[project @ 2002-03-25 15:08:38 by simonpj]
[ghc-hetmet.git] / ghc / compiler / typecheck / TcMType.lhs
index 9d27e67..451e3fc 100644 (file)
@@ -7,36 +7,31 @@ This module contains monadic operations over types that contain mutable type var
 
 \begin{code}
 module TcMType (
-  TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcRhoType, TcTyVarSet,
+  TcTyVar, TcKind, TcType, TcTauType, TcThetaType, TcTyVarSet,
 
   --------------------------------
   -- Creating new mutable type variables
-  newTyVar,
+  newTyVar, 
   newTyVarTy,          -- Kind -> NF_TcM TcType
   newTyVarTys,         -- Int -> Kind -> NF_TcM [TcType]
   newKindVar, newKindVars, newBoxityVar,
+  putTcTyVar, getTcTyVar,
+
+  newHoleTyVarTy, readHoleResult, zapToType,
 
   --------------------------------
   -- Instantiation
-  tcInstTyVar, tcInstTyVars,
-  tcInstSigVars, tcInstType,
-  tcSplitRhoTyM,
+  tcInstTyVar, tcInstTyVars, tcInstType, 
 
   --------------------------------
   -- Checking type validity
   Rank, UserTypeCtxt(..), checkValidType, pprUserTypeCtxt,
   SourceTyCtxt(..), checkValidTheta, 
-  checkValidInstHead, instTypeErr,
-
-  --------------------------------
-  -- Unification
-  unifyTauTy, unifyTauTyList, unifyTauTyLists, 
-  unifyFunTy, unifyListTy, unifyTupleTy,
-  unifyKind, unifyKinds, unifyOpenTypeKind,
+  checkValidInstHead, instTypeErr, checkAmbiguity,
 
   --------------------------------
   -- Zonking
-  zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, zonkTcSigTyVars,
+  zonkTcTyVar, zonkTcTyVars, zonkTcTyVarsAndFV, 
   zonkTcType, zonkTcTypes, zonkTcClassConstraints, zonkTcThetaType,
   zonkTcPredType, zonkTcTypeToType, zonkTcTyVarToTyVar, zonkKindEnv,
 
@@ -47,44 +42,46 @@ module TcMType (
 
 -- friends:
 import TypeRep         ( Type(..), SourceType(..), TyNote(..),  -- Friend; can see representation
-                         Kind, TauType, ThetaType, 
-                         openKindCon, typeCon
+                         Kind, ThetaType
                        ) 
-import TcType          ( tcEqType, tcCmpPred,
-                         tcSplitRhoTy, tcSplitPredTy_maybe, tcSplitAppTy_maybe, 
-                         tcSplitTyConApp_maybe, tcSplitFunTy_maybe, tcSplitForAllTys,
-                         tcGetTyVar, tcIsTyVarTy, tcSplitSigmaTy, isUnLiftedType, isIPPred,
-
-                         mkAppTy, mkTyVarTy, mkTyVarTys, mkFunTy, mkTyConApp,
+import TcType          ( TcType, TcThetaType, TcTauType, TcPredType,
+                         TcTyVarSet, TcKind, TcTyVar, TyVarDetails(..),
+                         tcEqType, tcCmpPred,
+                         tcSplitPhiTy, tcSplitPredTy_maybe, tcSplitAppTy_maybe, 
+                         tcSplitTyConApp_maybe, tcSplitForAllTys,
+                         tcIsTyVarTy, tcSplitSigmaTy, 
+                         isUnLiftedType, isIPPred, isHoleTyVar,
+
+                         mkAppTy, mkTyVarTy, mkTyVarTys, 
                          tyVarsOfPred, getClassPredTys_maybe,
 
-                         liftedTypeKind, unliftedTypeKind, openTypeKind, defaultKind, superKind,
-                         superBoxity, liftedBoxity, hasMoreBoxityInfo, typeKind,
-                         tyVarsOfType, tyVarsOfTypes, tidyOpenType, tidyOpenTypes, tidyOpenTyVar,
-                         eqKind, isTypeKind,
+                         liftedTypeKind, openTypeKind, defaultKind, superKind,
+                         superBoxity, liftedBoxity, typeKind,
+                         tyVarsOfType, tyVarsOfTypes, 
+                         eqKind, isTypeKind, isAnyTypeKind,
 
                          isFFIArgumentTy, isFFIImportResultTy
                        )
+import qualified Type  ( splitFunTys )
 import Subst           ( Subst, mkTopTyVarSubst, substTy )
-import Class           ( classArity, className )
+import Class           ( Class, classArity, className )
 import TyCon           ( TyCon, mkPrimTyCon, isSynTyCon, isUnboxedTupleTyCon, 
-                         isTupleTyCon, tyConArity, tupleTyConBoxity, tyConName )
+                         tyConArity, tyConName, tyConKind )
 import PrimRep         ( PrimRep(VoidRep) )
-import Var             ( TyVar, varName, tyVarKind, tyVarName, isTyVar, mkTyVar,
-                         isMutTyVar, isSigTyVar )
+import Var             ( TyVar, tyVarKind, tyVarName, isTyVar, mkTyVar, isMutTyVar )
 
 -- others:
 import TcMonad          -- TcType, amongst others
-import TysWiredIn      ( voidTy, listTyCon, mkListTy, mkTupleTy )
+import TysWiredIn      ( voidTy, listTyCon, tupleTyCon )
 import PrelNames       ( cCallableClassKey, cReturnableClassKey, hasKey )
 import ForeignCall     ( Safety(..) )
 import FunDeps         ( grow )
 import PprType         ( pprPred, pprSourceType, pprTheta, pprClassPred )
-import Name            ( Name, NamedThing(..), setNameUnique, mkSysLocalName,
-                         mkLocalName, mkDerivedTyConOcc, isSystemName
+import Name            ( Name, NamedThing(..), setNameUnique, mkSystemName,
+                         mkInternalName, mkDerivedTyConOcc
                        )
 import VarSet
-import BasicTypes      ( Boxity, Arity, isBoxed )
+import BasicTypes      ( Boxity(Boxed) )
 import CmdLineOpts     ( dopt, DynFlag(..) )
 import Unique          ( Uniquable(..) )
 import SrcLoc          ( noSrcLoc )
@@ -104,7 +101,7 @@ import Outputable
 newTyVar :: Kind -> NF_TcM TcTyVar
 newTyVar kind
   = tcGetUnique        `thenNF_Tc` \ uniq ->
-    tcNewMutTyVar (mkSysLocalName uniq SLIT("t")) kind
+    tcNewMutTyVar (mkSystemName uniq FSLIT("t")) kind VanillaTv
 
 newTyVarTy  :: Kind -> NF_TcM TcType
 newTyVarTy kind
@@ -116,8 +113,8 @@ newTyVarTys n kind = mapNF_Tc newTyVarTy (nOfThem n kind)
 
 newKindVar :: NF_TcM TcKind
 newKindVar
-  = tcGetUnique                                                `thenNF_Tc` \ uniq ->
-    tcNewMutTyVar (mkSysLocalName uniq SLIT("k")) superKind    `thenNF_Tc` \ kv ->
+  = tcGetUnique                                                        `thenNF_Tc` \ uniq ->
+    tcNewMutTyVar (mkSystemName uniq FSLIT("k")) superKind VanillaTv   `thenNF_Tc` \ kv ->
     returnNF_Tc (TyVarTy kv)
 
 newKindVars :: Int -> NF_TcM [TcKind]
@@ -125,42 +122,47 @@ newKindVars n = mapNF_Tc (\ _ -> newKindVar) (nOfThem n ())
 
 newBoxityVar :: NF_TcM TcKind
 newBoxityVar
-  = tcGetUnique                                                `thenNF_Tc` \ uniq ->
-    tcNewMutTyVar (mkSysLocalName uniq SLIT("bx")) superBoxity `thenNF_Tc` \ kv ->
+  = tcGetUnique                                                          `thenNF_Tc` \ uniq ->
+    tcNewMutTyVar (mkSystemName uniq FSLIT("bx")) superBoxity VanillaTv  `thenNF_Tc` \ kv ->
     returnNF_Tc (TyVarTy kv)
 \end{code}
 
