tyvars that aren't actually free at all.
+    in
+
+        -- BUILD RESULTS
+    returnTc (
+        AbsBinds real_tyvars_to_gen_list
+                 dicts_bound
+                 exports
+                 (dict_binds `AndMonoBinds` mbind'),
+        lie_free,
+        [poly_id | (_, TcId poly_id, _) <- exports]
+    )
   where
-    kind = case bind of
-               NonRecBind _ -> mkBoxedTypeKind -- Recursive, so no unboxed types
-               RecBind _    -> mkTypeKind      -- Non-recursive, so we permit unboxed types
+    no_of_binders = length binder_names
+
+    mk_mono_id binder_name
+      |  theres_a_signature    -- There's a signature; and it's overloaded, 
+      && not (null sig_theta)  -- so make a Method
+      = tcAddSrcLoc sig_loc $
+       newMethodWithGivenTy SignatureOrigin 
+               (TcId poly_id) (mkTyVarTys sig_tyvars) 
+               sig_theta sig_tau                       `thenNF_Tc` \ (mono_lie, TcId mono_id) ->
+                                                       -- A bit turgid to have to strip the TcId
+       returnNF_Tc (mono_lie, mono_id)
+
+      | otherwise              -- No signature or not overloaded; 
+      = tcAddSrcLoc (getSrcLoc binder_name) $
+       (if theres_a_signature then
+               returnNF_Tc sig_tau     -- Non-overloaded signature; use its type
+        else
+               newTyVarTy kind         -- No signature; use a new type variable
+       )                                       `thenNF_Tc` \ mono_id_ty ->
+
+       newLocalId (getOccName binder_name) mono_id_ty  `thenNF_Tc` \ mono_id ->
+       returnNF_Tc (emptyLIE, mono_id)
+      where
+       maybe_sig          = maybeSig tc_ty_sigs binder_name
+       theres_a_signature = maybeToBool maybe_sig
+       Just (TySigInfo name poly_id sig_tyvars sig_theta sig_tau sig_loc) = maybe_sig
+
+    tysig_names     = [name | (TySigInfo name _ _ _ _ _) <- tc_ty_sigs]
+    is_unrestricted = isUnRestrictedGroup tysig_names mbind
+
+    kind = case is_rec of
+            Recursive -> mkBoxedTypeKind       -- Recursive, so no unboxed types
+            NonRecursive -> mkTypeKind         -- Non-recursive, so we permit unboxed types
 \end{code}
 
-\begin{code}
-tc_bind :: RenamedBind -> TcM s (TcBind s, LIE s)
+Polymorphic recursion
+~~~~~~~~~~~~~~~~~~~~~
+The game plan for polymorphic recursion in the code above is 
 
-tc_bind (NonRecBind mono_binds)
-  = tcMonoBinds mono_binds     `thenTc` \ (mono_binds2, lie) ->
-    returnTc  (NonRecBind mono_binds2, lie)
+       * Bind any variable for which we have a type signature
+         to an Id with a polymorphic type.  Then when type-checking 
+         the RHSs we'll make a full polymorphic call.
 
