X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=Data%2FIntSet.hs;h=36cac361a07f717f03a9aeba141b5494253c573b;hb=53004f977617674ddec5d7315f0be92e0358ae7d;hp=510498ca7579013a147901c2e815cd7362187ebf;hpb=fa680a0011bc07ef4643ea9f9b32439eda293650;p=haskell-directory.git diff --git a/Data/IntSet.hs b/Data/IntSet.hs index 510498c..36cac36 100644 --- a/Data/IntSet.hs +++ b/Data/IntSet.hs @@ -10,10 +10,11 @@ -- -- An efficient implementation of integer sets. -- --- This module is intended to be imported @qualified@, to avoid name --- clashes with "Prelude" functions. eg. +-- Since many function names (but not the type name) clash with +-- "Prelude" names, this module is usually imported @qualified@, e.g. -- --- > import Data.IntSet as Set +-- > import Data.IntSet (IntSet) +-- > import qualified Data.IntSet as IntSet -- -- The implementation is based on /big-endian patricia trees/. This data -- structure performs especially well on binary operations like 'union' @@ -46,6 +47,7 @@ module Data.IntSet ( , null , size , member + , notMember , isSubsetOf , isProperSubsetOf @@ -94,7 +96,8 @@ import Data.Bits import Data.Int import qualified Data.List as List -import Data.Monoid +import Data.Monoid (Monoid(..)) +import Data.Typeable {- -- just for testing @@ -103,6 +106,12 @@ import List (nub,sort) import qualified List -} +#if __GLASGOW_HASKELL__ +import Text.Read +import Data.Generics.Basics +import Data.Generics.Instances +#endif + #if __GLASGOW_HASKELL__ >= 503 import GHC.Word import GHC.Exts ( Word(..), Int(..), shiftRL# ) @@ -153,6 +162,28 @@ data IntSet = Nil type Prefix = Int type Mask = Int +instance Monoid IntSet where + mempty = empty + mappend = union + mconcat = unions + +#if __GLASGOW_HASKELL__ + +{-------------------------------------------------------------------- + A Data instance +--------------------------------------------------------------------} + +-- This instance preserves data abstraction at the cost of inefficiency. +-- We omit reflection services for the sake of data abstraction. + +instance Data IntSet where + gfoldl f z is = z fromList `f` (toList is) + toConstr _ = error "toConstr" + gunfold _ _ = error "gunfold" + dataTypeOf _ = mkNorepType "Data.IntSet.IntSet" + +#endif + {-------------------------------------------------------------------- Query --------------------------------------------------------------------} @@ -180,6 +211,10 @@ member x t Tip y -> (x==y) Nil -> False +-- | /O(log n)/. Is the element not in the set? +notMember :: Int -> IntSet -> Bool +notMember k = not . member k + -- 'lookup' is used by 'intersection' for left-biasing lookup :: Int -> IntSet -> Maybe Int lookup k t @@ -382,7 +417,7 @@ subsetCmp Nil Nil = EQ subsetCmp Nil t = LT -- | /O(n+m)/. Is this a subset? --- @(s1 `isSubsetOf` s2)@ tells whether s1 is a subset of s2. +-- @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@. isSubsetOf :: IntSet -> IntSet -> Bool isSubsetOf t1@(Bin p1 m1 l1 r1) t2@(Bin p2 m2 l2 r2) @@ -423,7 +458,7 @@ partition pred t Nil -> (Nil,Nil) --- | /O(log n)/. The expression (@split x set@) is a pair @(set1,set2)@ +-- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@ -- where all elements in @set1@ are lower than @x@ and all elements in -- @set2@ larger than @x@. -- @@ -432,8 +467,24 @@ split :: Int -> IntSet -> (IntSet,IntSet) split x t = case t of Bin p m l r - | zero x m -> let (lt,gt) = split x l in (lt,union gt r) - | otherwise -> let (lt,gt) = split x r in (union l lt,gt) + | m < 0 -> if x >= 0 then let (lt,gt) = split' x l in (union r lt, gt) + else let (lt,gt) = split' x r in (lt, union gt l) + -- handle negative numbers. + | otherwise -> split' x t + Tip y + | x>y -> (t,Nil) + | x (Nil,t) + | otherwise -> (Nil,Nil) + Nil -> (Nil, Nil) + +split' :: Int -> IntSet -> (IntSet,IntSet) +split' x t + = case t of + Bin p m l r + | match x p m -> if zero x m then let (lt,gt) = split' x l in (lt,union gt r) + else let (lt,gt) = split' x r in (union l lt,gt) + | otherwise -> if x < p then (Nil, t) + else (t, Nil) Tip y | x>y -> (t,Nil) | x (Nil,t) @@ -442,24 +493,40 @@ split x t -- | /O(log n)/. Performs a 'split' but also returns whether the pivot -- element was found in the original set. -splitMember :: Int -> IntSet -> (Bool,IntSet,IntSet) +splitMember :: Int -> IntSet -> (IntSet,Bool,IntSet) splitMember x t = case t of Bin p m l r - | zero x m -> let (found,lt,gt) = splitMember x l in (found,lt,union gt r) - | otherwise -> let (found,lt,gt) = splitMember x r in (found,union l lt,gt) + | m < 0 -> if x >= 0 then let (lt,found,gt) = splitMember' x l in (union r lt, found, gt) + else let (lt,found,gt) = splitMember' x r in (lt, found, union gt l) + -- handle negative numbers. + | otherwise -> splitMember' x t + Tip y + | x>y -> (t,False,Nil) + | x (Nil,False,t) + | otherwise -> (Nil,True,Nil) + Nil -> (Nil,False,Nil) + +splitMember' :: Int -> IntSet -> (IntSet,Bool,IntSet) +splitMember' x t + = case t of + Bin p m l r + | match x p m -> if zero x m then let (lt,found,gt) = splitMember x l in (lt,found,union gt r) + else let (lt,found,gt) = splitMember x r in (union l lt,found,gt) + | otherwise -> if x < p then (Nil, False, t) + else (t, False, Nil) Tip y - | x>y -> (False,t,Nil) - | x (False,Nil,t) - | otherwise -> (True,Nil,Nil) - Nil -> (False,Nil,Nil) + | x>y -> (t,False,Nil) + | x (Nil,False,t) + | otherwise -> (Nil,True,Nil) + Nil -> (Nil,False,Nil) {---------------------------------------------------------------------- Map ----------------------------------------------------------------------} -- | /O(n*min(n,W))/. --- @map f s@ is the set obtained by applying @f@ to each element of @s@. +-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@. -- -- It's worth noting that the size of the result may be smaller if, -- for some @(x,y)@, @x \/= y && f x == f y@ @@ -476,7 +543,12 @@ map f = fromList . List.map f . toList -- > elems set == fold (:) [] set fold :: (Int -> b -> b) -> b -> IntSet -> b fold f z t - = foldr f z t + = case t of + Bin 0 m l r | m < 0 -> foldr f (foldr f z l) r + -- put negative numbers before. + Bin p m l r -> foldr f z t + Tip x -> f x z + Nil -> z foldr :: (Int -> b -> b) -> b -> IntSet -> b foldr f z t @@ -503,9 +575,7 @@ toList t -- | /O(n)/. Convert the set to an ascending list of elements. toAscList :: IntSet -> [Int] -toAscList t - = -- NOTE: the following algorithm only works for big-endian trees - let (pos,neg) = span (>=0) (foldr (:) [] t) in neg ++ pos +toAscList t = toList t -- | /O(n*min(n,W))/. Create a set from a list of integers. fromList :: [Int] -> IntSet @@ -557,19 +627,11 @@ instance Ord IntSet where -- tentative implementation. See if more efficient exists. {-------------------------------------------------------------------- - Monoid ---------------------------------------------------------------------} - -instance Monoid IntSet where - mempty = empty - mappend = union - mconcat = unions - -{-------------------------------------------------------------------- Show --------------------------------------------------------------------} instance Show IntSet where - showsPrec d s = showSet (toList s) + showsPrec p xs = showParen (p > 10) $ + showString "fromList " . shows (toList xs) showSet :: [Int] -> ShowS showSet [] @@ -581,6 +643,31 @@ showSet (x:xs) showTail (x:xs) = showChar ',' . shows x . showTail xs {-------------------------------------------------------------------- + Read +--------------------------------------------------------------------} +instance Read IntSet where +#ifdef __GLASGOW_HASKELL__ + readPrec = parens $ prec 10 $ do + Ident "fromList" <- lexP + xs <- readPrec + return (fromList xs) + + readListPrec = readListPrecDefault +#else + readsPrec p = readParen (p > 10) $ \ r -> do + ("fromList",s) <- lex r + (xs,t) <- reads s + return (fromList xs,t) +#endif + +{-------------------------------------------------------------------- + Typeable +--------------------------------------------------------------------} + +#include "Typeable.h" +INSTANCE_TYPEABLE0(IntSet,intSetTc,"IntSet") + +{-------------------------------------------------------------------- Debugging --------------------------------------------------------------------} -- | /O(n)/. Show the tree that implements the set. The tree is shown @@ -590,10 +677,10 @@ showTree s = showTreeWith True False s -{- | /O(n)/. The expression (@showTreeWith hang wide map@) shows +{- | /O(n)/. The expression (@'showTreeWith' hang wide map@) shows the tree that implements the set. If @hang@ is - @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If - @wide@ is true, an extra wide version is shown. + 'True', a /hanging/ tree is shown otherwise a rotated tree is shown. If + @wide@ is 'True', an extra wide version is shown. -} showTreeWith :: Bool -> Bool -> IntSet -> String showTreeWith hang wide t