 
 %************************************************************************
 %*                                                                     *
-\subsection{Type instantiation}
+\subsection{'hole' type variables}
 %*                                                                     *
 %************************************************************************
 
-I don't understand why this is needed
-An old comments says "No need for tcSplitForAllTyM because a type 
-       variable can't be instantiated to a for-all type"
-But the same is true of rho types!
-
 \begin{code}
-tcSplitRhoTyM :: TcType -> NF_TcM (TcThetaType, TcType)
-tcSplitRhoTyM t
-  = go t t []
- where
-       -- A type variable is never instantiated to a dictionary type,
-       -- so we don't need to do a tcReadVar on the "arg".
-    go syn_t (FunTy arg res) ts = case tcSplitPredTy_maybe arg of
-                                       Just pair -> go res res (pair:ts)
-                                       Nothing   -> returnNF_Tc (reverse ts, syn_t)
-    go syn_t (NoteTy n t)    ts = go syn_t t ts
-    go syn_t (TyVarTy tv)    ts = getTcTyVar tv                `thenNF_Tc` \ maybe_ty ->
-                                 case maybe_ty of
-                                   Just ty | not (tcIsTyVarTy ty) -> go syn_t ty ts
-                                   other                          -> returnNF_Tc (reverse ts, syn_t)
-    go syn_t (UsageTy _ t)   ts = go syn_t t ts
-    go syn_t t              ts = returnNF_Tc (reverse ts, syn_t)
-\end{code}
-
+newHoleTyVarTy :: NF_TcM TcType
+  = tcGetUnique        `thenNF_Tc` \ uniq ->
+    tcNewMutTyVar (mkSystemName uniq FSLIT("h")) openTypeKind HoleTv   `thenNF_Tc` \ tv ->
+    returnNF_Tc (TyVarTy tv)
+
+readHoleResult :: TcType -> NF_TcM TcType
+-- Read the answer out of a hole, constructed by newHoleTyVarTy
+readHoleResult (TyVarTy tv)
+  = ASSERT( isHoleTyVar tv )
+    getTcTyVar tv              `thenNF_Tc` \ maybe_res ->
+    case maybe_res of
+       Just ty -> returnNF_Tc ty
+       Nothing ->  pprPanic "readHoleResult: empty" (ppr tv)
+readHoleResult ty = pprPanic "readHoleResult: not hole" (ppr ty)
+
+zapToType :: TcType -> NF_TcM TcType
+zapToType (TyVarTy tv)
+  | isHoleTyVar tv
+  = getTcTyVar tv              `thenNF_Tc` \ maybe_res ->
+    case maybe_res of
+       Nothing -> newTyVarTy openTypeKind      `thenNF_Tc` \ ty ->
+                  putTcTyVar tv ty             `thenNF_Tc_`
+                  returnNF_Tc ty
+       Just ty  -> returnNF_Tc ty      -- No need to loop; we never
+                                       -- have chains of holes
+
+zapToType other_ty = returnNF_Tc other_ty
+\end{code}                
 
 %************************************************************************
 %*                                                                     *
@@ -171,11 +173,11 @@ tcSplitRhoTyM t
 Instantiating a bunch of type variables
 
 \begin{code}
-tcInstTyVars :: [TyVar] 
+tcInstTyVars :: TyVarDetails -> [TyVar] 
             -> NF_TcM ([TcTyVar], [TcType], Subst)
 
-tcInstTyVars tyvars
-  = mapNF_Tc tcInstTyVar tyvars        `thenNF_Tc` \ tc_tyvars ->
+tcInstTyVars tv_details tyvars
+  = mapNF_Tc (tcInstTyVar tv_details) tyvars   `thenNF_Tc` \ tc_tyvars ->
     let
        tys = mkTyVarTys tc_tyvars
     in
@@ -184,7 +186,7 @@ tcInstTyVars tyvars
                -- they cannot possibly be captured by
                -- any existing for-alls.  Hence mkTopTyVarSubst
 
-tcInstTyVar tyvar
+tcInstTyVar tv_details tyvar
   = tcGetUnique                `thenNF_Tc` \ uniq ->
     let
        name = setNameUnique (tyVarName tyvar) uniq
@@ -193,43 +195,31 @@ tcInstTyVar tyvar
        -- that two different tyvars will print the same way 
        -- in an error message.  -dppr-debug will show up the difference
        -- Better watch out for this.  If worst comes to worst, just
-       -- use mkSysLocalName.
+       -- use mkSystemName.
     in
-    tcNewMutTyVar name (tyVarKind tyvar)
-
-tcInstSigVars tyvars   -- Very similar to tcInstTyVar
-  = tcGetUniques       `thenNF_Tc` \ uniqs ->
-    listTc [ ASSERT( not (kind `eqKind` openTypeKind) )        -- Shouldn't happen
-            tcNewSigTyVar name kind 
-          | (tyvar, uniq) <- tyvars `zip` uniqs,
-            let name = setNameUnique (tyVarName tyvar) uniq, 
-            let kind = tyVarKind tyvar
-          ]
-\end{code}
-
-@tcInstType@ instantiates the outer-level for-alls of a TcType with
-fresh type variables, splits off the dictionary part, and returns the results.
+    tcNewMutTyVar name (tyVarKind tyvar) tv_details
 
-\begin{code}
-tcInstType :: TcType -> NF_TcM ([TcTyVar], TcThetaType, TcType)
-tcInstType ty
+tcInstType :: TyVarDetails -> TcType -> NF_TcM ([TcTyVar], TcThetaType, TcType)
+-- tcInstType instantiates the outer-level for-alls of a TcType with
+-- fresh (mutable) type variables, splits off the dictionary part, 
+-- and returns the pieces.
+tcInstType tv_details ty
   = case tcSplitForAllTys ty of
-       ([],     rho) ->        -- There may be overloading but no type variables;
+       ([],     rho) ->        -- There may be overloading despite no type variables;
                                --      (?x :: Int) => Int -> Int
                         let
-                          (theta, tau) = tcSplitRhoTy rho      -- Used to be tcSplitRhoTyM
+                          (theta, tau) = tcSplitPhiTy rho
                         in
                         returnNF_Tc ([], theta, tau)
 
-       (tyvars, rho) -> tcInstTyVars tyvars                    `thenNF_Tc` \ (tyvars', _, tenv)  ->
+       (tyvars, rho) -> tcInstTyVars tv_details tyvars         `thenNF_Tc` \ (tyvars', _, tenv) ->
                         let
-                          (theta, tau) = tcSplitRhoTy (substTy tenv rho)       -- Used to be tcSplitRhoTyM
+                          (theta, tau) = tcSplitPhiTy (substTy tenv rho)
                         in
                         returnNF_Tc (tyvars', theta, tau)
 \end{code}
 
 
-
 %************************************************************************
 %*                                                                     *
 \subsection{Putting and getting  mutable type variables}
@@ -251,7 +241,6 @@ putTcTyVar tyvar ty
 
   | otherwise
   = ASSERT( isMutTyVar tyvar )
-    UASSERT2( not (isUTy ty), ppr tyvar <+> ppr ty )
     tcWriteMutTyVar tyvar (Just ty)    `thenNF_Tc_`
     returnNF_Tc ty
 \end{code}
@@ -320,14 +309,6 @@ zonkTcTyVarsAndFV tyvars = mapNF_Tc zonkTcTyVar tyvars     `thenNF_Tc` \ tys ->
 
 zonkTcTyVar :: TcTyVar -> NF_TcM TcType
 zonkTcTyVar tyvar = zonkTyVar (\ tv -> returnNF_Tc (TyVarTy tv)) tyvar
-
-zonkTcSigTyVars :: [TcTyVar] -> NF_TcM [TcTyVar]
--- This guy is to zonk the tyvars we're about to feed into tcSimplify
--- Usually this job is done by checkSigTyVars, but in a couple of places
--- that is overkill, so we use this simpler chap
-zonkTcSigTyVars tyvars
-  = zonkTcTyVars tyvars        `thenNF_Tc` \ tys ->
-    returnNF_Tc (map (tcGetTyVar "zonkTcSigTyVars") tys)
 \end{code}
 
