X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=Control%2FMonad.hs;h=07b4d3b487680a71857477ecde627a7907156145;hb=b73537367458c1307177d60d44b85516b661bd99;hp=013d12a563ffad46500f827241944d5cbbc5b4e4;hpb=d7151374c49dd8b69d2d02f757162011afc8a9cb;p=ghc-base.git diff --git a/Control/Monad.hs b/Control/Monad.hs index 013d12a..07b4d3b 100644 --- a/Control/Monad.hs +++ b/Control/Monad.hs @@ -1,4 +1,4 @@ -{-# OPTIONS -fno-implicit-prelude #-} +{-# OPTIONS_GHC -fno-implicit-prelude #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Monad @@ -9,36 +9,36 @@ -- Stability : provisional -- Portability : portable -- --- The 'Monad' library defines the 'MonadPlus' class, and provides some useful operations on monads. --- --- The functions in this library use the following naming conventions: --- --- * A postfix `M' always stands for a function in the Kleisli category: --- @m@ is added to function results (modulo currying) and nowhere else. So, for example, --- --- > filter :: (a -> Bool) -> [a] -> [a] --- > filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a] --- --- * A postfix `_' changes the result type from @(m a)@ to @(m ())@. Thus (in the "Prelude"): --- --- > sequence :: Monad m => [m a] -> m [a] --- > sequence_ :: Monad m => [m a] -> m () --- --- * A prefix `m' generalises an existing function to a monadic form. Thus, for example: --- --- > sum :: Num a => [a] -> a --- > msum :: MonadPlus m => [m a] -> m a +-- The 'Functor', 'Monad' and 'MonadPlus' classes, +-- with some useful operations on monads. module Control.Monad - ( MonadPlus ( -- class context: Monad + ( + -- * Functor and monad classes + + Functor(fmap) + , Monad((>>=), (>>), return, fail) + + , MonadPlus ( -- class context: Monad mzero -- :: (MonadPlus m) => m a , mplus -- :: (MonadPlus m) => m a -> m a -> m a ) + -- * Functions + + -- ** Naming conventions + -- $naming + + -- ** Basic functions from the "Prelude" + + , mapM -- :: (Monad m) => (a -> m b) -> [a] -> m [b] + , mapM_ -- :: (Monad m) => (a -> m b) -> [a] -> m () + , sequence -- :: (Monad m) => [m a] -> m [a] + , sequence_ -- :: (Monad m) => [m a] -> m () + , (=<<) -- :: (Monad m) => (a -> m b) -> m a -> m b + + -- ** Generalisations of list functions + , join -- :: (Monad m) => m (m a) -> m a - , guard -- :: (MonadPlus m) => Bool -> m () - , when -- :: (Monad m) => Bool -> m () -> m () - , unless -- :: (Monad m) => Bool -> m () -> m () - , ap -- :: (Monad m) => m (a -> b) -> m a -> m b , msum -- :: (MonadPlus m) => [m a] -> m a , filterM -- :: (Monad m) => (a -> m Bool) -> [a] -> m [a] , mapAndUnzipM -- :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c]) @@ -46,23 +46,26 @@ module Control.Monad , zipWithM_ -- :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m () , foldM -- :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a , foldM_ -- :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m () - + , replicateM -- :: (Monad m) => Int -> m a -> m [a] + , replicateM_ -- :: (Monad m) => Int -> m a -> m () + + -- ** Conditional execution of monadic expressions + + , guard -- :: (MonadPlus m) => Bool -> m () + , when -- :: (Monad m) => Bool -> m () -> m () + , unless -- :: (Monad m) => Bool -> m () -> m () + + -- ** Monadic lifting operators + -- $lifting + , liftM -- :: (Monad m) => (a -> b) -> (m a -> m b) , liftM2 -- :: (Monad m) => (a -> b -> c) -> (m a -> m b -> m c) , liftM3 -- :: ... , liftM4 -- :: ... , liftM5 -- :: ... - , Monad((>>=), (>>), return, fail) - , Functor(fmap) + , ap -- :: (Monad m) => m (a -> b) -> m a -> m b - , mapM -- :: (Monad m) => (a -> m b) -> [a] -> m [b] - , mapM_ -- :: (Monad m) => (a -> m b) -> [a] -> m () - , sequence -- :: (Monad m) => [m a] -> m [a] - , sequence_ -- :: (Monad m) => [m a] -> m () - , replicateM -- :: (Monad m) => Int -> m a -> m [a] - , replicateM_ -- :: (Monad m) => Int -> m a -> m () - , (=<<) -- :: (Monad m) => (a -> m b) -> m a -> m b ) where import Data.Maybe @@ -72,7 +75,7 @@ import GHC.List import GHC.Base #endif -#ifndef __HUGS__ +#ifdef __GLASGOW_HASKELL__ infixr 1 =<< -- ----------------------------------------------------------------------------- @@ -99,7 +102,7 @@ mapM f as = sequence (map f as) mapM_ :: Monad m => (a -> m b) -> [a] -> m () {-# INLINE mapM_ #-} mapM_ f as = sequence_ (map f