-tc_bind (RecBind mono_binds)
-  = tcMonoBinds mono_binds     `thenTc` \ (mono_binds2, lie) ->
-    returnTc  (RecBind mono_binds2, lie)
-\end{code}
+This fine, but if you aren't a bit careful you end up with a horrendous
+amount of partial application and (worse) a huge space leak. For example:
+
+       f :: Eq a => [a] -> [a]
+       f xs = ...f...
+
+If we don't take care, after typechecking we get
+
+       f = /\a -> \d::Eq a -> let f' = f a d
+                              in
+                              \ys:[a] -> ...f'...
+
+Notice the the stupid construction of (f a d), which is of course
+identical to the function we're executing.  In this case, the
+polymorphic recursion ins't being used (but that's a very common case).
+
+This can lead to a massive space leak, from the following top-level defn:
+
+       ff :: [Int] -> [Int]
+       ff = f dEqInt
+
+Now (f dEqInt) evaluates to a lambda that has f' as a free variable; but
+f' is another thunk which evaluates to the same thing... and you end
+up with a chain of identical values all hung onto by the CAF ff.
+
+Solution: when typechecking the RHSs we always have in hand the
+*monomorphic* Ids for each binding.  So we just need to make sure that
+if (Method f a d) shows up in the constraints emerging from (...f...)
+we just use the monomorphic Id.  We achieve this by adding monomorphic Ids
+to the "givens" when simplifying constraints.  Thats' what the "mono_lies"
+is doing.
+
+
+%************************************************************************
+%*                                                                     *
+\subsection{getTyVarsToGen}
+%*                                                                     *
+%************************************************************************
+
+@getTyVarsToGen@ decides what type variables generalise over.
+
+For a "restricted group" -- see the monomorphism restriction
+for a definition -- we bind no dictionaries, and
+remove from tyvars_to_gen any constrained type variables
+
+*Don't* simplify dicts at this point, because we aren't going
+to generalise over these dicts.  By the time we do simplify them
+we may well know more.  For example (this actually came up)
+       f :: Array Int Int
+       f x = array ... xs where xs = [1,2,3,4,5]
+We don't want to generate lots of (fromInt Int 1), (fromInt Int 2)
+stuff.  If we simplify only at the f-binding (not the xs-binding)
+we'll know that the literals are all Ints, and we can just produce
+Int literals!
+
+Find all the type variables involved in overloading, the
+"constrained_tyvars".  These are the ones we *aren't* going to
+generalise.  We must be careful about doing this:
+
+ (a) If we fail to generalise a tyvar which is not actually
+       constrained, then it will never, ever get bound, and lands
+       up printed out in interface files!  Notorious example:
+               instance Eq a => Eq (Foo a b) where ..
+       Here, b is not constrained, even though it looks as if it is.
+       Another, more common, example is when there's a Method inst in
+       the LIE, whose type might very well involve non-overloaded
+       type variables.
+
+ (b) On the other hand, we mustn't generalise tyvars which are constrained,
+       because we are going to pass on out the unmodified LIE, with those
+       tyvars in it.  They won't be in scope if we've generalised them.
+
+So we are careful, and do a complete simplification just to find the
+constrained tyvars. We don't use any of the results, except to
+find which tyvars are constrained.
 
 \begin{code}
-tcMonoBinds :: RenamedMonoBinds -> TcM s (TcMonoBinds s, LIE s)
+getTyVarsToGen is_unrestricted mono_id_tys lie
+  = tcGetGlobalTyVars                  `thenNF_Tc` \ free_tyvars ->
+    zonkTcTypes mono_id_tys            `thenNF_Tc` \ zonked_mono_id_tys ->
+    let
+       tyvars_to_gen = tyVarsOfTypes zonked_mono_id_tys `minusTyVarSet` free_tyvars
+    in
+    if is_unrestricted
+    then
+       returnNF_Tc (emptyTyVarSet, tyvars_to_gen)
+    else
+       -- This recover and discard-errs is to avoid duplicate error
+       -- messages; this, after all, is an "extra" call to tcSimplify
+       recoverNF_Tc (returnNF_Tc (emptyTyVarSet, tyvars_to_gen))       $
+       discardErrsTc                                                   $
+
+       tcSimplify (text "getTVG") NotTopLevel tyvars_to_gen lie    `thenTc` \ (_, _, constrained_dicts) ->
+       let
+         -- ASSERT: dicts_sig is already zonked!
+           constrained_tyvars    = foldrBag (unionTyVarSets . tyVarsOfInst) emptyTyVarSet constrained_dicts
+           reduced_tyvars_to_gen = tyvars_to_gen `minusTyVarSet` constrained_tyvars
+        in
+        returnTc (constrained_tyvars, reduced_tyvars_to_gen)
+\end{code}
 
-tcMonoBinds EmptyMonoBinds = returnTc (EmptyMonoBinds, emptyLIE)
 
-tcMonoBinds (AndMonoBinds mb1 mb2)
-  = tcMonoBinds mb1            `thenTc` \ (mb1a, lie1) ->
-    tcMonoBinds mb2            `thenTc` \ (mb2a, lie2) ->
-    returnTc (AndMonoBinds mb1a mb2a, lie1 `plusLIE` lie2)
+\begin{code}
+isUnRestrictedGroup :: [Name]          -- Signatures given for these
+                   -> RenamedMonoBinds
+                   -> Bool
+
+is_elem v vs = isIn "isUnResMono" v vs
+
+isUnRestrictedGroup sigs (PatMonoBind (VarPatIn v) _ _) = v `is_elem` sigs
+isUnRestrictedGroup sigs (PatMonoBind other      _ _)  = False
+isUnRestrictedGroup sigs (VarMonoBind v _)             = v `is_elem` sigs
+isUnRestrictedGroup sigs (FunMonoBind _ _ _ _)         = True
+isUnRestrictedGroup sigs (AndMonoBinds mb1 mb2)                = isUnRestrictedGroup sigs mb1 &&
+                                                         isUnRestrictedGroup sigs mb2
+isUnRestrictedGroup sigs EmptyMonoBinds                        = True
+\end{code}
 
-tcMonoBinds bind@(PatMonoBind pat grhss_and_binds locn)
-  = tcAddSrcLoc locn            $
+@defaultUncommittedTyVar@ checks for generalisation over unboxed
+types, and defaults any TypeKind TyVars to BoxedTypeKind.
 
