X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=GHC%2FConc.lhs;h=d676a1a7ae7c1f6ec672d7a24e68492ee8956ec9;hb=c497471bb7fc204afb546f3116ad116f8569e452;hp=eac470beddf1c5f2f5d52753f81ebbb67f3d6bab;hpb=c32b545138f37d8455fd2dbd6d70eeb5c9e8b085;p=ghc-base.git diff --git a/GHC/Conc.lhs b/GHC/Conc.lhs index eac470b..d676a1a 100644 --- a/GHC/Conc.lhs +++ b/GHC/Conc.lhs @@ -29,7 +29,9 @@ module GHC.Conc -- * Forking and suchlike , forkIO -- :: IO a -> IO ThreadId + , forkIOUnmasked , forkOnIO -- :: Int -> IO a -> IO ThreadId + , forkOnIOUnmasked , numCapabilities -- :: Int , childHandler -- :: Exception -> IO () , myThreadId -- :: IO ThreadId @@ -211,11 +213,11 @@ thread. The new thread will be a lightweight thread; if you want to use a foreign library that uses thread-local storage, use 'Control.Concurrent.forkOS' instead. -GHC note: the new thread inherits the /blocked/ state of the parent -(see 'Control.Exception.block'). +GHC note: the new thread inherits the /masked/ state of the parent +(see 'Control.Exception.mask'). The newly created thread has an exception handler that discards the -exceptions 'BlockedOnDeadMVar', 'BlockedIndefinitely', and +exceptions 'BlockedIndefinitelyOnMVar', 'BlockedIndefinitelyOnSTM', and 'ThreadKilled', and passes all other exceptions to the uncaught exception handler (see 'setUncaughtExceptionHandler'). -} @@ -225,6 +227,11 @@ forkIO action = IO $ \ s -> where action_plus = catchException action childHandler +-- | Like 'forkIO', but the child thread is created with asynchronous exceptions +-- unmasked (see 'Control.Exception.mask'). +forkIOUnmasked :: IO () -> IO ThreadId +forkIOUnmasked io = forkIO (unsafeUnmask io) + {- | Like 'forkIO', but lets you specify on which CPU the thread is created. Unlike a `forkIO` thread, a thread created by `forkOnIO` @@ -244,6 +251,11 @@ forkOnIO (I# cpu) action = IO $ \ s -> where action_plus = catchException action childHandler +-- | Like 'forkOnIO', but the child thread is created with +-- asynchronous exceptions unmasked (see 'Control.Exception.mask'). +forkOnIOUnmasked :: Int -> IO () -> IO ThreadId +forkOnIOUnmasked cpu io = forkOnIO cpu (unsafeUnmask io) + -- | the value passed to the @+RTS -N@ flag. This is the number of -- Haskell threads that can run truly simultaneously at any given -- time, and is typically set to the number of physical CPU cores on @@ -275,16 +287,11 @@ real_handler se@(SomeException ex) = Just StackOverflow -> reportStackOverflow _ -> reportError se -{- | 'killThread' terminates the given thread (GHC only). -Any work already done by the thread isn\'t -lost: the computation is suspended until required by another thread. -The memory used by the thread will be garbage collected if it isn\'t -referenced from anywhere. The 'killThread' function is defined in -terms of 'throwTo': +{- | 'killThread' raises the 'ThreadKilled' exception in the given +thread (GHC only). > killThread tid = throwTo tid ThreadKilled -Killthread is a no-op if the target thread has already completed. -} killThread :: ThreadId -> IO () killThread tid = throwTo tid ThreadKilled @@ -299,10 +306,14 @@ when dealing with race conditions: eg. if there are two threads that can kill each other, it is guaranteed that only one of the threads will get to kill the other. +Whatever work the target thread was doing when the exception was +raised is not lost: the computation is suspended until required by +another thread. + If the target thread is currently making a