X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=Control%2FArrow.hs;h=2710be6e9c469e3b05da06b1013ad64e4eac610b;hb=5031aad924a8b70b5fc4fe4bb1321c007afcab21;hp=237c37f88cc76b017300a860ba67f61911230bfb;hpb=88fcddd13e62ecf456249b535dd72a290feac0ad;p=ghc-base.git diff --git a/Control/Arrow.hs b/Control/Arrow.hs index 237c37f..2710be6 100644 --- a/Control/Arrow.hs +++ b/Control/Arrow.hs @@ -1,5 +1,5 @@ ----------------------------------------------------------------------------- --- +-- | -- Module : Control.Arrow -- Copyright : (c) Ross Paterson 2002 -- License : BSD-style (see the LICENSE file in the distribution) @@ -8,26 +8,33 @@ -- Stability : experimental -- Portability : portable -- --- $Id: Arrow.hs,v 1.1 2002/02/26 18:19:17 ross Exp $ --- -- Basic arrow definitions, based on --- --- "Generalising Monads to Arrows", by John Hughes, Science of --- Computer Programming 37, pp67-111, May 2000. --- --- plus a couple of definitions (returnA and loop) from --- --- "A New Notation for Arrows", by Ross Paterson, in ICFP 2001, +-- /Generalising Monads to Arrows/, by John Hughes, +-- /Science of Computer Programming/ 37, pp67-111, May 2000. +-- plus a couple of definitions ('returnA' and 'loop') from +-- /A New Notation for Arrows/, by Ross Paterson, in /ICFP 2001/, -- Firenze, Italy, pp229-240. --- -- See these papers for the equations these combinators are expected to -- satisfy. These papers and more information on arrows can be found at --- --- http://www.soi.city.ac.uk/~ross/arrows/ --- ------------------------------------------------------------------------------ - -module Control.Arrow where +-- . + +module Control.Arrow ( + -- * Arrows + Arrow(..), Kleisli(..), + -- ** Derived combinators + returnA, + (^>>), (>>^), + -- ** Right-to-left variants + (<<<), (<<^), (^<<), + -- * Monoid operations + ArrowZero(..), ArrowPlus(..), + -- * Conditionals + ArrowChoice(..), + -- * Arrow application + ArrowApply(..), ArrowMonad(..), leftApp, + -- * Feedback + ArrowLoop(..) + ) where import Prelude @@ -39,99 +46,210 @@ infixr 3 *** infixr 3 &&& infixr 2 +++ infixr 2 ||| -infixr 1 >>> -infixr 1 <<< +infixr 1 >>>, ^>>, >>^ +infixr 1 <<<, ^<<, <<^ ------------------------------------------------------------------------------ --- Arrow classes +-- | The basic arrow class. +-- Any instance must define either 'arr' or 'pure' (which are synonyms), +-- as well as '>>>' and 'first'. The other combinators have sensible +-- default definitions, which may be overridden for efficiency. class Arrow a where + + -- | Lift a function to an arrow: you must define either this + -- or 'pure'. arr :: (b -> c) -> a b c + arr = pure + + -- | A synonym for 'arr': you must define one or other of them. + pure :: (b -> c) -> a b c + pure = arr + + -- | Left-to-right composition of arrows. (>>>) :: a b c -> a c d -> a b d - first :: a b c -> a (b,d) (c,d) - -- The following combinators are placed in the class so that they - -- can be overridden with more efficient versions if required. - -- Any replacements should satisfy these equations. + -- | Send the first component of the input through the argument + -- arrow, and copy the rest unchanged to the output. + first :: a b c -> a (b,d) (c,d) + -- | A mirror image of 'first'. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. second :: a b c -> a (d,b) (d,c) second f = arr swap >>> first f >>> arr swap where swap ~(x,y) = (y,x) + -- | Split the input between the two argument arrows and combine + -- their output. Note that this is in general not a functor. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. (***) :: a b c -> a b' c' -> a (b,b') (c,c') f *** g = first f >>> second g + -- | Fanout: send the input to both argument arrows and combine + -- their output. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. (&&&) :: a b c -> a b c' -> a b (c,c') f &&& g = arr (\b -> (b,b)) >>> f *** g - -- Some people prefer the name pure to arr, so both are allowed, - -- but you must define one of them: +{-# RULES +"compose/arr" forall f g . + arr f >>> arr g = arr (f >>> g) +"first/arr" forall f . + first (arr f) = arr (first f) +"second/arr" forall f . + second (arr f) = arr (second f) +"product/arr" forall f g . + arr f *** arr g = arr (f *** g) +"fanout/arr" forall f g . + arr f &&& arr g = arr (f &&& g) +"compose/first" forall f g . + first f >>> first g = first (f >>> g) +"compose/second" forall f g . + second f >>> second g = second (f >>> g) + #-} - pure :: (b -> c) -> a b c - pure = arr - arr = pure +-- Ordinary functions are arrows. ------------------------------------------------------------------------------ --- Derived combinators +instance Arrow (->) where + arr f = f + f >>> g = g . f + first f = f *** id + second f = id *** f +-- (f *** g) ~(x,y) = (f x, g y) +-- sorry, although the above defn is fully H'98, nhc98 can't parse it. + (***) f g ~(x,y) = (f x, g y) + +-- | Kleisli arrows of a monad. --- The counterpart of return in arrow notation: +newtype Kleisli m a b = Kleisli { runKleisli :: a -> m b } + +instance Monad m => Arrow (Kleisli m) where + arr f = Kleisli (return . f) + Kleisli f >>> Kleisli g = Kleisli (\b -> f b >>= g) + first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d)) + second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c)) + +-- | The identity arrow, which plays the role of 'return' in arrow notation. returnA :: Arrow a => a b b returnA = arr id --- Mirror image of >>>, for a better fit with arrow notation: +-- | Precomposition with a pure function. +(^>>) :: Arrow a => (b -> c) -> a c d -> a b d +f ^>> a = arr f >>> a + +-- | Postcomposition with a pure function. +(>>^) :: Arrow a => a b c -> (c -> d) -> a b d +a >>^ f = a >>> arr f +-- | Right-to-left composition, for a better fit with arrow notation. (<<<) :: Arrow a => a c d -> a b c -> a b d f <<< g = g >>> f ------------------------------------------------------------------------------ --- Monoid operations +-- | Precomposition with a pure function (right-to-left variant). +(<<^) :: Arrow a => a c d -> (b -> c) -> a b d +a <<^ f = a <<< arr f + +-- | Postcomposition with a pure function (right-to-left variant). +(^<<) :: Arrow a => (c -> d) -> a b c -> a b d +f ^<< a = arr f <<< a class Arrow a => ArrowZero a where zeroArrow :: a b c +instance MonadPlus m => ArrowZero (Kleisli m) where + zeroArrow = Kleisli (\x -> mzero) + class ArrowZero a => ArrowPlus a where (<+>) :: a b c -> a b c -> a b c ------------------------------------------------------------------------------ --- Conditionals +instance MonadPlus m => ArrowPlus (Kleisli m) where + Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x) + +-- | Choice, for arrows that support it. This class underlies the +-- @if@ and @case@ constructs in arrow notation. +-- Any instance must define 'left'. The other combinators have sensible +-- default definitions, which may be overridden for efficiency. class Arrow a => ArrowChoice a where - left :: a b c -> a (Either b d) (Either c d) - -- The following combinators are placed in the class so that they - -- can be overridden with more efficient versions if required. - -- Any replacements should satisfy these equations. + -- | Feed marked inputs through the argument arrow, passing the + -- rest through unchanged to the output. + left :: a b c -> a (Either b d) (Either c d) + -- | A mirror image of 'left'. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. right :: a b c -> a (Either d b) (Either d c) right f = arr mirror >>> left f >>> arr mirror where mirror (Left x) = Right x mirror (Right y) = Left y + -- | Split the input between the two argument arrows, retagging + -- and merging their outputs. + -- Note that this is in general not a functor. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. (+++) :: a b c -> a b' c' -> a (Either b b') (Either c c') f +++ g = left f >>> right g + -- | Fanin: Split the input between the two argument arrows and + -- merge their outputs. + -- + -- The default definition may be overridden with a more efficient + -- version if desired. (|||) :: a b d -> a c d -> a (Either b c) d f ||| g = f +++ g >>> arr untag where untag (Left x) = x untag (Right y) = y ------------------------------------------------------------------------------ --- Arrow application +{-# RULES +"left/arr" forall f . + left (arr f) = arr (left f) +"right/arr" forall f . + right (arr f) = arr (right f) +"sum/arr" forall f g . + arr f +++ arr g = arr (f +++ g) +"fanin/arr" forall f g . + arr f ||| arr g = arr (f ||| g) +"compose/left" forall f g . + left f >>> left g = left (f >>> g) +"compose/right" forall f g . + right f >>> right g = right (f >>> g) + #-} + +instance ArrowChoice (->) where + left f = f +++ id + right f = id +++ f + f +++ g = (Left . f) ||| (Right . g) + (|||) = either + +instance Monad m => ArrowChoice (Kleisli m) where + left f = f +++ arr id + right f = arr id +++ f + f +++ g = (f >>> arr Left) ||| (g >>> arr Right) + Kleisli f ||| Kleisli g = Kleisli (either f g) + +-- | Some arrows allow application of arrow inputs to other inputs. class Arrow a => ArrowApply a where app :: a (a b c, b) c --- Any instance of ArrowApply can be made into an instance if ArrowChoice --- by defining left = leftApp, where +instance ArrowApply (->) where + app (f,x) = f x -leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d) -leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) ||| - (\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app +instance Monad m => ArrowApply (Kleisli m) where + app = Kleisli (\(Kleisli f, x) -> f x) --- The ArrowApply class is equivalent to Monad: any monad gives rise to --- a Kliesli arrow (see below), and any instance of ArrowApply defines --- a monad: +-- | The 'ArrowApply' class is equivalent to 'Monad': any monad gives rise +-- to a 'Kleisli' arrow, and any instance of 'ArrowApply' defines a monad. newtype ArrowApply a => ArrowMonad a b = ArrowMonad (a () b) @@ -141,66 +259,23 @@ instance ArrowApply a => Monad (ArrowMonad a) where arr (\x -> let ArrowMonad h = f x in (h, ())) >>> app) ------------------------------------------------------------------------------ --- Feedback +-- | Any instance of 'ArrowApply' can be made into an instance of +-- 'ArrowChoice' by defining 'left' = 'leftApp'. + +leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d) +leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) ||| + (\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app --- The following operator expresses computations in which a value is --- recursively defined through the computation, even though the computation --- occurs only once: +-- | The 'loop' operator expresses computations in which an output value is +-- fed back as input, even though the computation occurs only once. +-- It underlies the @rec@ value recursion construct in arrow notation. class Arrow a => ArrowLoop a where loop :: a (b,d) (c,d) -> a b c ------------------------------------------------------------------------------ --- Arrow instances - --- Ordinary functions are arrows. - -instance Arrow (->) where - arr f = f - f >>> g = g . f - first f = f *** id - second f = id *** f - (f *** g) ~(x,y) = (f x, g y) - -instance ArrowChoice (->) where - left f = f +++ id - right f = id +++ f - f +++ g = (Left . f) ||| (Right . g) - (|||) = either - -instance ArrowApply (->) where - app (f,x) = f x - instance ArrowLoop (->) where loop f b = let (c,d) = f (b,d) in c ------------------------------------------------------------------------------ --- Kleisli arrows of a monad - -newtype Kleisli m a b = Kleisli (a -> m b) - -instance Monad m => Arrow (Kleisli m) where - arr f = Kleisli (return . f) - Kleisli f >>> Kleisli g = Kleisli (\b -> f b >>= g) - first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d)) - second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c)) - -instance MonadPlus m => ArrowZero (Kleisli m) where - zeroArrow = Kleisli (\x -> mzero) - -instance MonadPlus m => ArrowPlus (Kleisli m) where - Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x) - -instance Monad m => ArrowChoice (Kleisli m) where - left f = f +++ arr id - right f = arr id +++ f - f +++ g = (f >>> arr Left) ||| (g >>> arr Right) - Kleisli f ||| Kleisli g = Kleisli (either f g) - -instance Monad m => ArrowApply (Kleisli m) where - app = Kleisli (\(Kleisli f, x) -> f x) - instance MonadFix m => ArrowLoop (Kleisli m) where loop (Kleisli f) = Kleisli (liftM fst . mfix . f') where f' x y = f (x, snd y)