-       -- LEFT HAND SIDE
-    tcPat pat                          `thenTc` \ (pat2, lie_pat, pat_ty) ->
+\begin{code}
+defaultUncommittedTyVar tyvar
+  | isTypeKind (tyVarKind tyvar)
+  = newTcTyVar mkBoxedTypeKind                                 `thenNF_Tc` \ boxed_tyvar ->
+    unifyTauTy (mkTyVarTy boxed_tyvar) (mkTyVarTy tyvar)       `thenTc_`
+    returnTc boxed_tyvar
+
+  | otherwise
+  = returnTc tyvar
+\end{code}
 
-       -- BINDINGS AND GRHSS
-    tcGRHSsAndBinds grhss_and_binds    `thenTc` \ (grhss_and_binds2, lie, grhss_ty) ->
 
-       -- Unify the two sides
-    tcAddErrCtxt (patMonoBindsCtxt bind) $
-       unifyTauTy pat_ty grhss_ty                      `thenTc_`
+%************************************************************************
+%*                                                                     *
+\subsection{tcMonoBind}
+%*                                                                     *
+%************************************************************************
 
-       -- RETURN
-    returnTc (PatMonoBind pat2 grhss_and_binds2 locn,
-             plusLIE lie_pat lie)
+@tcMonoBinds@ deals with a single @MonoBind@.  
+The signatures have been dealt with already.
 
-tcMonoBinds (FunMonoBind name matches locn)
-  = tcAddSrcLoc locn                           $
-    tcLookupLocalValueOK "tcMonoBinds" name    `thenNF_Tc` \ id ->
-    tcMatchesFun name (idType id) matches      `thenTc` \ (matches', lie) ->
-    returnTc (FunMonoBind (TcId id) matches' locn, lie)
+\begin{code}
+tcMonoBinds :: RenamedMonoBinds 
+           -> [Name] -> [TcIdBndr s]
+           -> [TcSigInfo s]
+           -> TcM s (TcMonoBinds s, LIE s)
+
+tcMonoBinds mbind binder_names mono_ids tc_ty_sigs
+  = tcExtendLocalValEnv binder_names mono_ids (
+       tc_mono_binds mbind
+    )
+  where
+    sig_names = [name | (TySigInfo name _ _ _ _ _) <- tc_ty_sigs]
+    sig_ids   = [id   | (TySigInfo _   id _ _ _ _) <- tc_ty_sigs]
+
+    tc_mono_binds EmptyMonoBinds = returnTc (EmptyMonoBinds, emptyLIE)
+
+    tc_mono_binds (AndMonoBinds mb1 mb2)
+      = tc_mono_binds mb1              `thenTc` \ (mb1a, lie1) ->
+        tc_mono_binds mb2              `thenTc` \ (mb2a, lie2) ->
+        returnTc (AndMonoBinds mb1a mb2a, lie1 `plusLIE` lie2)
+
+    tc_mono_binds (FunMonoBind name inf matches locn)
+      = tcAddSrcLoc locn                               $
+       tcLookupLocalValueOK "tc_mono_binds" name       `thenNF_Tc` \ id ->
+
+               -- Before checking the RHS, extend the envt with
+               -- bindings for the *polymorphic* Ids from any type signatures
+       tcExtendLocalValEnv sig_names sig_ids           $
+       tcMatchesFun name (idType id) matches           `thenTc` \ (matches', lie) ->
+
+       returnTc (FunMonoBind (TcId id) inf matches' locn, lie)
+
+    tc_mono_binds bind@(PatMonoBind pat grhss_and_binds locn)
+      = tcAddSrcLoc locn                       $
+       tcAddErrCtxt (patMonoBindsCtxt bind)    $
+       tcPat pat                               `thenTc` \ (pat2, lie_pat, pat_ty) ->
+
+               -- Before checking the RHS, but after the pattern, extend the envt with
+               -- bindings for the *polymorphic* Ids from any type signatures
+       tcExtendLocalValEnv sig_names sig_ids   $
+       tcGRHSsAndBinds pat_ty grhss_and_binds  `thenTc` \ (grhss_and_binds2, lie) ->
+       returnTc (PatMonoBind pat2 grhss_and_binds2 locn,
+                 plusLIE lie_pat lie)
 \end{code}
 
 %************************************************************************
@@ -265,28 +600,185 @@ tcMonoBinds (FunMonoBind name matches locn)
 split up, and have fresh type variables installed.  All non-type-signature
 "RenamedSigs" are ignored.
 
