X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=Control%2FArrow.hs;h=20e367799f800033782b6043d56cc1fbde54d9ce;hb=8073392a94dc5ab198e4758d6738a0c7f5ed68cf;hp=237c37f88cc76b017300a860ba67f61911230bfb;hpb=88fcddd13e62ecf456249b535dd72a290feac0ad;p=ghc-base.git diff --git a/Control/Arrow.hs b/Control/Arrow.hs index 237c37f..20e3677 100644 --- a/Control/Arrow.hs +++ b/Control/Arrow.hs @@ -1,206 +1,278 @@ ----------------------------------------------------------------------------- --- +-- | -- Module : Control.Arrow -- Copyright : (c) Ross Paterson 2002 -- License : BSD-style (see the LICENSE file in the distribution) -- --- Maintainer : ross@soi.city.ac.uk +-- Maintainer : libraries@haskell.org -- Stability : experimental -- Portability : portable -- --- $Id: Arrow.hs,v 1.1 2002/02/26 18:19:17 ross Exp $ --- -- Basic arrow definitions, based on --- --- "Generalising Monads to Arrows", by John Hughes, Science of --- Computer Programming 37, pp67-111, May 2000. --- --- plus a couple of definitions (returnA and loop) from --- --- "A New Notation for Arrows", by Ross Paterson, in ICFP 2001, --- Firenze, Italy, pp229-240. --- +-- /Generalising Monads to Arrows/, by John Hughes, +-- /Science of Computer Programming/ 37, pp67-111, May 2000. +-- plus a couple of definitions ('returnA' and 'loop') from +-- /A New Notation for Arrows/, by Ross Paterson, in /ICFP 2001/, +-- Firenze, Italy, pp229-240. -- See these papers for the equations these combinators are expected to -- satisfy. These papers and more information on arrows can be found at --- --- http://www.soi.city.ac.uk/~ross/arrows/ --- ------------------------------------------------------------------------------ - -module Control.Arrow where - -import Prelude +-- . + +module Control.Arrow ( + -- * Arrows + Arrow(..), Kleisli(..), + -- ** Derived combinators + returnA, + (^>>), (>>^), + (>>>), (<<<), -- reexported + -- ** Right-to-left variants + (<<^), (^<<), + -- * Monoid operations + ArrowZero(..), ArrowPlus(..), + -- * Conditionals + ArrowChoice(..), + -- * Arrow application + ArrowApply(..), ArrowMonad(..), leftApp, + -- * Feedback + ArrowLoop(..) + ) where + +import Prelude hiding (id,(.)) import Control.Monad import Control.Monad.Fix +import Control.Category infixr 5 <+> infixr 3 *** infixr 3 &&& infixr 2 +++ infixr 2 ||| -infixr 1 >>> -infixr 1 <<< - ------------------------------------------------------------------------------ --- Arrow classes - -class Arrow a where - arr :: (b -> c) -> a b c - (>>>) :: a b c -> a c d -> a b d - first :: a b c -> a (b,d) (c,d) +infixr 1 ^>>, >>^ +infixr 1 ^<<, <<^ - -- The following combinators are placed in the class so that they - -- can be overridden with more efficient versions if required. - -- Any replacements should satisfy these equations. +-- | The basic arrow class. +-- +-- Minimal complete definition: 'arr' and 'first'. +-- +-- The other combinators have sensible default definitions, +-- which may be overridden for efficiency. + +class Category a => Arrow a where + + -- | Lift a function to an arrow. + arr :: (b -> c) -> a b c + + -- | Send the first component of the input through the argument + -- arrow, and copy the rest unchanged to the output. + first :: a b c -> a (b,d) (c,d) + + -- | A mirror image of 'first'. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. + second :: a b c -> a (d,b) (d,c) + second f = arr swap >>> first f >>> arr swap + where + swap :: (x,y) -> (y,x) + swap ~(x,y) = (y,x) + + -- | Split the input between the two argument arrows and combine + -- their output. Note that this is in general not a functor. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. + (***) :: a b c -> a b' c' -> a (b,b') (c,c') + f *** g = first f >>> second g + + -- | Fanout: send the input to both argument arrows and combine + -- their output. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. + (&&&) :: a b c -> a b c' -> a b (c,c') + f &&& g = arr (\b -> (b,b)) >>> f *** g + +{-# RULES +"compose/arr" forall f g . + (arr f) . (arr g) = arr (f . g) +"first/arr" forall f . + first (arr f) = arr (first f) +"second/arr" forall f . + second (arr f) = arr (second f) +"product/arr" forall f g . + arr f *** arr g = arr (f *** g) +"fanout/arr" forall f g . + arr f &&& arr g = arr (f &&& g) +"compose/first" forall f g . + (first f) . (first g) = first (f . g) +"compose/second" forall f g . + (second f) . (second g) = second (f . g) + #-} - second :: a b c -> a (d,b) (d,c) - second f = arr swap >>> first f >>> arr swap - where swap ~(x,y) = (y,x) +-- Ordinary functions are arrows. - (***) :: a