X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=Data%2FSet.hs;h=fd09eb0ca24f2f1fd092c54e825b9716ac1355a6;hb=a5d8b45865712ab237eee066f37c667f3574f7ac;hp=e515667c82285ab7465e5df1c3b5bec107f5bae6;hpb=bbbba97cbcf12039810533e3a2daf2eefdefe7f0;p=haskell-directory.git diff --git a/Data/Set.hs b/Data/Set.hs index e515667..fd09eb0 100644 --- a/Data/Set.hs +++ b/Data/Set.hs @@ -1,36 +1,40 @@ -{-| Module : Data.Set - Copyright : (c) Daan Leijen 2002 - License : BSD-style - Maintainer : libraries@haskell.org - Stability : provisional - Portability : portable - - An efficient implementation of sets. - - This module is intended to be imported @qualified@, to avoid name - clashes with Prelude functions. eg. - - > import Data.Set as Set - - The implementation of "Set" is based on /size balanced/ binary trees (or - trees of /bounded balance/) as described by: - - * Stephen Adams, \"/Efficient sets: a balancing act/\", Journal of Functional - Programming 3(4):553-562, October 1993, . - - * J. Nievergelt and E.M. Reingold, \"/Binary search trees of bounded balance/\", - SIAM journal of computing 2(1), March 1973. +----------------------------------------------------------------------------- +-- | +-- Module : Data.Set +-- Copyright : (c) Daan Leijen 2002 +-- License : BSD-style +-- Maintainer : libraries@haskell.org +-- Stability : provisional +-- Portability : portable +-- +-- An efficient implementation of sets. +-- +-- This module is intended to be imported @qualified@, to avoid name +-- clashes with "Prelude" functions. eg. +-- +-- > import Data.Set as Set +-- +-- The implementation of 'Set' is based on /size balanced/ binary trees (or +-- trees of /bounded balance/) as described by: +-- +-- * Stephen Adams, \"/Efficient sets: a balancing act/\", +-- Journal of Functional Programming 3(4):553-562, October 1993, +-- . +-- +-- * J. Nievergelt and E.M. Reingold, +-- \"/Binary search trees of bounded balance/\", +-- SIAM journal of computing 2(1), March 1973. +-- +-- Note that the implementation is /left-biased/ -- the elements of a +-- first argument are always perferred to the second, for example in +-- 'union' or 'insert'. Of course, left-biasing can only be observed +-- when equality is an equivalence relation instead of structural +-- equality. +----------------------------------------------------------------------------- - Note that the implementation is /left-biased/ -- the elements of a - first argument are always perferred to the second, for example in - 'union' or 'insert'. Of course, left-biasing can only be observed - when equality an equivalence relation instead of structural - equality. --} ---------------------------------------------------------------------------------- module Data.Set ( -- * Set type - Set -- instance Eq,Show + Set -- instance Eq,Ord,Show,Read,Data,Typeable -- * Operators , (\\) @@ -107,9 +111,9 @@ module Data.Set ( delFromSet, -- :: Ord a => Set a -> a -> Set a ) where -import Prelude hiding (filter,foldr,foldl,null,map) -import Data.Monoid +import Prelude hiding (filter,foldr,null,map) import qualified Data.List as List +import Data.Typeable {- -- just for testing @@ -118,6 +122,12 @@ import List (nub,sort) import qualified List -} +#if __GLASGOW_HASKELL__ +import Text.Read (Lexeme(Ident), lexP, parens, prec, readPrec) +import Data.Generics.Basics +import Data.Generics.Instances +#endif + {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} @@ -136,6 +146,23 @@ data Set a = Tip type Size = Int +#if __GLASGOW_HASKELL__ + +{-------------------------------------------------------------------- + A Data instance +--------------------------------------------------------------------} + +-- This instance preserves data abstraction at the cost of inefficiency. +-- We omit reflection services for the sake of data abstraction. + +instance (Data a, Ord a) => Data (Set a) where + gfoldl f z set = z fromList `f` (toList set) + toConstr _ = error "toConstr" + gunfold _ _ = error "gunfold" + dataTypeOf _ = mkNorepType "Data.Set.Set" + +#endif + {-------------------------------------------------------------------- Query --------------------------------------------------------------------} @@ -181,6 +208,8 @@ singleton x Insertion, Deletion --------------------------------------------------------------------} -- | /O(log n)/. Insert an element in a set. +-- If the set already contains an element equal to the given value, +-- it is replaced with the new value. insert :: Ord a => a -> Set a -> Set a insert x t = case t of @@ -213,7 +242,7 @@ isProperSubsetOf s1 s2 -- | /O(n+m)/. Is this a subset? --- @(s1 `isSubsetOf` s2)@ tells whether s1 is a subset of s2. +-- @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@. isSubsetOf :: Ord a => Set a -> Set a -> Bool isSubsetOf t1 t2 = (size t1 <= size t2) && (isSubsetOfX t1 t2) @@ -223,7 +252,7 @@ isSubsetOfX t Tip = False isSubsetOfX (Bin _ x l r) t = found && isSubsetOfX l lt && isSubsetOfX r gt where - (found,lt,gt) = splitMember x t + (lt,found,gt) = splitMember x t {-------------------------------------------------------------------- @@ -257,13 +286,15 @@ deleteMax Tip = Tip {-------------------------------------------------------------------- Union. --------------------------------------------------------------------} --- | The union of a list of sets: (@unions == foldl union empty@). +-- | The union of a list of sets: (@'unions' == 'foldl' 'union' 'empty'@). unions :: Ord a => [Set a] -> Set a unions ts = foldlStrict union empty ts --- | /O(n+m)/. The union of two sets. Uses the efficient /hedge-union/ algorithm. +-- | /O(n+m)/. The union of two sets, preferring the first set when +-- equal elements are encountered. +-- The implementation uses the efficient /hedge-union/ algorithm. -- Hedge-union is more efficient on (bigset `union` smallset). union :: Ord a => Set a -> Set a -> Set a union Tip t2 = t2 @@ -320,7 +351,7 @@ intersect' t (Bin _ x l r) | found = join x tl tr | otherwise = merge tl tr where - (found,lt,gt) = splitMember x t + (lt,found,gt) = splitMember x t tl = intersect' lt l tr = intersect' gt r @@ -352,7 +383,7 @@ partition p (Bin _ x l r) ----------------------------------------------------------------------} -- | /O(n*log n)/. --- @map f s@ is the set obtained by applying @f@ to each element of @s@. +-- @'map' f s@ is the set obtained by applying @f@ to each element of @s@. -- -- It's worth noting that the size of the result may be smaller if, -- for some @(x,y)@, @x \/= y && f x == f y@ @@ -362,7 +393,7 @@ map f = fromList . List.map f . toList -- | /O(n)/. The -- --- @mapMonotonic f s == 'map' f s@, but works only when @f@ is monotonic. +-- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is monotonic. -- /The precondition is not checked./ -- Semi-formally, we have: -- @@ -400,7 +431,7 @@ elems s {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} --- | /O(n)/. Convert the set to an ascending list of elements. +-- | /O(n)/. Convert the set to a list of elements. toList :: Set a -> [a] toList s = toAscList s @@ -479,19 +510,11 @@ instance Ord a => Ord (Set a) where compare s1 s2 = compare (toAscList s1) (toAscList s2) {-------------------------------------------------------------------- - Monoid ---------------------------------------------------------------------} - -instance Ord a => Monoid (Set a) where - mempty = empty - mappend = union - mconcat = unions - -{-------------------------------------------------------------------- Show --------------------------------------------------------------------} instance Show a => Show (Set a) where - showsPrec d s = showSet (toAscList s) + showsPrec p xs = showParen (p > 10) $ + showString "fromList " . shows (toList xs) showSet :: (Show a) => [a] -> ShowS showSet [] @@ -501,7 +524,29 @@ showSet (x:xs) where showTail [] = showChar '}' showTail (x:xs) = showChar ',' . shows x . showTail xs - + +{-------------------------------------------------------------------- + Read +--------------------------------------------------------------------} +instance (Read a, Ord a) => Read (Set a) where +#ifdef __GLASGOW_HASKELL__ + readPrec = parens $ prec 10 $ do + Ident "fromList" <- lexP + xs <- readPrec + return (fromList xs) +#else + readsPrec p = readParen (p > 10) $ \ r -> do + ("fromList",s) <- lex + (xs,t) <- reads + return (fromList xs,t) +#endif + +{-------------------------------------------------------------------- + Typeable/Data +--------------------------------------------------------------------} + +#include "Typeable.h" +INSTANCE_TYPEABLE1(Set,setTc,"Set") {-------------------------------------------------------------------- Utility functions that return sub-ranges of the original @@ -569,7 +614,7 @@ filterLt cmp (Bin sx x l r) {-------------------------------------------------------------------- Split --------------------------------------------------------------------} --- | /O(log n)/. The expression (@split x set@) is a pair @(set1,set2)@ +-- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@ -- where all elements in @set1@ are lower than @x@ and all elements in -- @set2@ larger than @x@. @x@ is not found in neither @set1@ nor @set2@. split :: Ord a => a -> Set a -> (Set a,Set a) @@ -582,13 +627,13 @@ split x (Bin sy y l r) -- | /O(log n)/. Performs a 'split' but also returns whether the pivot -- element was found in the original set. -splitMember :: Ord a => a -> Set a -> (Bool,Set a,Set a) -splitMember x Tip = (False,Tip,Tip) +splitMember :: Ord a => a -> Set a -> (Set a,Bool,Set a) +splitMember x Tip = (Tip,False,Tip) splitMember x (Bin sy y l r) = case compare x y of - LT -> let (found,lt,gt) = splitMember x l in (found,lt,join y gt r) - GT -> let (found,lt,gt) = splitMember x r in (found,join y l lt,gt) - EQ -> (True,l,r) + LT -> let (lt,found,gt) = splitMember x l in (lt,found,join y gt r) + GT -> let (lt,found,gt) = splitMember x r in (join y l lt,found,gt) + EQ -> (l,True,r) {-------------------------------------------------------------------- Utility functions that maintain the balance properties of the tree. @@ -797,7 +842,7 @@ showTree s {- | /O(n)/. The expression (@showTreeWith hang wide map@) shows the tree that implements the set. If @hang@ is @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If - @wide@ is true, an extra wide version is shown. + @wide@ is 'True', an extra wide version is shown. > Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1..5] > 4 @@ -1077,53 +1122,66 @@ prop_List xs --------------------------------------------------------------------} {-# DEPRECATED emptySet "Use empty instead" #-} +-- | Obsolete equivalent of 'empty'. emptySet :: Set a emptySet = empty -{-# DEPRECATED mkSet "Equivalent to 'foldl insert empty'." #-} +{-# DEPRECATED mkSet "Use fromList instead" #-} +-- | Obsolete equivalent of 'fromList'. mkSet :: Ord a => [a] -> Set a -mkSet = List.foldl' (flip insert) empty +mkSet = fromList -{-# DEPRECATED setToList "Use instead." #-} +{-# DEPRECATED setToList "Use elems instead." #-} +-- | Obsolete equivalent of 'elems'. setToList :: Set a -> [a] setToList = elems {-# DEPRECATED unitSet "Use singleton instead." #-} +-- | Obsolete equivalent of 'singleton'. unitSet :: a -> Set a unitSet = singleton {-# DEPRECATED elementOf "Use member instead." #-} +-- | Obsolete equivalent of 'member'. elementOf :: Ord a => a -> Set a -> Bool elementOf = member {-# DEPRECATED isEmptySet "Use null instead." #-} +-- | Obsolete equivalent of 'null'. isEmptySet :: Set a -> Bool isEmptySet = null {-# DEPRECATED cardinality "Use size instead." #-} +-- | Obsolete equivalent of 'size'. cardinality :: Set a -> Int cardinality = size {-# DEPRECATED unionManySets "Use unions instead." #-} +-- | Obsolete equivalent of 'unions'. unionManySets :: Ord a => [Set a] -> Set a unionManySets = unions {-# DEPRECATED minusSet "Use difference instead." #-} +-- | Obsolete equivalent of 'difference'. minusSet :: Ord a => Set a -> Set a -> Set a minusSet = difference {-# DEPRECATED mapSet "Use map instead." #-} +-- | Obsolete equivalent of 'map'. mapSet :: (Ord a, Ord b) => (b -> a) -> Set b -> Set a mapSet = map {-# DEPRECATED intersect "Use intersection instead." #-} +-- | Obsolete equivalent of 'intersection'. intersect :: Ord a => Set a -> Set a -> Set a intersect = intersection -{-# DEPRECATED addToSet "Use insert instead." #-} +{-# DEPRECATED addToSet "Use 'flip insert' instead." #-} +-- | Obsolete equivalent of @'flip' 'insert'@. addToSet :: Ord a => Set a -> a -> Set a addToSet = flip insert -{-# DEPRECATED delFromSet "Use delete instead." #-} +{-# DEPRECATED delFromSet "Use `flip delete' instead." #-} +-- | Obsolete equivalent of @'flip' 'delete'@. delFromSet :: Ord a => Set a -> a -> Set a delFromSet = flip delete