+The @TcSigInfo@ contains @TcTypes@ because they are unified with
+the variable's type, and after that checked to see whether they've
+been instantiated.
+
 \begin{code}
-tcTySigs :: [RenamedSig] -> TcM s [TcSigInfo s]
+data TcSigInfo s
+  = TySigInfo      
+       Name                    -- N, the Name in corresponding binding
+       (TcIdBndr s)            -- *Polymorphic* binder for this value...
+                               -- Usually has name = N, but doesn't have to.
+       [TcTyVar s]
+       (TcThetaType s)
+       (TcTauType s)
+       SrcLoc
+
+
+maybeSig :: [TcSigInfo s] -> Name -> Maybe (TcSigInfo s)
+       -- Search for a particular signature
+maybeSig [] name = Nothing
+maybeSig (sig@(TySigInfo sig_name _ _ _ _ _) : sigs) name
+  | name == sig_name = Just sig
+  | otherwise       = maybeSig sigs name
+\end{code}
 
-tcTySigs (Sig v ty _ src_loc : other_sigs)
- = tcAddSrcLoc src_loc (
-       tcPolyType ty                   `thenTc` \ sigma_ty ->
-       tcInstType [] sigma_ty          `thenNF_Tc` \ sigma_ty' ->
-       let
-           (tyvars', theta', tau') = splitSigmaTy sigma_ty'
-       in
 
-       tcLookupLocalValueOK "tcSig1" v `thenNF_Tc` \ val ->
-       unifyTauTy (idType val) tau'    `thenTc_`
+\begin{code}
+tcTySig :: RenamedSig
+       -> TcM s (TcSigInfo s)
+
+tcTySig (Sig v ty src_loc)
+ = tcAddSrcLoc src_loc $
+   tcHsType ty                 `thenTc` \ sigma_ty ->
+
+       -- Convert from Type to TcType  
+   tcInstSigType sigma_ty      `thenNF_Tc` \ sigma_tc_ty ->
+   let
+     poly_id = mkUserId v sigma_tc_ty
+   in
+       -- Instantiate this type
+       -- It's important to do this even though in the error-free case
+       -- we could just split the sigma_tc_ty (since the tyvars don't
+       -- unified with anything).  But in the case of an error, when
+       -- the tyvars *do* get unified with something, we want to carry on
+       -- typechecking the rest of the program with the function bound
+       -- to a pristine type, namely sigma_tc_ty
+   tcInstSigTcType sigma_tc_ty `thenNF_Tc` \ (tyvars, rho) ->
+   let
+     (theta, tau) = splitRhoTy rho
+       -- This splitSigmaTy tries hard to make sure that tau' is a type synonym
+       -- wherever possible, which can improve interface files.
+   in
+   returnTc (TySigInfo v poly_id tyvars theta tau src_loc)
+\end{code}
+
+@checkSigMatch@ does the next step in checking signature matching.
+The tau-type part has already been unified.  What we do here is to
+check that this unification has not over-constrained the (polymorphic)
+type variables of the original signature type.
+
+The error message here is somewhat unsatisfactory, but it'll do for
+now (ToDo).
+
+\begin{code}
+checkSigMatch []
+  = returnTc (error "checkSigMatch")
+
+checkSigMatch tc_ty_sigs@( sig1@(TySigInfo _ id1 _ theta1 _ _) : all_sigs_but_first )
+  =    -- CHECK THAT THE SIGNATURE TYVARS AND TAU_TYPES ARE OK
+       -- Doesn't affect substitution
+    mapTc check_one_sig tc_ty_sigs     `thenTc_`
+
+       -- CHECK THAT ALL THE SIGNATURE CONTEXTS ARE UNIFIABLE
+       -- The type signatures on a mutually-recursive group of definitions
+       -- must all have the same context (or none).
+       --
+       -- We unify them because, with polymorphic recursion, their types
+       -- might not otherwise be related.  This is a rather subtle issue.
+       -- ToDo: amplify
+    mapTc check_one_cxt all_sigs_but_first             `thenTc_`
+
+    returnTc theta1
+  where
+    sig1_dict_tys      = mk_dict_tys theta1
+    n_sig1_dict_tys    = length sig1_dict_tys
+
+    check_one_cxt sig@(TySigInfo _ id _  theta _ src_loc)
+       = tcAddSrcLoc src_loc   $
+        tcAddErrCtxt (sigContextsCtxt id1 id) $
+        checkTc (length this_sig_dict_tys == n_sig1_dict_tys)
+                               sigContextsErr          `thenTc_`
+        unifyTauTyLists sig1_dict_tys this_sig_dict_tys
+      where
+        this_sig_dict_tys = mk_dict_tys theta
+
+    check_one_sig (TySigInfo name id sig_tyvars _ sig_tau src_loc)
+      = tcAddSrcLoc src_loc    $
+       tcAddErrCtxt (sigCtxt id) $
+       checkSigTyVars sig_tyvars sig_tau
+
+    mk_dict_tys theta = [mkDictTy c ts | (c,ts) <- theta]
+\end{code}
+
 