 -----------------  Types
@@ -348,11 +329,11 @@ zonkTcThetaType :: TcThetaType -> NF_TcM TcThetaType
 zonkTcThetaType theta = mapNF_Tc zonkTcPredType theta
 
 zonkTcPredType :: TcPredType -> NF_TcM TcPredType
-zonkTcPredType (ClassP c ts) =
-    zonkTcTypes ts     `thenNF_Tc` \ new_ts ->
+zonkTcPredType (ClassP c ts)
+  = zonkTcTypes ts     `thenNF_Tc` \ new_ts ->
     returnNF_Tc (ClassP c new_ts)
-zonkTcPredType (IParam n t) =
-    zonkTcType t       `thenNF_Tc` \ new_t ->
+zonkTcPredType (IParam n t)
+  = zonkTcType t       `thenNF_Tc` \ new_t ->
     returnNF_Tc (IParam n new_t)
 \end{code}
 
@@ -377,32 +358,64 @@ zonkKindEnv pairs
 zonkTcTypeToType :: TcType -> NF_TcM Type
 zonkTcTypeToType ty = zonkType zonk_unbound_tyvar ty
   where
-       -- Zonk a mutable but unbound type variable to
-       --      Void            if it has kind Lifted
-       --      :Void           otherwise
+       -- Zonk a mutable but unbound type variable to an arbitrary type
        -- We know it's unbound even though we don't carry an environment,
        -- because at the binding site for a type variable we bind the
        -- mutable tyvar to a fresh immutable one.  So the mutable store
        -- plays the role of an environment.  If we come across a mutable
        -- type variable that isn't so bound, it must be completely free.
-    zonk_unbound_tyvar tv
-       | kind `eqKind` liftedTypeKind || kind `eqKind` openTypeKind
-       = putTcTyVar tv voidTy  -- Just to avoid creating a new tycon in
-                               -- this vastly common case
-       | otherwise
-       = putTcTyVar tv (TyConApp (mk_void_tycon tv kind) [])
-       where
-         kind = tyVarKind tv
-
-    mk_void_tycon tv kind      -- Make a new TyCon with the same kind as the 
-                               -- type variable tv.  Same name too, apart from
-                               -- making it start with a colon (sigh)
+    zonk_unbound_tyvar tv = putTcTyVar tv (mkArbitraryType tv)
+
+
+-- When the type checker finds a type variable with no binding,
+-- which means it can be instantiated with an arbitrary type, it
+-- usually instantiates it to Void.  Eg.
+-- 
+--     length []
+-- ===>
+--     length Void (Nil Void)
+-- 
+-- But in really obscure programs, the type variable might have
+-- a kind other than *, so we need to invent a suitably-kinded type.
+-- 
+-- This commit uses
+--     Void for kind *
+--     List for kind *->*
+--     Tuple for kind *->...*->*
+-- 
+-- which deals with most cases.  (Previously, it only dealt with
+-- kind *.)   
+-- 
+-- In the other cases, it just makes up a TyCon with a suitable
+-- kind.  If this gets into an interface file, anyone reading that
+-- file won't understand it.  This is fixable (by making the client
+-- of the interface file make up a TyCon too) but it is tiresome and
+-- never happens, so I am leaving it 
+
+mkArbitraryType :: TcTyVar -> Type
+-- Make up an arbitrary type whose kind is the same as the tyvar.
+-- We'll use this to instantiate the (unbound) tyvar.
+mkArbitraryType tv 
+  | isAnyTypeKind kind = voidTy                -- The vastly common case
+  | otherwise         = TyConApp tycon []
+  where
+    kind       = tyVarKind tv
+    (args,res) = Type.splitFunTys kind -- Kinds are simple; use Type.splitFunTys
+
+    tycon | kind `eqKind` tyConKind listTyCon  -- *->*
+         = listTyCon                           -- No tuples this size
+
+         | all isTypeKind args && isTypeKind res
+         = tupleTyCon Boxed (length args)      -- *-> ... ->*->*
+
+         | otherwise
+         = pprTrace "Urk! Inventing strangely-kinded void TyCon" (ppr tc_name) $
+           mkPrimTyCon tc_name kind 0 [] VoidRep
+               -- Same name as the tyvar, apart from making it start with a colon (sigh)
                -- I dread to think what will happen if this gets out into an 
                -- interface file.  Catastrophe likely.  Major sigh.
-       = pprTrace "Urk! Inventing strangely-kinded void TyCon" (ppr tc_name) $
-         mkPrimTyCon tc_name kind 0 [] VoidRep
-       where
-         tc_name = mkLocalName (getUnique tv) (mkDerivedTyConOcc (getOccName tv)) noSrcLoc
+
+    tc_name = mkInternalName (getUnique tv) (mkDerivedTyConOcc (getOccName tv)) noSrcLoc
 
 -- zonkTcTyVarToTyVar is applied to the *binding* occurrence 
 -- of a type variable, at the *end* of type checking.  It changes
@@ -474,10 +487,9 @@ zonkType unbound_var_fn ty
     go (AppTy fun arg)           = go fun              `thenNF_Tc` \ fun' ->
                                    go arg              `thenNF_Tc` \ arg' ->
                                    returnNF_Tc (mkAppTy fun' arg')
-
-    go (UsageTy u ty)             = go u                `thenNF_Tc` \ u'  ->
-                                    go ty               `thenNF_Tc` \ ty' ->
-                                    returnNF_Tc (UsageTy u' ty')
+               -- NB the mkAppTy; we might have instantiated a
+               -- type variable to a type constructor, so we need
+               -- to pull the TyConApp to the top.
 
        -- The two interesting cases!
     go (TyVarTy tyvar)     = zonkTyVar unbound_var_fn tyvar
@@ -490,8 +502,8 @@ zonkType unbound_var_fn ty
                             returnNF_Tc (ClassP c tys')
     go_pred (NType tc tys) = mapNF_Tc go tys   `thenNF_Tc` \ tys' ->
                             returnNF_Tc (NType tc tys')
-    go_pred (IParam n ty) = go ty              `thenNF_Tc` \ ty' ->
-                           returnNF_Tc (IParam n ty')
+    go_pred (IParam n ty)  = go ty             `thenNF_Tc` \ ty' ->
+                            returnNF_Tc (IParam n ty')
 
 zonkTyVar :: (TcTyVar -> NF_TcM Type)          -- What to do for an unbound mutable variable
          -> TcTyVar -> NF_TcM TcType
@@ -588,19 +600,19 @@ checkValidType :: UserTypeCtxt -> Type -> TcM ()
 checkValidType ctxt ty
   = doptsTc Opt_GlasgowExts    `thenNF_Tc` \ gla_exts ->
     let 
-       rank = case ctxt of
-                GenPatCtxt               -> 0
-                PatSigCtxt               -> 0
-                ResSigCtxt               -> 0
-                ExprSigCtxt              -> 1
-                FunSigCtxt _ | gla_exts  -> 2
-                             | otherwise -> 1
-                ConArgCtxt _ | gla_exts  -> 2  -- We are given the type of the entire
-                             | otherwise -> 1  -- constructor; hence rank 1 is ok
-                TySynCtxt _  | gla_exts  -> 1
-                             | otherwise -> 0
-                ForSigCtxt _             -> 1
-                RuleSigCtxt _            -> 1
+       rank | gla_exts = Arbitrary
+            | otherwise
+            = case ctxt of     -- Haskell 98
+                GenPatCtxt     -> Rank 0
+                PatSigCtxt     -> Rank 0
+                ResSigCtxt     -> Rank 0
+                TySynCtxt _    -> Rank 0
+                ExprSigCtxt    -> Rank 1
+                FunSigCtxt _   -> Rank 1
+                ConArgCtxt _   -> Rank 1       -- We are given the type of the entire
+                                               -- constructor, hence rank 1
+                ForSigCtxt _   -> Rank 1
+                RuleSigCtxt _  -> Rank 1
 