b c -> a b' c' -> a (b,b') (c,c') - f *** g = first f >>> second g +instance Arrow (->) where + arr f = f + first f = f *** id + second f = id *** f +-- (f *** g) ~(x,y) = (f x, g y) +-- sorry, although the above defn is fully H'98, nhc98 can't parse it. + (***) f g ~(x,y) = (f x, g y) - (&&&) :: a b c -> a b c' -> a b (c,c') - f &&& g = arr (\b -> (b,b)) >>> f *** g +-- | Kleisli arrows of a monad. - -- Some people prefer the name pure to arr, so both are allowed, - -- but you must define one of them: +newtype Kleisli m a b = Kleisli { runKleisli :: a -> m b } - pure :: (b -> c) -> a b c - pure = arr - arr = pure +instance Monad m => Category (Kleisli m) where + id = Kleisli return + (Kleisli f) . (Kleisli g) = Kleisli (\b -> g b >>= f) ------------------------------------------------------------------------------ --- Derived combinators +instance Monad m => Arrow (Kleisli m) where + arr f = Kleisli (return . f) + first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d)) + second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c)) --- The counterpart of return in arrow notation: +-- | The identity arrow, which plays the role of 'return' in arrow notation. returnA :: Arrow a => a b b returnA = arr id --- Mirror image of >>>, for a better fit with arrow notation: +-- | Precomposition with a pure function. +(^>>) :: Arrow a => (b -> c) -> a c d -> a b d +f ^>> a = arr f >>> a -(<<<) :: Arrow a => a c d -> a b c -> a b d -f <<< g = g >>> f +-- | Postcomposition with a pure function. +(>>^) :: Arrow a => a b c -> (c -> d) -> a b d +a >>^ f = a >>> arr f ------------------------------------------------------------------------------ --- Monoid operations +-- | Precomposition with a pure function (right-to-left variant). +(<<^) :: Arrow a => a c d -> (b -> c) -> a b d +a <<^ f = a <<< arr f + +-- | Postcomposition with a pure function (right-to-left variant). +(^<<) :: Arrow a => (c -> d) -> a b c -> a b d +f ^<< a = arr f <<< a class Arrow a => ArrowZero a where - zeroArrow :: a b c + zeroArrow :: a b c + +instance MonadPlus m => ArrowZero (Kleisli m) where + zeroArrow = Kleisli (\_ -> mzero) class ArrowZero a => ArrowPlus a where - (<+>) :: a b c -> a b c -> a b c + (<+>) :: a b c -> a b c -> a b c ------------------------------------------------------------------------------ --- Conditionals +instance MonadPlus m => ArrowPlus (Kleisli m) where + Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x) -class Arrow a => ArrowChoice a where - left :: a b c -> a (Either b d) (Either c d) +-- | Choice, for arrows that support it. This class underlies the +-- @if@ and @case@ constructs in arrow notation. +-- Any instance must define 'left'. The other combinators have sensible +-- default definitions, which may be overridden for efficiency. - -- The following combinators are placed in the class so that they - -- can be overridden with more efficient versions if required. - -- Any replacements should satisfy these equations. +class Arrow a => ArrowChoice a where - right :: a b c -> a (Either d b) (Either d c) - right f = arr mirror >>> left f >>> arr mirror - where mirror (Left x) = Right x - mirror (Right y) = Left y + -- | Feed marked inputs through the argument arrow, passing the + -- rest through unchanged to the output. + left :: a b c -> a (Either b d) (Either c d) + + -- | A mirror image of 'left'. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. + right :: a b c -> a (Either d b) (Either d c) + right f = arr mirror >>> left f >>> arr mirror + where + mirror :: Either x y -> Either y x + mirror (Left x) = Right x + mirror (Right y) = Left y + + -- | Split the input between the two argument arrows, retagging + -- and merging their outputs. + -- Note that this is in general not a functor. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. + (+++) :: a b c -> a b' c' -> a (Either b b') (Either c c') + f +++ g = left f >>> right g + + -- | Fanin: Split the input between the two argument arrows and + -- merge their outputs. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. + (|||) :: a b d -> a c d -> a (Either b c) d + f ||| g = f +++ g >>> arr untag + where + untag (Left x) = x + untag (Right y) = y + +{-# RULES +"left/arr" forall f . + left (arr f) = arr (left f) +"right/arr" forall f . + right (arr f) = arr (right f) +"sum/arr" forall f g . + arr f +++ arr g = arr (f +++ g) +"fanin/arr" forall f g . + arr f ||| arr g = arr (f ||| g) +"compose/left" forall f g . + left f . left g = left (f . g) +"compose/right" forall f g . + right f . right g = right (f . g) + #-} - (+++) :: a b c -> a b' c' -> a (Either b b') (Either c c') - f +++ g = left f >>> right g +instance ArrowChoice (->) where + left f = f +++ id + right f = id +++ f + f +++ g = (Left . f) ||| (Right . g) + (|||) = either - (|||) :: a b d -> a c d -> a (Either b c) d - f ||| g = f +++ g >>> arr untag - where untag (Left x) = x - untag (Right y) = y +instance Monad m => ArrowChoice (Kleisli m) where + left f = f +++ arr id + right f = arr id +++ f + f +++ g = (f >>> arr Left) ||| (g >>> arr Right) + Kleisli f ||| Kleisli g = Kleisli (either f g) ------------------------------------------------------------------------------ --- Arrow application +-- | Some arrows allow application of arrow inputs to other inputs. class Arrow a => ArrowApply a where - app :: a (a b c, b) c + app :: a (a b c, b) c --- Any instance of ArrowApply can be made into an instance if ArrowChoice --- by defining left = leftApp, where +instance ArrowApply (->) where + app (f,x) = f x -leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d) -leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) ||| - (\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app +instance Monad m => ArrowApply (Kleisli m) where + app = Kleisli (\(Kleisli f, x) -> f x) --- The ArrowApply class is equivalent to Monad: any monad gives rise to --- a Kliesli arrow (see below), and any instance of ArrowApply defines --- a monad: +-- | The 'ArrowApply' class is equivalent to 'Monad': any monad gives rise +-- to a 'Kleisli' arrow, and any instance of 'ArrowApply' defines a monad. -newtype ArrowApply a => ArrowMonad a b = ArrowMonad (a () b) +newtype ArrowMonad a b = ArrowMonad (a () b) instance ArrowApply a => Monad (ArrowMonad a) where - return x = ArrowMonad (arr (\z -> x)) - ArrowMonad m >>= f = ArrowMonad (m >>> - arr (\x -> let ArrowMonad h = f x in (h, ())) >>> - app) - ------------------------------------------------------------------------------ --- Feedback - --- The following operator expresses computations in which a value is --- recursively defined through the computation, even though the computation --- occurs only once: - -class Arrow a => ArrowLoop a where - loop :: a (b,d) (c,d) -> a b c - ------------------------------------------------------------------------------ --- Arrow instances + return x = ArrowMonad (arr (\_ -> x)) + ArrowMonad m >>= f = ArrowMonad $ + m >>> arr (\x -> let ArrowMonad h = f x in (h, ())) >>> app --- Ordinary functions are arrows. +-- | Any instance of 'ArrowApply' can be made into an instance of +-- 'ArrowChoice' by defining 'left' = 'leftApp'. -instance Arrow (->) where - arr f = f - f >>> g = g . f - first f = f *** id - second f = id *** f - (f *** g) ~(x,y) = (f x, g y) +leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d) +leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) ||| + (\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app -instance ArrowChoice (->) where - left f = f +++ id - right f = id +++ f - f +++ g = (Left . f) ||| (Right . g) - (|||) = either +-- | The 'loop' operator expresses computations in which an output value is +-- fed back as input, even though the computation occurs only once. +-- It underlies the @rec@ value recursion construct in arrow notation. -instance ArrowApply (->) where - app (f,x) = f x +class Arrow a => ArrowLoop a where + loop :: a (b,d) (c,d) -> a b c instance ArrowLoop (->) where - loop f b = let (c,d) = f (b,d) in c - ------------------------------------------------------------------------------ --- Kleisli arrows of a monad - -newtype Kleisli m a b = Kleisli (a -> m b) - -instance Monad m => Arrow (Kleisli m) where - arr f = Kleisli (return . f) - Kleisli f >>> Kleisli g = Kleisli (\b -> f b >>= g) - first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d)) - second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c)) - -instance MonadPlus m => ArrowZero (Kleisli m) where - zeroArrow = Kleisli (\x -> mzero) - -instance MonadPlus m => ArrowPlus (Kleisli m) where - Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x) - -instance Monad m => ArrowChoice (Kleisli m) where - left f = f +++ arr id - right f = arr id +++ f - f +++ g = (f >>> arr Left) ||| (g >>> arr Right) - Kleisli f ||| Kleisli g = Kleisli (either f g) - -instance Monad m => ArrowApply (Kleisli m) where - app = Kleisli (\(Kleisli f, x) -> f x) + loop f b = let (c,d) = f (b,d) in c instance MonadFix m => ArrowLoop (Kleisli m) where - loop (Kleisli f) = Kleisli (liftM fst . mfix . f') - where f' x y = f (x, snd y) + loop (Kleisli f) = Kleisli (liftM fst . mfix . f') + where f' x y = f (x, snd y)