-       returnTc (TySigInfo val tyvars' theta' tau' src_loc)
-   )           `thenTc` \ sig_info1 ->
+@checkSigTyVars@ is used after the type in a type signature has been unified with
+the actual type found.  It then checks that the type variables of the type signature
+are
+       (a) still all type variables
+               eg matching signature [a] against inferred type [(p,q)]
+               [then a will be unified to a non-type variable]
 
-   tcTySigs other_sigs `thenTc` \ sig_infos ->
-   returnTc (sig_info1 : sig_infos)
+       (b) still all distinct
+               eg matching signature [(a,b)] against inferred type [(p,p)]
+               [then a and b will be unified together]
 
-tcTySigs (other : sigs) = tcTySigs sigs
-tcTySigs []            = returnTc []
+       (c) not mentioned in the environment
+               eg the signature for f in this:
+
+                       g x = ... where
+                                       f :: a->[a]
+                                       f y = [x,y]
+
+               Here, f is forced to be monorphic by the free occurence of x.
+
+Before doing this, the substitution is applied to the signature type variable.
+
+We used to have the notion of a "DontBind" type variable, which would
+only be bound to itself or nothing.  Then points (a) and (b) were 
+self-checking.  But it gave rise to bogus consequential error messages.
+For example:
+
+   f = (*)     -- Monomorphic
+
+   g :: Num a => a -> a
+   g x = f x x
+
+Here, we get a complaint when checking the type signature for g,
+that g isn't polymorphic enough; but then we get another one when
+dealing with the (Num x) context arising from f's definition;
+we try to unify x with Int (to default it), but find that x has already
+been unified with the DontBind variable "a" from g's signature.
+This is really a problem with side-effecting unification; we'd like to
+undo g's effects when its type signature fails, but unification is done
+by side effect, so we can't (easily).
+
+So we revert to ordinary type variables for signatures, and try to
+give a helpful message in checkSigTyVars.
+
+\begin{code}
+checkSigTyVars :: [TcTyVar s]          -- The original signature type variables
+              -> TcType s              -- signature type (for err msg)
+              -> TcM s [TcTyVar s]     -- Zonked signature type variables
+
+checkSigTyVars sig_tyvars sig_tau
+  = mapNF_Tc zonkTcTyVar sig_tyvars    `thenNF_Tc` \ sig_tys ->
+    let
+       sig_tyvars' = map (getTyVar "checkSigTyVars") sig_tys
+    in
+
+       -- Check points (a) and (b)
+    checkTcM (all isTyVarTy sig_tys && hasNoDups sig_tyvars')
+            (zonkTcType sig_tau        `thenNF_Tc` \ sig_tau' ->
+             failWithTc (badMatchErr sig_tau sig_tau')
+            )                          `thenTc_`
+
+       -- Check point (c)
+       -- We want to report errors in terms of the original signature tyvars,
+       -- ie sig_tyvars, NOT sig_tyvars'.  sig_tyvars' correspond
+       -- 1-1 with sig_tyvars, so we can just map back.
+    tcGetGlobalTyVars                  `thenNF_Tc` \ globals ->
+    let
+       mono_tyvars' = [sig_tv' | sig_tv' <- sig_tyvars', 
+                                 sig_tv' `elementOfTyVarSet` globals]
+
+       mono_tyvars = map (assoc "checkSigTyVars" (sig_tyvars' `zip` sig_tyvars)) mono_tyvars'
+    in
+    checkTcM (null mono_tyvars')
+            (failWithTc (notAsPolyAsSigErr sig_tau mono_tyvars))       `thenTc_`
+
+    returnTc sig_tyvars'
 \end{code}
 
 
@@ -303,34 +795,17 @@ part of a binding because then the same machinery can be used for
 moving them into place as is done for type signatures.
 
 \begin{code}
-tcPragmaSigs :: [RenamedSig]                   -- The pragma signatures
-            -> TcM s (Name -> PragmaInfo,      -- Maps name to the appropriate PragmaInfo
-                      TcHsBinds s,
+tcPragmaSigs :: [RenamedSig]           -- The pragma signatures
+            -> TcM s (Name -> IdInfo,  -- Maps name to the appropriate IdInfo
+                      TcMonoBinds s,
                       LIE s)
 