        actual_kind = typeKind ty
 
@@ -611,6 +623,14 @@ checkValidType ctxt ty
                        GenPatCtxt   -> actual_kind_is_lifted
                        ForSigCtxt _ -> actual_kind_is_lifted
                        other        -> isTypeKind actual_kind
+       
+       ubx_tup | not gla_exts = UT_NotOk
+               | otherwise    = case ctxt of
+                                  TySynCtxt _ -> UT_Ok
+                                  other       -> UT_NotOk
+               -- Unboxed tuples ok in function results,
+               -- but for type synonyms we allow them even at
+               -- top level
     in
     tcAddErrCtxt (checkTypeCtxt ctxt ty)       $
 
@@ -618,7 +638,7 @@ checkValidType ctxt ty
     checkTc kind_ok (kindErr actual_kind)      `thenTc_`
 
        -- Check the internal validity of the type itself
-    check_poly_type rank ty
+    check_poly_type rank ubx_tup ty
 
 
 checkTypeCtxt ctxt ty
@@ -641,18 +661,29 @@ ppr_ty ty | null forall_tvs && not (null theta) = pprTheta theta <+> ptext SLIT(
 
 
 \begin{code}
-type Rank = Int
-check_poly_type :: Rank -> Type -> TcM ()
-check_poly_type rank ty 
-  | rank == 0 
-  = check_tau_type 0 False ty
-  | otherwise  -- rank > 0
+data Rank = Rank Int | Arbitrary
+
+decRank :: Rank -> Rank
+decRank Arbitrary = Arbitrary
+decRank (Rank n)  = Rank (n-1)
+
+----------------------------------------
+data UbxTupFlag = UT_Ok        | UT_NotOk
+       -- The "Ok" version means "ok if -fglasgow-exts is on"
+
+----------------------------------------
+check_poly_type :: Rank -> UbxTupFlag -> Type -> TcM ()
+check_poly_type (Rank 0) ubx_tup ty 
+  = check_tau_type (Rank 0) ubx_tup ty
+
+check_poly_type rank ubx_tup ty 
   = let
        (tvs, theta, tau) = tcSplitSigmaTy ty
     in
-    check_valid_theta SigmaCtxt theta  `thenTc_`
-    check_tau_type (rank-1) False tau  `thenTc_`
-    checkAmbiguity tvs theta tau
+    check_valid_theta SigmaCtxt theta          `thenTc_`
+    check_tau_type (decRank rank) ubx_tup tau  `thenTc_`
+    checkFreeness tvs theta                    `thenTc_`
+    checkAmbiguity tvs theta (tyVarsOfType tau)
 
 ----------------------------------------
 check_arg_type :: Type -> TcM ()
@@ -671,49 +702,58 @@ check_arg_type :: Type -> TcM ()
 -- NB: unboxed tuples can have polymorphic or unboxed args.
 --     This happens in the workers for functions returning
 --     product types with polymorphic components.
---     But not in user code
--- 
--- Question: what about nested unboxed tuples?
---          Currently rejected.
+--     But not in user code.
+-- Anyway, they are dealt with by a special case in check_tau_type
+
 check_arg_type ty 
-  = check_tau_type 0 False ty  `thenTc_` 
+  = check_tau_type (Rank 0) UT_NotOk ty                `thenTc_` 
     checkTc (not (isUnLiftedType ty)) (unliftedArgErr ty)
 
 ----------------------------------------
-check_tau_type :: Rank -> Bool -> Type -> TcM ()
+check_tau_type :: Rank -> UbxTupFlag -> Type -> TcM ()
 -- Rank is allowed rank for function args
 -- No foralls otherwise
--- Bool is True iff unboxed tuple are allowed here
-
-check_tau_type rank ubx_tup_ok ty@(UsageTy _ _)  = failWithTc (usageTyErr ty)
-check_tau_type rank ubx_tup_ok ty@(ForAllTy _ _) = failWithTc (forAllTyErr ty)
-check_tau_type rank ubx_tup_ok (SourceTy sty)    = getDOptsTc          `thenNF_Tc` \ dflags ->
-                                                  check_source_ty dflags TypeCtxt sty
-check_tau_type rank ubx_tup_ok (TyVarTy _)       = returnTc ()
-check_tau_type rank ubx_tup_ok ty@(FunTy arg_ty res_ty)
-  = check_poly_type rank      arg_ty   `thenTc_`
-    check_tau_type  rank True res_ty
-
-check_tau_type rank ubx_tup_ok (AppTy ty1 ty2)
-  = check_arg_type ty1 `thenTc_` check_arg_type ty2
 
-check_tau_type rank ubx_tup_ok (NoteTy note ty)
-  = check_note note `thenTc_` check_tau_type rank ubx_tup_ok ty
+check_tau_type rank ubx_tup ty@(ForAllTy _ _) = failWithTc (forAllTyErr ty)
+check_tau_type rank ubx_tup (SourceTy sty)    = getDOptsTc             `thenNF_Tc` \ dflags ->
+                                               check_source_ty dflags TypeCtxt sty
+check_tau_type rank ubx_tup (TyVarTy _)       = returnTc ()
+check_tau_type rank ubx_tup ty@(FunTy arg_ty res_ty)
+  = check_poly_type rank UT_NotOk arg_ty       `thenTc_`
+    check_tau_type  rank UT_Ok    res_ty
 
-check_tau_type rank ubx_tup_ok ty@(TyConApp tc tys)
-  | isSynTyCon tc
-  = checkTc syn_arity_ok arity_msg     `thenTc_`
+check_tau_type rank ubx_tup (AppTy ty1 ty2)
+  = check_arg_type ty1 `thenTc_` check_arg_type ty2
+
+check_tau_type rank ubx_tup (NoteTy note ty)
+  = check_tau_type rank ubx_tup ty
+       -- Synonym notes are built only when the synonym is 
+       -- saturated (see Type.mkSynTy)
+       -- Not checking the 'note' part allows us to instantiate a synonym
+       -- defn with a for-all type, or with a partially-applied type synonym,
+       -- but that seems OK too
+
+check_tau_type rank ubx_tup ty@(TyConApp tc tys)
+  | isSynTyCon tc      
+  =    -- NB: Type.mkSynTy builds a TyConApp (not a NoteTy) for an unsaturated
+       -- synonym application, leaving it to checkValidType (i.e. right here
+       -- to find the error
+    checkTc syn_arity_ok arity_msg     `thenTc_`
     mapTc_ check_arg_type tys
     
   | isUnboxedTupleTyCon tc
-  = checkTc ubx_tup_ok ubx_tup_msg     `thenTc_`
-    mapTc_ (check_tau_type 0 True) tys         -- Args are allowed to be unlifted, or
-                                               -- more unboxed tuples, so can't use check_arg_ty
+  = doptsTc Opt_GlasgowExts                    `thenNF_Tc` \ gla_exts ->
+    checkTc (ubx_tup_ok gla_exts) ubx_tup_msg  `thenTc_`
+    mapTc_ (check_tau_type (Rank 0) UT_Ok) tys 
+                       -- Args are allowed to be unlifted, or
+                       -- more unboxed tuples, so can't use check_arg_ty
 
   | otherwise
   = mapTc_ check_arg_type tys
 
   where
+    ubx_tup_ok gla_exts = case ubx_tup of { UT_Ok -> gla_exts; other -> False }
+
     syn_arity_ok = tc_arity <= n_args
                -- It's OK to have an *over-applied* type synonym
                --      data Tree a b = ...
@@ -726,8 +766,10 @@ check_tau_type rank ubx_tup_ok ty@(TyConApp tc tys)
     ubx_tup_msg = ubxArgTyErr ty
 
