[project @ 2002-10-01 15:59:03 by erkok]
[ghc-hetmet.git] / ghc / docs / users_guide / glasgow_exts.sgml
index 667eef4..d4a39be 100644 (file)
@@ -973,8 +973,31 @@ example, we define the <literal>min</literal> function by binding
   min  = let ?cmp = (<=) in least
 </programlisting>
 <para>
-Note the following additional constraints:
+Note the following points:
 <itemizedlist>
+<listitem><para>
+You may not mix implicit-parameter bindings with ordinary bindings in a 
+single <literal>let</literal>
+expression; use two nested <literal>let</literal>s instead.
+</para></listitem>
+
+<listitem><para>
+You may put multiple implicit-parameter bindings in a
+single <literal>let</literal> expression; they are <emphasis>not</emphasis> treated
+as a mutually recursive group (as ordinary <literal>let</literal> bindings are).
+Instead they are treated as a non-recursive group, each scoping over the bindings that
+follow.  For example, consider:
+<programlisting>
+  f y = let { ?x = y; ?x = ?x+1 } in ?x
+</programlisting>
+This function adds one to its argument.
+</para></listitem>
+
+<listitem><para>
+You may not have an implicit-parameter binding in a <literal>where</literal> clause,
+only in a <literal>let</literal> binding.
+</para></listitem>
+
 <listitem>
 <para> You can't have an implicit parameter in the context of a class or instance
 declaration.  For example, both these declarations are illegal:
@@ -1120,6 +1143,47 @@ Haskell programs without knowing their typing.
 
 </sect3>
 
+<sect3><title>Recursive functions</title>
+<para>Linear implicit parameters can be particularly tricky when you have a recursive function
+Consider
+<programlisting>
+        foo :: %x::T => Int -> [Int]
+        foo 0 = []
+        foo n = %x : foo (n-1)
+</programlisting>
+where T is some type in class Splittable.</para>
+<para>
+Do you get a list of all the same T's or all different T's
+(assuming that split gives two distinct T's back)?
+</para><para>
+If you supply the type signature, taking advantage of polymorphic
+recursion, you get what you'd probably expect.  Here's the
+translated term, where the implicit param is made explicit:
+<programlisting>
+        foo x 0 = []
+        foo x n = let (x1,x2) = split x
+                  in x1 : foo x2 (n-1)
+</programlisting>
+But if you don't supply a type signature, GHC uses the Hindley
+Milner trick of using a single monomorphic instance of the function
+for the recursive calls. That is what makes Hindley Milner type inference
+work.  So the translation becomes
+<programlisting>
+        foo x = let
+                  foom 0 = []
+                  foom n = x : foom (n-1)
+                in
+                foom
+</programlisting>
+Result: 'x' is not split, and you get a list of identical T's.  So the
+semantics of the program depends on whether or not foo has a type signature.
+Yikes!
+</para><para>
+You may say that this is a good reason to dislike linear implicit parameters
+and you'd be right.  That is why they are an experimental feature. 
+</para>
+</sect3>
+
 </sect2>
 
 <sect2 id="functional-dependencies">
@@ -1127,9 +1191,10 @@ Haskell programs without knowing their typing.
 </title>
 
 <para> Functional dependencies are implemented as described by Mark Jones
-in "Type Classes with Functional Dependencies", Mark P. Jones, 
+in &ldquo;<ulink url="http://www.cse.ogi.edu/~mpj/pubs/fundeps.html">Type Classes with Functional Dependencies</ulink>&rdquo;, Mark P. Jones, 
 In Proceedings of the 9th European Symposium on Programming, 
-ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782.
+ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
+.
 </para>
 
 <para>
@@ -1570,6 +1635,18 @@ valid way to write <literal>g</literal>'s type signature:
   g :: Int -> Int -> forall b. b -> Int
 </programlisting>
 </para>
+<para>
+When doing this hoisting operation, GHC eliminates duplicate constraints.  For
+example:
+<programlisting>
+  type Foo a = (?x::Int) => Bool -> a
+  g :: Foo (Foo Int)
+</programlisting>
+means
+<programlisting>
+  g :: (?x::Int) => Bool -> Bool -> Int
+</programlisting>
+</para>
 </sect2>
 