-tcPragmaSigs sigs = returnTc ( \name -> NoPragmaInfo, EmptyBinds, emptyLIE )
-
-{- 
 tcPragmaSigs sigs
-  = mapAndUnzip3Tc tcPragmaSig sigs    `thenTc` \ (names_w_id_infos, binds, lies) ->
+  = mapAndUnzip3Tc tcPragmaSig sigs    `thenTc` \ (maybe_info_modifiers, binds, lies) ->
     let
-       name_to_info name = foldr ($) noIdInfo
-                                 [info_fn | (n,info_fn) <- names_w_id_infos, n==name]
+       prag_fn name = foldr ($) noIdInfo [f | Just (n,f) <- maybe_info_modifiers, n==name]
     in
-    returnTc (name_to_info,
-             foldr ThenBinds EmptyBinds binds,
-             foldr plusLIE emptyLIE lies)
-\end{code}
-
-Here are the easy cases for tcPragmaSigs
-
-\begin{code}
-tcPragmaSig (DeforestSig name loc)
-  = returnTc ((name, addInfo DoDeforest),EmptyBinds,emptyLIE)
-tcPragmaSig (InlineSig name loc)
-  = returnTc ((name, addInfo_UF (iWantToBeINLINEd UnfoldAlways)), EmptyBinds, emptyLIE)
-tcPragmaSig (MagicUnfoldingSig name string loc)
-  = returnTc ((name, addInfo_UF (mkMagicUnfolding string)), EmptyBinds, emptyLIE)
+    returnTc (prag_fn, andMonoBinds binds, plusLIEs lies)
 \end{code}
 
 The interesting case is for SPECIALISE pragmas.  There are two forms.
@@ -382,126 +857,135 @@ and the simplifer won't discard SpecIds for exporte things anyway, so maybe this
 a bit of overkill.
 
 \begin{code}
+tcPragmaSig :: RenamedSig -> TcM s (Maybe (Name, IdInfo -> IdInfo), TcMonoBinds s, LIE s)
+tcPragmaSig (Sig _ _ _)       = returnTc (Nothing, EmptyMonoBinds, emptyLIE)
+tcPragmaSig (SpecInstSig _ _) = returnTc (Nothing, EmptyMonoBinds, emptyLIE)
+
+tcPragmaSig (InlineSig name loc)
+  = returnTc (Just (name, setInlinePragInfo IWantToBeINLINEd), EmptyMonoBinds, emptyLIE)
+
+tcPragmaSig (NoInlineSig name loc)
+  = returnTc (Just (name, setInlinePragInfo IDontWantToBeINLINEd), EmptyMonoBinds, emptyLIE)
+
 tcPragmaSig (SpecSig name poly_ty maybe_spec_name src_loc)
-  = tcAddSrcLoc src_loc                                $
-    tcAddErrCtxt (valSpecSigCtxt name spec_ty) $
+  =    -- SPECIALISE f :: forall b. theta => tau  =  g
+    tcAddSrcLoc src_loc                                $
+    tcAddErrCtxt (valSpecSigCtxt name poly_ty) $
 
        -- Get and instantiate its alleged specialised type
-    tcPolyType poly_ty                         `thenTc` \ sig_sigma ->
-    tcInstType [] sig_sigma                    `thenNF_Tc` \ sig_ty ->
-    let
-       (sig_tyvars, sig_theta, sig_tau) = splitSigmaTy sig_ty
-       origin = ValSpecOrigin name
-    in
+    tcHsType poly_ty                           `thenTc` \ sig_sigma ->
+    tcInstSigType  sig_sigma                   `thenNF_Tc` \ sig_ty ->
+
+       -- Check that f has a more general type, and build a RHS for
+       -- the spec-pragma-id at the same time
+    tcExpr (HsVar name) sig_ty                 `thenTc` \ (spec_expr, spec_lie) ->
+
+    case maybe_spec_name of
+       Nothing ->      -- Just specialise "f" by building a SpecPragmaId binding
+                       -- It is the thing that makes sure we don't prematurely 
+                       -- dead-code-eliminate the binding we are really interested in.
+                  newSpecPragmaId name sig_ty          `thenNF_Tc` \ spec_id ->
+                  returnTc (Nothing, VarMonoBind (TcId spec_id) spec_expr, spec_lie)
+
+       Just g_name ->  -- Don't create a SpecPragmaId.  Instead add some suitable IdIfo
+               
+               panic "Can't handle SPECIALISE with a '= g' part"
+
+       {-  Not yet.  Because we're still in the TcType world we
+           can't really add to the SpecEnv of the Id.  Instead we have to
+           record the information in a different sort of Sig, and add it to
+           the IdInfo after zonking.
+
+           For now we just leave out this case
+
+                       -- Get the type of f, and find out what types
+                       --  f has to be instantiated at to give the signature type
+                   tcLookupLocalValueOK "tcPragmaSig" name     `thenNF_Tc` \ f_id ->
+                   tcInstSigTcType (idType f_id)               `thenNF_Tc` \ (f_tyvars, f_rho) ->
+
+                   let
+                       (sig_tyvars, sig_theta, sig_tau) = splitSigmaTy sig_ty
+                       (f_theta, f_tau)                 = splitRhoTy f_rho
+                       sig_tyvar_set                    = mkTyVarSet sig_tyvars
+                   in
+                   unifyTauTy sig_tau f_tau            `thenTc_`
+
+                   tcPolyExpr str (HsVar g_name) (mkSigmaTy sig_tyvars f_theta sig_tau)        `thenTc` \ (_, _, 
+       -}
+
+tcPragmaSig other = pprTrace "tcPragmaSig: ignoring" (ppr other) $
+                   returnTc (Nothing, EmptyMonoBinds, emptyLIE)
+\end{code}
 