 ----------------------------------------
-check_note (FTVNote _)  = returnTc ()
-check_note (SynNote ty) = check_tau_type 0 False ty
+forAllTyErr     ty = ptext SLIT("Illegal polymorphic type:") <+> ppr_ty ty
+unliftedArgErr  ty = ptext SLIT("Illegal unlifted type argument:") <+> ppr_ty ty
+ubxArgTyErr     ty = ptext SLIT("Illegal unboxed tuple type as function argument:") <+> ppr_ty ty
+kindErr kind       = ptext SLIT("Expecting an ordinary type, but found a type of kind") <+> ppr kind
 \end{code}
 
 Check for ambiguity
@@ -743,12 +785,6 @@ Then the type
        forall x y. (C x y) => x
 is not ambiguous because x is mentioned and x determines y
 
-NOTE: In addition, GHC insists that at least one type variable
-in each constraint is in V.  So we disallow a type like
-       forall a. Eq b => b -> b
-even in a scope where b is in scope.
-This is the is_free test below.
-
 NB; the ambiguity check is only used for *user* types, not for types
 coming from inteface files.  The latter can legitimately have
 ambiguous types. Example
@@ -767,46 +803,47 @@ don't need to check for ambiguity either, because the test can't fail
 (see is_ambig).
 
 \begin{code}
-checkAmbiguity :: [TyVar] -> ThetaType -> TauType -> TcM ()
-checkAmbiguity forall_tyvars theta tau
-  = mapTc_ check_pred theta    `thenTc_`
-    returnTc ()
+checkAmbiguity :: [TyVar] -> ThetaType -> TyVarSet -> TcM ()
+checkAmbiguity forall_tyvars theta tau_tyvars
+  = mapTc_ complain (filter is_ambig theta)
   where
-    tau_vars         = tyVarsOfType tau
-    extended_tau_vars = grow theta tau_vars
+    complain pred     = addErrTc (ambigErr pred)
+    extended_tau_vars = grow theta tau_tyvars
+    is_ambig pred     = any ambig_var (varSetElems (tyVarsOfPred pred))
 
-    is_ambig ct_var   = (ct_var `elem` forall_tyvars) &&
+    ambig_var ct_var  = (ct_var `elem` forall_tyvars) &&
                        not (ct_var `elemVarSet` extended_tau_vars)
+
     is_free ct_var    = not (ct_var `elem` forall_tyvars)
-    
-    check_pred pred = checkTc (not any_ambig)                 (ambigErr pred) `thenTc_`
-                     checkTc (isIPPred pred || not all_free) (freeErr  pred)
-             where 
-               ct_vars   = varSetElems (tyVarsOfPred pred)
-               all_free  = all is_free ct_vars
-               any_ambig = any is_ambig ct_vars
-\end{code}
 
-\begin{code}
 ambigErr pred
   = sep [ptext SLIT("Ambiguous constraint") <+> quotes (pprPred pred),
         nest 4 (ptext SLIT("At least one of the forall'd type variables mentioned by the constraint") $$
-                ptext SLIT("must be reachable from the type after the =>"))]
+                ptext SLIT("must be reachable from the type after the '=>'"))]
+\end{code}
+    
+In addition, GHC insists that at least one type variable
+in each constraint is in V.  So we disallow a type like
+       forall a. Eq b => b -> b
+even in a scope where b is in scope.
 
+\begin{code}
+checkFreeness forall_tyvars theta
+  = mapTc_ complain (filter is_free theta)
+  where    
+    is_free pred     =  not (isIPPred pred)
+                    && not (any bound_var (varSetElems (tyVarsOfPred pred)))
+    bound_var ct_var = ct_var `elem` forall_tyvars
+    complain pred    = addErrTc (freeErr pred)
 
 freeErr pred
   = sep [ptext SLIT("All of the type variables in the constraint") <+> quotes (pprPred pred) <+>
                   ptext SLIT("are already in scope"),
         nest 4 (ptext SLIT("At least one must be universally quantified here"))
     ]
-
-forAllTyErr     ty = ptext SLIT("Illegal polymorphic type:") <+> ppr_ty ty
-usageTyErr      ty = ptext SLIT("Illegal usage type:") <+> ppr_ty ty
-unliftedArgErr  ty = ptext SLIT("Illegal unlifted type argument:") <+> ppr_ty ty
-ubxArgTyErr     ty = ptext SLIT("Illegal unboxed tuple type as function argument:") <+> ppr_ty ty
-kindErr kind       = ptext SLIT("Expecting an ordinary type, but found a type of kind") <+> ppr kind
 \end{code}
 
+
 %************************************************************************
 %*                                                                     *
 \subsection{Checking a theta or source type}
@@ -848,9 +885,10 @@ check_valid_theta ctxt theta
 -------------------------
 check_source_ty dflags ctxt pred@(ClassP cls tys)
   =    -- Class predicates are valid in all contexts
-    mapTc_ check_arg_type tys                  `thenTc_`
+    mapTc_ check_arg_type tys          `thenTc_`
     checkTc (arity == n_tys) arity_err         `thenTc_`
-    checkTc (all tyvar_head tys || arby_preds_ok) (predTyVarErr pred)
+    checkTc (all tyvar_head tys || arby_preds_ok)
+           (predTyVarErr pred $$ how_to_allow)
 
   where
     class_name = className cls
@@ -864,7 +902,21 @@ check_source_ty dflags ctxt pred@(ClassP cls tys)
                        InstThetaCtxt -> dopt Opt_AllowUndecidableInstances dflags
                        other         -> dopt Opt_GlasgowExts               dflags
 
-check_source_ty dflags SigmaCtxt (IParam name ty) = check_arg_type ty
+    how_to_allow = case ctxt of
+                    InstHeadCtxt  -> empty     -- Should not happen
+                    InstThetaCtxt -> parens undecidableMsg
+                    other         -> parens (ptext SLIT("Use -fglasgow-exts to permit this"))
+
+check_source_ty dflags SigmaCtxt (IParam _ ty) = check_arg_type ty
+       -- Implicit parameters only allows in type
+       -- signatures; not in instance decls, superclasses etc
+       -- The reason for not allowing implicit params in instances is a bit subtle
+       -- If we allowed        instance (?x::Int, Eq a) => Foo [a] where ...
+       -- then when we saw (e :: (?x::Int) => t) it would be unclear how to 
+       -- discharge all the potential usas of the ?x in e.   For example, a
+       -- constraint Foo [Int] might come out of e,and applying the
+       -- instance decl would show up two uses of ?x.
+
 check_source_ty dflags TypeCtxt  (NType tc tys)   = mapTc_ check_arg_type tys
 
 -- Catch-all
@@ -906,7 +958,7 @@ compiled elsewhere). In these cases, we let them go through anyway.
 We can also have instances for functions: @instance Foo (a -> b) ...@.
 