as) -#endif /* __HUGS__ */ +#endif /* __GLASGOW_HASKELL__ */ -- ----------------------------------------------------------------------------- -- |The MonadPlus class definition @@ -151,11 +154,11 @@ join x = x >>= id -- | The 'mapAndUnzipM' function maps its first argument over a list, returning -- the result as a pair of lists. This function is mainly used with complicated --- data structures or a state- transforming monad. +-- data structures or a state-transforming monad. mapAndUnzipM :: (Monad m) => (a -> m (b,c)) -> [a] -> m ([b], [c]) mapAndUnzipM f xs = sequence (map f xs) >>= return . unzip --- | The 'zipWithM' function generalises zipWith to arbitrary monads. +-- | The 'zipWithM' function generalises 'zipWith' to arbitrary monads. zipWithM :: (Monad m) => (a -> b -> m c) -> [a] -> [b] -> m [c] zipWithM f xs ys = sequence (zipWith f xs ys) @@ -170,7 +173,9 @@ function' are not commutative. > foldM f a1 [x1, x2, ..., xm ] + == + > do > a2 <- f a1 x1 > a3 <- f a2 x2 @@ -178,27 +183,8 @@ function' are not commutative. > f am xm If right-to-left evaluation is required, the input list should be reversed. - -The when and unless functions provide conditional execution of monadic expressions. For example, - -> when debug (putStr "Debugging\n") - -will output the string @Debugging\\n@ if the Boolean value @debug@ is @True@, and otherwise do nothing. - -The monadic lifting operators promote a function to a monad. The function arguments are scanned left to right. For example, - -> liftM2 (+) [0,1] [0,2] = [0,2,1,3] -> liftM2 (+) (Just 1) Nothing = Nothing - -In many situations, the 'liftM' operations can be replaced by uses of 'ap', which promotes function application. - -> return f `ap` x1 `ap` ... `ap` xn - -is equivalent to - -> liftMn f x1 x2 ... xn - -} + foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a foldM _ a [] = return a foldM f a (x:xs) = f a x >>= \fax -> foldM f fax xs @@ -212,14 +198,31 @@ replicateM n x = sequence (replicate n x) replicateM_ :: (Monad m) => Int -> m a -> m () replicateM_ n x = sequence_ (replicate n x) -unless :: (Monad m) => Bool -> m () -> m () -unless p s = if p then return () else s +{- | Conditional execution of monadic expressions. For example, + +> when debug (putStr "Debugging\n") + +will output the string @Debugging\\n@ if the Boolean value @debug@ is 'True', +and otherwise do nothing. +-} when :: (Monad m) => Bool -> m () -> m () when p s = if p then s else return () -ap :: (Monad m) => m (a -> b) -> m a -> m b -ap = liftM2 id +-- | The reverse of 'when'. + +unless :: (Monad m) => Bool -> m () -> m () +unless p s = if p then return () else s + +{- $lifting + +The monadic lifting operators promote a function to a monad. +The function arguments are scanned left to right. For example, + +> liftM2 (+) [0,1] [0,2] = [0,2,1,3] +> liftM2 (+) (Just 1) Nothing = Nothing + +-} liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r @@ -232,3 +235,42 @@ liftM2 f m1 m2 = do { x1 <- m1; x2 <- m2; return (f x1 x2) } liftM3 f m1 m2 m3 = do { x1 <- m1; x2 <- m2; x3 <- m3; return (f x1 x2 x3) } liftM4 f m1 m2 m3 m4 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; return (f x1 x2 x3 x4) } liftM5 f m1 m2 m3 m4 m5 = do { x1 <- m1; x2 <- m2; x3 <- m3; x4 <- m4; x5 <- m5; return (f x1 x2 x3 x4 x5) } + +{- | In many situations, the 'liftM' operations can be replaced by uses of +'ap', which promotes function application. + +> return f `ap` x1 `ap` ... `ap` xn + +is equivalent to + +> liftMn f x1 x2 ... xn + +-} + +ap :: (Monad m) => m (a -> b) -> m a -> m b +ap = liftM2 id + +{- $naming + +The functions in this library use the following naming conventions: + +* A postfix \`M\' always stands for a function in the Kleisli category: + @m@ is added to function results (modulo currying) and nowhere else. + So, for example, + +> filter :: (a -> Bool) -> [a] -> [a] +> filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a] + +* A postfix \`_\' changes the result type from @(m a)@ to @(m ())@. + Thus (in the "Prelude"): + +> sequence :: Monad m => [m a] -> m [a] +> sequence_ :: Monad m => [m a] -> m () + +* A prefix \`m\' generalises an existing function to a monadic form. + Thus, for example: + +> sum :: Num a => [a] -> a +> msum :: MonadPlus m => [m a] -> m a + +-}