-       -- Check that the SPECIALIZE pragma had an empty context
-    checkTc (null sig_theta)
-           (panic "SPECIALIZE non-empty context (ToDo: msg)") `thenTc_`
 
-       -- Get and instantiate the type of the id mentioned
-    tcLookupLocalValueOK "tcPragmaSig" name    `thenNF_Tc` \ main_id ->
-    tcInstType [] (idType main_id)             `thenNF_Tc` \ main_ty ->
-    let
-       (main_tyvars, main_rho) = splitForAllTy main_ty
-       (main_theta,main_tau)   = splitRhoTy main_rho
-       main_arg_tys            = mkTyVarTys main_tyvars
-    in
+%************************************************************************
+%*                                                                     *
+\subsection[TcBinds-errors]{Error contexts and messages}
+%*                                                                     *
+%************************************************************************
 
-       -- Check that the specialised type is indeed an instance of
-       -- the type of the main function.
-    unifyTauTy sig_tau main_tau                `thenTc_`
-    checkSigTyVars sig_tyvars sig_tau  `thenTc_`
-
-       -- Check that the type variables of the polymorphic function are
-       -- either left polymorphic, or instantiate to ground type.
-       -- Also check that the overloaded type variables are instantiated to
-       -- ground type; or equivalently that all dictionaries have ground type
-    mapTc zonkTcType main_arg_tys      `thenNF_Tc` \ main_arg_tys' ->
-    zonkTcThetaType main_theta         `thenNF_Tc` \ main_theta' ->
-    tcAddErrCtxt (specGroundnessCtxt main_arg_tys')
-             (checkTc (all isGroundOrTyVarTy main_arg_tys'))           `thenTc_`
-    tcAddErrCtxt (specContextGroundnessCtxt main_theta')
-             (checkTc (and [isGroundTy ty | (_,ty) <- theta']))        `thenTc_`
-
-       -- Build the SpecPragmaId; it is the thing that makes sure we
-       -- don't prematurely dead-code-eliminate the binding we are really interested in.
-    newSpecPragmaId name sig_ty                `thenNF_Tc` \ spec_pragma_id ->
-
-       -- Build a suitable binding; depending on whether we were given
-       -- a value (Maybe Name) to be used as the specialisation.
-    case using of
-      Nothing ->               -- No implementation function specified
-
-               -- Make a Method inst for the occurrence of the overloaded function
-       newMethodWithGivenTy (OccurrenceOf name)
-                 (TcId main_id) main_arg_tys main_rho  `thenNF_Tc` \ (lie, meth_id) ->
 
-       let
-           pseudo_bind = VarMonoBind spec_pragma_id pseudo_rhs
-           pseudo_rhs  = mkHsTyLam sig_tyvars (HsVar (TcId meth_id))
-       in
-       returnTc (pseudo_bind, lie, \ info -> info)
+\begin{code}
+patMonoBindsCtxt bind
+  = hang (ptext SLIT("In a pattern binding:")) 4 (ppr bind)
 
-      Just spec_name ->                -- Use spec_name as the specialisation value ...
+-----------------------------------------------
+valSpecSigCtxt v ty
+  = sep [ptext SLIT("In a SPECIALIZE pragma for a value:"),
+        nest 4 (ppr v <+> ptext SLIT(" ::") <+> ppr ty)]
 
-               -- Type check a simple occurrence of the specialised Id
-       tcId spec_name          `thenTc` \ (spec_body, spec_lie, spec_tau) ->
+-----------------------------------------------
+notAsPolyAsSigErr sig_tau mono_tyvars
+  = hang (ptext SLIT("A type signature is more polymorphic than the inferred type"))
+       4  (vcat [text "Can't for-all the type variable(s)" <+> 
+                 pprQuotedList mono_tyvars,
+                 text "in the type" <+> quotes (ppr sig_tau)
+          ])
 