 \begin{code}
-checkValidInstHead :: Type -> TcM ()
+checkValidInstHead :: Type -> TcM (Class, [TcType])
 
 checkValidInstHead ty  -- Should be a source type
   = case tcSplitPredTy_maybe ty of {
@@ -919,7 +971,8 @@ checkValidInstHead ty       -- Should be a source type
 
     getDOptsTc                                 `thenNF_Tc` \ dflags ->
     mapTc_ check_arg_type tys                  `thenTc_`
-    check_inst_head dflags clas tys
+    check_inst_head dflags clas tys            `thenTc_`
+    returnTc (clas, tys)
     }}
 
 check_inst_head dflags clas tys
@@ -965,7 +1018,9 @@ check_tyvars dflags clas tys
   | otherwise                                = failWithTc (instTypeErr (pprClassPred clas tys) msg)
   where
     msg =  parens (ptext SLIT("There must be at least one non-type-variable in the instance head")
-               $$ ptext SLIT("Use -fallow-undecidable-instances to lift this restriction"))
+                  $$ undecidableMsg)
+
+undecidableMsg = ptext SLIT("Use -fallow-undecidable-instances to permit this")
 \end{code}
 
 \begin{code}
@@ -977,500 +1032,3 @@ nonBoxedPrimCCallErr clas inst_ty
   = hang (ptext SLIT("Unacceptable instance type for ccall-ish class"))
         4 (pprClassPred clas [inst_ty])
 \end{code}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection{Kind unification}
-%*                                                                     *
-%************************************************************************
-
-\begin{code}
-unifyKind :: TcKind                -- Expected
-         -> TcKind                 -- Actual
-         -> TcM ()
-unifyKind k1 k2 
-  = tcAddErrCtxtM (unifyCtxt "kind" k1 k2) $
-    uTys k1 k1 k2 k2
-
-unifyKinds :: [TcKind] -> [TcKind] -> TcM ()
-unifyKinds []       []       = returnTc ()
-unifyKinds (k1:ks1) (k2:ks2) = unifyKind k1 k2         `thenTc_`
-                              unifyKinds ks1 ks2
-unifyKinds _ _ = panic "unifyKinds: length mis-match"
-\end{code}
-
-\begin{code}
-unifyOpenTypeKind :: TcKind -> TcM ()  
--- Ensures that the argument kind is of the form (Type bx)
--- for some boxity bx
-
-unifyOpenTypeKind ty@(TyVarTy tyvar)
-  = getTcTyVar tyvar   `thenNF_Tc` \ maybe_ty ->
-    case maybe_ty of
-       Just ty' -> unifyOpenTypeKind ty'
-       other    -> unify_open_kind_help ty
-
-unifyOpenTypeKind ty
-  | isTypeKind ty = returnTc ()
-  | otherwise     = unify_open_kind_help ty
-
-unify_open_kind_help ty        -- Revert to ordinary unification
-  = newBoxityVar       `thenNF_Tc` \ boxity ->
-    unifyKind ty (mkTyConApp typeCon [boxity])
-\end{code}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-exported]{Exported unification functions}
-%*                                                                     *
-%************************************************************************
-
-The exported functions are all defined as versions of some
-non-exported generic functions.
-
-Unify two @TauType@s.  Dead straightforward.
-
-\begin{code}
-unifyTauTy :: TcTauType -> TcTauType -> TcM ()
-unifyTauTy ty1 ty2     -- ty1 expected, ty2 inferred
-  = tcAddErrCtxtM (unifyCtxt "type" ty1 ty2) $
-    uTys ty1 ty1 ty2 ty2
-\end{code}
-
-@unifyTauTyList@ unifies corresponding elements of two lists of
-@TauType@s.  It uses @uTys@ to do the real work.  The lists should be
-of equal length.  We charge down the list explicitly so that we can
-complain if their lengths differ.
-
-\begin{code}
-unifyTauTyLists :: [TcTauType] -> [TcTauType] ->  TcM ()
-unifyTauTyLists []          []         = returnTc ()
-unifyTauTyLists (ty1:tys1) (ty2:tys2) = uTys ty1 ty1 ty2 ty2   `thenTc_`
-                                       unifyTauTyLists tys1 tys2
-unifyTauTyLists ty1s ty2s = panic "Unify.unifyTauTyLists: mismatched type lists!"
-\end{code}
-
-@unifyTauTyList@ takes a single list of @TauType@s and unifies them
-all together.  It is used, for example, when typechecking explicit
-lists, when all the elts should be of the same type.
-
-\begin{code}
-unifyTauTyList :: [TcTauType] -> TcM ()
-unifyTauTyList []               = returnTc ()
-unifyTauTyList [ty]             = returnTc ()
-unifyTauTyList (ty1:tys@(ty2:_)) = unifyTauTy ty1 ty2  `thenTc_`
-                                  unifyTauTyList tys
-\end{code}
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-uTys]{@uTys@: getting down to business}
-%*                                                                     *
-%************************************************************************
-
-@uTys@ is the heart of the unifier.  Each arg happens twice, because
-we want to report errors in terms of synomyms if poss.  The first of
-the pair is used in error messages only; it is always the same as the
-second, except that if the first is a synonym then the second may be a
-de-synonym'd version.  This way we get better error messages.
-
-We call the first one \tr{ps_ty1}, \tr{ps_ty2} for ``possible synomym''.
-
-\begin{code}
-uTys :: TcTauType -> TcTauType -- Error reporting ty1 and real ty1
-                               -- ty1 is the *expected* type
-
-     -> TcTauType -> TcTauType -- Error reporting ty2 and real ty2
-                               -- ty2 is the *actual* type
-     -> TcM ()
-
-       -- Always expand synonyms (see notes at end)
-        -- (this also throws away FTVs)
-uTys ps_ty1 (NoteTy n1 ty1) ps_ty2 ty2 = uTys ps_ty1 ty1 ps_ty2 ty2
-uTys ps_ty1 ty1 ps_ty2 (NoteTy n2 ty2) = uTys ps_ty1 ty1 ps_ty2 ty2
-
-       -- Ignore usage annotations inside typechecker
-uTys ps_ty1 (UsageTy _ ty1) ps_ty2 ty2 = uTys ps_ty1 ty1 ps_ty2 ty2
-uTys ps_ty1 ty1 ps_ty2 (UsageTy _ ty2) = uTys ps_ty1 ty1 ps_ty2 ty2
-
-       -- Variables; go for uVar
-uTys ps_ty1 (TyVarTy tyvar1) ps_ty2 ty2 = uVar False tyvar1 ps_ty2 ty2
-uTys ps_ty1 ty1 ps_ty2 (TyVarTy tyvar2) = uVar True  tyvar2 ps_ty1 ty1
-                                       -- "True" means args swapped
-
-       -- Predicates
-uTys _ (SourceTy (IParam n1 t1)) _ (SourceTy (IParam n2 t2))
-  | n1 == n2 = uTys t1 t1 t2 t2
-uTys _ (SourceTy (ClassP c1 tys1)) _ (SourceTy (ClassP c2 tys2))
-  | c1 == c2 = unifyTauTyLists tys1 tys2
-uTys _ (SourceTy (NType tc1 tys1)) _ (SourceTy (NType tc2 tys2))
-  | tc1 == tc2 = unifyTauTyLists tys1 tys2
-
-       -- Functions; just check the two parts
-uTys _ (FunTy fun1 arg1) _ (FunTy fun2 arg2)
-  = uTys fun1 fun1 fun2 fun2   `thenTc_`    uTys arg1 arg1 arg2 arg2
-
-       -- Type constructors must match
-uTys ps_ty1 (TyConApp con1 tys1) ps_ty2 (TyConApp con2 tys2)
-  | con1 == con2 && equalLength tys1 tys2
-  = unifyTauTyLists tys1 tys2
-
-  | con1 == openKindCon
-       -- When we are doing kind checking, we might match a kind '?' 
-       -- against a kind '*' or '#'.  Notably, CCallable :: ? -> *, and