 
@@ -2551,6 +2628,91 @@ qualifier list has just one element, a boolean expression.
 </para>
 </sect2>
 
+<!-- ===================== Recursive do-notation ===================  -->
+
+<sect2 id="mdo-notation">
+<title>The recursive do-notation
+</title>
+
+<para> The recursive do-notation (also known as mdo-notation) is implemented as described in
+"A recursive do for Haskell",
+Levent Erkok, John Launchbury",
+Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. 
+</para>
+<para>
+The do-notation of Haskell does not allow <emphasis>recursive bindings</emphasis>,
+that is, the variables bound in a do-expression are visible only in the textually following 
+code block. Compare this to a let-expression, where bound variables are visible in the entire binding
+group. It turns out that several applications can benefit from recursive bindings in
+the do-notation, and this extension provides the necessary syntactic support.
+</para>
+<para>
+Here is a simple (yet contrived) example:
+</para>
+<programlisting>
+justOnes = mdo xs <- Just (1:xs)
+               return xs
+</programlisting>
+<para>
+As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [1,1,1,...</literal>.
+</para>
+
+<para>
+The MonadFix library introduces the <literal>MonadFix</literal> class. It's definition is:
+</para>
+<programlisting>
+class Monad m => MonadFix m where
+   mfix :: (a -> m a) -> m a
+</programlisting>
+<para>
+The function <literal>mfix</literal>
+dictates how the required recursion operation should be performed. If recursive bindings are required for a monad,
+then that monad must be declared an instance of the <literal>MonadFix</literal> class.
+For details, see the above mentioned reference.
+</para>
+<para>
+The <literal>MonadFix</literal> library automatically declares List, Maybe, IO, and
+state monads (both lazy and strict) as instances of the <literal>MonadFix</literal> class.
+</para>
+<para>
+There are three important points in using the recursive-do notation:
+<itemizedlist>
+<listitem><para>
+The recursive version of the do-notation uses the keyword <literal>mdo</literal> (rather
+than <literal>do</literal>).
+</para></listitem>
+
+<listitem><para>
+If you want to declare an instance of the <literal>MonadFix</literal> class for one of 
+your own monads, or you need to refer to the class name <literal>MonadFix</literal> in any other way (for instance in
+writing a type constraint), then your program should <literal>import Control.Monad.MonadFix</literal>.
+Otherwise, you don't need to import any special libraries to use the mdo-notation. That is,
+as long as you only use the predefined instances mentioned above, the mdo-notation will
+be automatically available. (Note: This differs from the Hugs implementation, where
+<literal>MonadFix</literal> should always be imported.)
+</para></listitem>
+
+<listitem><para>
+As with other extensions, ghc should be given the flag <literal>-fglasgow-exts</literal>
+</para></listitem>
+</itemizedlist>
+</para>
+
+<para>
+Historical note: The originial implementation of the mdo-notation, and most
+of the existing documents, use the names 
+<literal>MonadRec</literal> for the class, and 
+<literal>Control.Monad.MonadRec</literal> for the library. These names
+are no longer supported.
+</para>
+
+<para>
+The web page: <ulink url="http://www.cse.ogi.edu/PacSoft/projects/rmb">http://www.cse.ogi.edu/PacSoft/projects/rmb</ulink>
+contains up to date information on recursive monadic bindings.
+</para>
+
+</sect2>
+
 <!-- ===================== PARALLEL LIST COMPREHENSIONS ===================  -->
 
   <sect2 id="parallel-list-comprehensions">
@@ -2627,6 +2789,8 @@ qualifier list has just one element, a boolean expression.
                 "<literal>fromRational 3.2</literal>", not the
                 Prelude-qualified versions; both in expressions and in
                 patterns. </para>
+               <para>However, the standard Prelude <literal>Eq</literal> class
+               is still used for the equality test necessary for literal patterns.</para>
              </listitem>
 
              <listitem>
@@ -3945,6 +4109,7 @@ classes usually have one "main" parameter for which deriving new
 instances is most interesting.
 </para>
 </sect2>
+
 </sect1>