-               -- Check that it has the correct type, and doesn't constrain the
-               -- signature variables at all
-       unifyTauTy sig_tau spec_tau             `thenTc_`
-       checkSigTyVars sig_tyvars sig_tau       `thenTc_`
+-----------------------------------------------
+badMatchErr sig_ty inferred_ty
+  = hang (ptext SLIT("Type signature doesn't match inferred type"))
+        4 (vcat [hang (ptext SLIT("Signature:")) 4 (ppr sig_ty),
+                     hang (ptext SLIT("Inferred :")) 4 (ppr inferred_ty)
+          ])
 
-           -- Make a local SpecId to bind to applied spec_id
-       newSpecId main_id main_arg_tys sig_ty   `thenNF_Tc` \ local_spec_id ->
+-----------------------------------------------
+sigCtxt id 
+  = sep [ptext SLIT("When checking the type signature for"), quotes (ppr id)]
 
-       let
-           spec_rhs   = mkHsTyLam sig_tyvars spec_body
-           spec_binds = VarMonoBind local_spec_id spec_rhs
-                          `AndMonoBinds`
-                        VarMonoBind spec_pragma_id (HsVar (TcId local_spec_id))
-           spec_info  = SpecInfo spec_tys (length main_theta) local_spec_id
-       in
-       returnTc ((name, addInfo spec_info), spec_binds, spec_lie)
--}
-\end{code}
+bindSigsCtxt ids
+  = ptext SLIT("When checking the type signature(s) for") <+> pprQuotedList ids
 
+-----------------------------------------------
+sigContextsErr
+  = ptext SLIT("Mismatched contexts")
+sigContextsCtxt s1 s2
+  = hang (hsep [ptext SLIT("When matching the contexts of the signatures for"), 
+               quotes (ppr s1), ptext SLIT("and"), quotes (ppr s2)])
+        4 (ptext SLIT("(the signature contexts in a mutually recursive group should all be identical)"))
 
-Error contexts and messages
-~~~~~~~~~~~~~~~~~~~~~~~~~~~
-\begin{code}
-patMonoBindsCtxt bind sty
-  = ppHang (ppPStr SLIT("In a pattern binding:")) 4 (ppr sty bind)
+-----------------------------------------------
+specGroundnessCtxt
+  = panic "specGroundnessCtxt"
 
 --------------------------------------------
-specContextGroundnessCtxt -- err_ctxt dicts sty
+specContextGroundnessCtxt -- err_ctxt dicts
   = panic "specContextGroundnessCtxt"
 {-
-  = ppHang (
-       ppSep [ppBesides [ppStr "In the SPECIALIZE pragma for `", ppr sty name, ppStr "'"],
-              ppBesides [ppStr " specialised to the type `", ppr sty spec_ty,  ppStr "'"],
-              pp_spec_id sty,
-              ppStr "... not all overloaded type variables were instantiated",
-              ppStr "to ground types:"])
-      4 (ppAboves [ppCat [ppr sty c, ppr sty t]
+  = hang (
+       sep [hsep [ptext SLIT("In the SPECIALIZE pragma for"), ppr name],
+            hcat [ptext SLIT(" specialised to the type"), ppr spec_ty],
+            pp_spec_id,
+            ptext SLIT("... not all overloaded type variables were instantiated"),
+            ptext SLIT("to ground types:")])
+      4 (vcat [hsep [ppr c, ppr t]
                  | (c,t) <- map getDictClassAndType dicts])
   where
     (name, spec_ty, locn, pp_spec_id)
       = case err_ctxt of
-         ValSpecSigCtxt    n ty loc      -> (n, ty, loc, \ x -> ppNil)
+         ValSpecSigCtxt    n ty loc      -> (n, ty, loc, \ x -> empty)
          ValSpecSpecIdCtxt n ty spec loc ->
            (n, ty, loc,
-            \ sty -> ppBesides [ppStr "... type of explicit id `", ppr sty spec, ppStr "'"])
+            hsep [ptext SLIT("... type of explicit id"), ppr spec])
 -}
-
------------------------------------------------
-specGroundnessCtxt
-  = panic "specGroundnessCtxt"
-
-
-valSpecSigCtxt v ty sty
-  = ppHang (ppPStr SLIT("In a SPECIALIZE pragma for a value:"))
-        4 (ppSep [ppBeside (pprNonOp sty v) (ppPStr SLIT(" ::")),
-                 ppr sty ty])
 \end{code}
-