-       -- (CCallable Int) and (CCallable Int#) are both OK
-  = unifyOpenTypeKind ps_ty2
-
-       -- Applications need a bit of care!
-       -- They can match FunTy and TyConApp, so use splitAppTy_maybe
-       -- NB: we've already dealt with type variables and Notes,
-       -- so if one type is an App the other one jolly well better be too
-uTys ps_ty1 (AppTy s1 t1) ps_ty2 ty2
-  = case tcSplitAppTy_maybe ty2 of
-       Just (s2,t2) -> uTys s1 s1 s2 s2        `thenTc_`    uTys t1 t1 t2 t2
-       Nothing      -> unifyMisMatch ps_ty1 ps_ty2
-
-       -- Now the same, but the other way round
-       -- Don't swap the types, because the error messages get worse
-uTys ps_ty1 ty1 ps_ty2 (AppTy s2 t2)
-  = case tcSplitAppTy_maybe ty1 of
-       Just (s1,t1) -> uTys s1 s1 s2 s2        `thenTc_`    uTys t1 t1 t2 t2
-       Nothing      -> unifyMisMatch ps_ty1 ps_ty2
-
-       -- Not expecting for-alls in unification
-       -- ... but the error message from the unifyMisMatch more informative
-       -- than a panic message!
-
-       -- Anything else fails
-uTys ps_ty1 ty1 ps_ty2 ty2  = unifyMisMatch ps_ty1 ps_ty2
-\end{code}
-
-
-Notes on synonyms
-~~~~~~~~~~~~~~~~~
-If you are tempted to make a short cut on synonyms, as in this
-pseudocode...
-
-\begin{verbatim}
--- NO  uTys (SynTy con1 args1 ty1) (SynTy con2 args2 ty2)
--- NO     = if (con1 == con2) then
--- NO  -- Good news!  Same synonym constructors, so we can shortcut
--- NO  -- by unifying their arguments and ignoring their expansions.
--- NO  unifyTauTypeLists args1 args2
--- NO    else
--- NO  -- Never mind.  Just expand them and try again
--- NO  uTys ty1 ty2
-\end{verbatim}
-
-then THINK AGAIN.  Here is the whole story, as detected and reported
-by Chris Okasaki \tr{<Chris_Okasaki@loch.mess.cs.cmu.edu>}:
-\begin{quotation}
-Here's a test program that should detect the problem:
-
-\begin{verbatim}
-       type Bogus a = Int
-       x = (1 :: Bogus Char) :: Bogus Bool
-\end{verbatim}
-
-The problem with [the attempted shortcut code] is that
-\begin{verbatim}
-       con1 == con2
-\end{verbatim}
-is not a sufficient condition to be able to use the shortcut!
-You also need to know that the type synonym actually USES all
-its arguments.  For example, consider the following type synonym
-which does not use all its arguments.
-\begin{verbatim}
-       type Bogus a = Int
-\end{verbatim}
-
-If you ever tried unifying, say, \tr{Bogus Char} with \tr{Bogus Bool},
-the unifier would blithely try to unify \tr{Char} with \tr{Bool} and
-would fail, even though the expanded forms (both \tr{Int}) should
-match.
-
-Similarly, unifying \tr{Bogus Char} with \tr{Bogus t} would
-unnecessarily bind \tr{t} to \tr{Char}.
-
-... You could explicitly test for the problem synonyms and mark them
-somehow as needing expansion, perhaps also issuing a warning to the
-user.
-\end{quotation}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-uVar]{@uVar@: unifying with a type variable}
-%*                                                                     *
-%************************************************************************
-
-@uVar@ is called when at least one of the types being unified is a
-variable.  It does {\em not} assume that the variable is a fixed point
-of the substitution; rather, notice that @uVar@ (defined below) nips
-back into @uTys@ if it turns out that the variable is already bound.
-
-\begin{code}
-uVar :: Bool           -- False => tyvar is the "expected"
-                       -- True  => ty    is the "expected" thing
-     -> TcTyVar
-     -> TcTauType -> TcTauType -- printing and real versions
-     -> TcM ()
-
-uVar swapped tv1 ps_ty2 ty2
-  = getTcTyVar tv1     `thenNF_Tc` \ maybe_ty1 ->
-    case maybe_ty1 of
-       Just ty1 | swapped   -> uTys ps_ty2 ty2 ty1 ty1 -- Swap back
-                | otherwise -> uTys ty1 ty1 ps_ty2 ty2 -- Same order
-       other       -> uUnboundVar swapped tv1 maybe_ty1 ps_ty2 ty2
-
-       -- Expand synonyms; ignore FTVs
-uUnboundVar swapped tv1 maybe_ty1 ps_ty2 (NoteTy n2 ty2)
-  = uUnboundVar swapped tv1 maybe_ty1 ps_ty2 ty2
-
-
-       -- The both-type-variable case
-uUnboundVar swapped tv1 maybe_ty1 ps_ty2 ty2@(TyVarTy tv2)
-
-       -- Same type variable => no-op
-  | tv1 == tv2
-  = returnTc ()
-
-       -- Distinct type variables
-       -- ASSERT maybe_ty1 /= Just
-  | otherwise
-  = getTcTyVar tv2     `thenNF_Tc` \ maybe_ty2 ->
-    case maybe_ty2 of
-       Just ty2' -> uUnboundVar swapped tv1 maybe_ty1 ty2' ty2'
-
-       Nothing | update_tv2
-
-               -> WARN( not (k1 `hasMoreBoxityInfo` k2), (ppr tv1 <+> ppr k1) $$ (ppr tv2 <+> ppr k2) )
-                  putTcTyVar tv2 (TyVarTy tv1)         `thenNF_Tc_`
-                  returnTc ()
-               |  otherwise
-
-               -> WARN( not (k2 `hasMoreBoxityInfo` k1), (ppr tv2 <+> ppr k2) $$ (ppr tv1 <+> ppr k1) )
-                   (putTcTyVar tv1 ps_ty2              `thenNF_Tc_`
-                   returnTc ())
-  where
-    k1 = tyVarKind tv1
-    k2 = tyVarKind tv2
-    update_tv2 = (k2 `eqKind` openTypeKind) || (not (k1 `eqKind` openTypeKind) && nicer_to_update_tv2)
-                       -- Try to get rid of open type variables as soon as poss
-
-    nicer_to_update_tv2 =  isSigTyVar tv1 
-                               -- Don't unify a signature type variable if poss
-                       || isSystemName (varName tv2)
-                               -- Try to update sys-y type variables in preference to sig-y ones
-
-       -- Second one isn't a type variable
-uUnboundVar swapped tv1 maybe_ty1 ps_ty2 non_var_ty2
-  =    -- Check that the kinds match
-    checkKinds swapped tv1 non_var_ty2                 `thenTc_`
-
-       -- Check that tv1 isn't a type-signature type variable
-    checkTcM (not (isSigTyVar tv1))
-            (failWithTcM (unifyWithSigErr tv1 ps_ty2)) `thenTc_`
-
-       -- Check that we aren't losing boxity info (shouldn't happen)
-    warnTc (not (typeKind non_var_ty2 `hasMoreBoxityInfo` tyVarKind tv1))
-          ((ppr tv1 <+> ppr (tyVarKind tv1)) $$ 
-            (ppr non_var_ty2 <+> ppr (typeKind non_var_ty2)))          `thenNF_Tc_` 
-
-       -- Occurs check
-       -- Basically we want to update     tv1 := ps_ty2
-       -- because ps_ty2 has type-synonym info, which improves later error messages
-       -- 
-       -- But consider 
-       --      type A a = ()
-       --
-       --      f :: (A a -> a -> ()) -> ()
-       --      f = \ _ -> ()
-       --
-       --      x :: ()
-       --      x = f (\ x p -> p x)
-       --
-       -- In the application (p x), we try to match "t" with "A t".  If we go
-       -- ahead and bind t to A t (= ps_ty2), we'll lead the type checker into 
-       -- an infinite loop later.
-       -- But we should not reject the program, because A t = ().
-       -- Rather, we should bind t to () (= non_var_ty2).
-       -- 
-       -- That's why we have this two-state occurs-check
-    zonkTcType ps_ty2                                  `thenNF_Tc` \ ps_ty2' ->
-    if not (tv1 `elemVarSet` tyVarsOfType ps_ty2') then
-       putTcTyVar tv1 ps_ty2'                          `thenNF_Tc_`
-       returnTc ()
-    else
-    zonkTcType non_var_ty2                             `thenNF_Tc` \ non_var_ty2' ->
-    if not (tv1 `elemVarSet` tyVarsOfType non_var_ty2') then
-       -- This branch rarely succeeds, except in strange cases
-       -- like that in the example above
-       putTcTyVar tv1 non_var_ty2'                     `thenNF_Tc_`
-       returnTc ()
-    else
-    failWithTcM (unifyOccurCheck tv1 ps_ty2')
-
-
-checkKinds swapped tv1 ty2
--- We're about to unify a type variable tv1 with a non-tyvar-type ty2.
--- We need to check that we don't unify a lifted type variable with an
--- unlifted type: e.g.  (id 3#) is illegal
-  | tk1 `eqKind` liftedTypeKind && tk2 `eqKind` unliftedTypeKind
-  = tcAddErrCtxtM (unifyKindCtxt swapped tv1 ty2)      $
-    unifyMisMatch k1 k2
-  | otherwise
-  = returnTc ()
-  where
-    (k1,k2) | swapped   = (tk2,tk1)
-           | otherwise = (tk1,tk2)
-    tk1 = tyVarKind tv1
-    tk2 = typeKind ty2
-\end{code}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-fun]{@unifyFunTy@}
-%*                                                                     *
-%************************************************************************
-
-@unifyFunTy@ is used to avoid the fruitless creation of type variables.
-
-\begin{code}
-unifyFunTy :: TcType                           -- Fail if ty isn't a function type
-          -> TcM (TcType, TcType)      -- otherwise return arg and result types
-
-unifyFunTy ty@(TyVarTy tyvar)
-  = getTcTyVar tyvar   `thenNF_Tc` \ maybe_ty ->
-    case maybe_ty of
-       Just ty' -> unifyFunTy ty'
-       other       -> unify_fun_ty_help ty
-
-unifyFunTy ty
-  = case tcSplitFunTy_maybe ty of
-       Just arg_and_res -> returnTc arg_and_res
-       Nothing          -> unify_fun_ty_help ty
-
-unify_fun_ty_help ty   -- Special cases failed, so revert to ordinary unification
-  = newTyVarTy openTypeKind    `thenNF_Tc` \ arg ->
-    newTyVarTy openTypeKind    `thenNF_Tc` \ res ->
-    unifyTauTy ty (mkFunTy arg res)    `thenTc_`
-    returnTc (arg,res)
-\end{code}
-
-\begin{code}
-unifyListTy :: TcType              -- expected list type
-           -> TcM TcType      -- list element type
-
-unifyListTy ty@(TyVarTy tyvar)
-  = getTcTyVar tyvar   `thenNF_Tc` \ maybe_ty ->
-    case maybe_ty of
-       Just ty' -> unifyListTy ty'
-       other    -> unify_list_ty_help ty
-
-unifyListTy ty
-  = case tcSplitTyConApp_maybe ty of
-       Just (tycon, [arg_ty]) | tycon == listTyCon -> returnTc arg_ty
-       other                                       -> unify_list_ty_help ty
-
-unify_list_ty_help ty  -- Revert to ordinary unification
-  = newTyVarTy liftedTypeKind          `thenNF_Tc` \ elt_ty ->
-    unifyTauTy ty (mkListTy elt_ty)    `thenTc_`
-    returnTc elt_ty
-\end{code}
-
-\begin{code}
-unifyTupleTy :: Boxity -> Arity -> TcType -> TcM [TcType]
-unifyTupleTy boxity arity ty@(TyVarTy tyvar)
-  = getTcTyVar tyvar   `thenNF_Tc` \ maybe_ty ->
-    case maybe_ty of
-       Just ty' -> unifyTupleTy boxity arity ty'
-       other    -> unify_tuple_ty_help boxity arity ty
-
-unifyTupleTy boxity arity ty
-  = case tcSplitTyConApp_maybe ty of
-       Just (tycon, arg_tys)
-               |  isTupleTyCon tycon 
-               && tyConArity tycon == arity
-               && tupleTyConBoxity tycon == boxity
-               -> returnTc arg_tys
-       other -> unify_tuple_ty_help boxity arity ty
-
-unify_tuple_ty_help boxity arity ty
-  = newTyVarTys arity kind                             `thenNF_Tc` \ arg_tys ->
-    unifyTauTy ty (mkTupleTy boxity arity arg_tys)     `thenTc_`
-    returnTc arg_tys
-  where
-    kind | isBoxed boxity = liftedTypeKind
-        | otherwise      = openTypeKind
-\end{code}
-
-
-%************************************************************************
-%*                                                                     *
-\subsection[Unify-context]{Errors and contexts}
-%*                                                                     *
-%************************************************************************
-
-Errors
-~~~~~~
-
-\begin{code}
-unifyCtxt s ty1 ty2 tidy_env   -- ty1 expected, ty2 inferred
-  = zonkTcType ty1     `thenNF_Tc` \ ty1' ->
-    zonkTcType ty2     `thenNF_Tc` \ ty2' ->
-    returnNF_Tc (err ty1' ty2')
-  where
-    err ty1 ty2 = (env1, 
-                  nest 4 
-                       (vcat [
-                          text "Expected" <+> text s <> colon <+> ppr tidy_ty1,
-                          text "Inferred" <+> text s <> colon <+> ppr tidy_ty2
-                       ]))
-                 where
-                   (env1, [tidy_ty1,tidy_ty2]) = tidyOpenTypes tidy_env [ty1,ty2]
-
-unifyKindCtxt swapped tv1 ty2 tidy_env -- not swapped => tv1 expected, ty2 inferred
-       -- tv1 is zonked already
-  = zonkTcType ty2     `thenNF_Tc` \ ty2' ->
-    returnNF_Tc (err ty2')
-  where
-    err ty2 = (env2, ptext SLIT("When matching types") <+> 
-                    sep [quotes pp_expected, ptext SLIT("and"), quotes pp_actual])
-           where
-             (pp_expected, pp_actual) | swapped   = (pp2, pp1)
-                                      | otherwise = (pp1, pp2)
-             (env1, tv1') = tidyOpenTyVar tidy_env tv1
-             (env2, ty2') = tidyOpenType  env1 ty2
-             pp1 = ppr tv1'
-             pp2 = ppr ty2'
-
-unifyMisMatch ty1 ty2
-  = zonkTcType ty1     `thenNF_Tc` \ ty1' ->
-    zonkTcType ty2     `thenNF_Tc` \ ty2' ->
-    let
-       (env, [tidy_ty1, tidy_ty2]) = tidyOpenTypes emptyTidyEnv [ty1',ty2']
-       msg = hang (ptext SLIT("Couldn't match"))
-                  4 (sep [quotes (ppr tidy_ty1), 
-                          ptext SLIT("against"), 
-                          quotes (ppr tidy_ty2)])
-    in
-    failWithTcM (env, msg)
-
-unifyWithSigErr tyvar ty
-  = (env2, hang (ptext SLIT("Cannot unify the type-signature variable") <+> quotes (ppr tidy_tyvar))
-             4 (ptext SLIT("with the type") <+> quotes (ppr tidy_ty)))
-  where
-    (env1, tidy_tyvar) = tidyOpenTyVar emptyTidyEnv tyvar
-    (env2, tidy_ty)    = tidyOpenType  env1         ty
-
-unifyOccurCheck tyvar ty
-  = (env2, hang (ptext SLIT("Occurs check: cannot construct the infinite type:"))
-             4 (sep [ppr tidy_tyvar, char '=', ppr tidy_ty]))
-  where
-    (env1, tidy_tyvar) = tidyOpenTyVar emptyTidyEnv tyvar
-    (env2, tidy_ty)    = tidyOpenType  env1         ty
-\end{code}