foreign call, then the exception will not be raised (and hence 'throwTo' will not return) until the call has completed. This is the case regardless of whether -the call is inside a 'block' or not. +the call is inside a 'mask' or not. Important note: the behaviour of 'throwTo' differs from that described in the paper \"Asynchronous exceptions in Haskell\" @@ -311,14 +322,20 @@ In the paper, 'throwTo' is non-blocking; but the library implementation adopts a more synchronous design in which 'throwTo' does not return until the exception is received by the target thread. The trade-off is discussed in Section 9 of the paper. Like any blocking operation, 'throwTo' is therefore interruptible (see Section 5.3 of -the paper). +the paper). Unlike other interruptible operations, however, 'throwTo' +is /always/ interruptible, even if it does not actually block. + +There is no guarantee that the exception will be delivered promptly, +although the runtime will endeavour to ensure that arbitrary +delays don't occur. In GHC, an exception can only be raised when a +thread reaches a /safe point/, where a safe point is where memory +allocation occurs. Some loops do not perform any memory allocation +inside the loop and therefore cannot be interrupted by a 'throwTo'. -There is currently no guarantee that the exception delivered by 'throwTo' will be -delivered at the first possible opportunity. In particular, a thread may -unblock and then re-block exceptions (using 'unblock' and 'block') without receiving -a pending 'throwTo'. This is arguably undesirable behaviour. +Blocked 'throwTo' is fair: if multiple threads are trying to throw an +exception to the same target thread, they will succeed in FIFO order. - -} + -} throwTo :: Exception e => ThreadId -> e -> IO () throwTo (ThreadId tid) ex = IO $ \ s -> case (killThread# tid (toException ex) s) of s1 -> (# s1, () #) @@ -472,6 +489,10 @@ thenSTM (STM m) k = STM ( \s -> returnSTM :: a -> STM a returnSTM x = STM (\s -> (# s, x #)) +instance MonadPlus STM where + mzero = retry + mplus = orElse + -- | Unsafely performs IO in the STM monad. Beware: this is a highly -- dangerous thing to do. -- @@ -602,18 +623,18 @@ MVar utilities \begin{code} withMVar :: MVar a -> (a -> IO b) -> IO b withMVar m io = - block $ do + mask $ \restore -> do a <- takeMVar m - b <- catchAny (unblock (io a)) + b <- catchAny (restore (io a)) (\e -> do putMVar m a; throw e) putMVar m a return b modifyMVar_ :: MVar a -> (a -> IO a) -> IO () modifyMVar_ m io = - block $ do + mask $ \restore -> do a <- takeMVar m - a' <- catchAny (unblock (io a)) + a' <- catchAny (restore (io a)) (\e -> do putMVar m a; throw e) putMVar m a' return () @@ -765,19 +786,33 @@ data DelayReq | DelaySTM {-# UNPACK #-} !USecs {-# UNPACK #-} !(TVar Bool) #ifndef mingw32_HOST_OS +{-# NOINLINE pendingEvents #-} pendingEvents :: IORef [IOReq] +pendingEvents = unsafePerformIO $ do + m <- newIORef [] + sharedCAF m getOrSetGHCConcPendingEventsStore + +foreign import ccall unsafe "getOrSetGHCConcPendingEventsStore" + getOrSetGHCConcPendingEventsStore :: Ptr a -> IO (Ptr a) #endif -pendingDelays :: IORef [DelayReq] -{-# NOINLINE pendingEvents #-} + {-# NOINLINE pendingDelays #-} -(pendingEvents,pendingDelays) = unsafePerformIO $ do - reqs <- newIORef [] - dels <- newIORef [] - return (reqs, dels) +pendingDelays :: IORef [DelayReq] +pendingDelays = unsafePerformIO $ do + m <- newIORef [] + sharedCAF m getOrSetGHCConcPendingDelaysStore + +foreign import ccall unsafe "getOrSetGHCConcPendingDelaysStore" + getOrSetGHCConcPendingDelaysStore :: Ptr a -> IO (Ptr a) {-# NOINLINE ioManagerThread #-} ioManagerThread :: MVar (Maybe ThreadId) -ioManagerThread = unsafePerformIO $ newMVar Nothing +ioManagerThread = unsafePerformIO $ do + m <- newMVar Nothing + sharedCAF m getOrSetGHCConcIOManagerThreadStore + +foreign import ccall unsafe "getOrSetGHCConcIOManagerThreadStore" + getOrSetGHCConcIOManagerThreadStore :: Ptr a -> IO (Ptr a) ensureIOManagerIsRunning :: IO () ensureIOManagerIsRunning @@ -812,14 +847,40 @@ type USecs = Word64 foreign import ccall unsafe "getUSecOfDay" getUSecOfDay :: IO USecs -prodding :: IORef Bool {-# NOINLINE prodding #-} -prodding = unsafePerformIO (newIORef False) +prodding :: IORef Bool +prodding = unsafePerformIO $ do + r <- newIORef False + sharedCAF r getOrSetGHCConcProddingStore + +foreign import ccall unsafe "getOrSetGHCConcProddingStore" + getOrSetGHCConcProddingStore :: Ptr a -> IO (Ptr a) prodServiceThread :: IO () prodServiceThread = do - was_set <- atomicModifyIORef prodding (\a -> (True,a)) - if (not (was_set)) then wakeupIOManager else return () + -- NB. use atomicModifyIORef here, otherwise there are race + -- conditions in which prodding is left at True but the server is + -- blocked in select(). + was_set <- atomicModifyIORef prodding $ \b -> (True,b) + unless was_set wakeupIOManager + +-- Machinery needed to ensure that we only have one copy of certain +-- CAFs in this module even when the base package is present twice, as +-- it is when base is dynamically loaded into GHCi. The RTS keeps +-- track of the single true value of the CAF, so even when the CAFs in +-- the dynamically-loaded base package are reverted, nothing bad +-- happens. +-- +sharedCAF :: a -> (Ptr a -> IO (Ptr a)) -> IO a +sharedCAF a get_or_set = + mask_ $ do + stable_ref <- newStablePtr a + let ref = castPtr (castStablePtrToPtr stable_ref) + ref2 <- get_or_set ref + if ref==ref2 + then return a + else do freeStablePtr stable_ref + deRefStablePtr (castPtrToStablePtr (castPtr ref2)) #ifdef mingw32_HOST_OS -- ---------------------------------------------------------------------------- @@ -958,7 +1019,6 @@ ioManager = do -- don't want them to block. setCloseOnExec rd_end setCloseOnExec wr_end - writeIORef stick (fromIntegral wr_end) c_setIOManagerPipe wr_end allocaBytes sizeofFdSet $ \readfds -> do allocaBytes sizeofFdSet $ \writefds -> do @@ -976,6 +1036,17 @@ service_loop -> IO () service_loop wakeup readfds writefds ptimeval old_reqs old_delays = do + -- reset prodding before we look at the new requests. If a new + -- client arrives after this point they will send a wakup which will + -- cause the server to loop around again, so we can be sure to not + -- miss any requests. + -- + -- NB. it's important to do this in the *first* iteration of + -- service_loop, rather than after calling select(), since a client + -- may have set prodding to True without sending a wakeup byte down + -- the pipe, because the pipe wasn't set up. + atomicModifyIORef prodding (\_ -> (False, ())) + -- pick up new IO requests new_reqs <- atomicModifyIORef pendingEvents (\a -> ([],a)) let reqs = new_reqs ++ old_reqs @@ -1046,8 +1117,6 @@ service_loop wakeup readfds writefds ptimeval old_reqs old_delays = do unless exit $ do - atomicModifyIORef prodding (\_ -> (False, ())) - reqs' <- if wakeup_all then do wakeupAll reqs; return [] else completeRequests reqs readfds writefds [] @@ -1058,11 +1127,6 @@ io_MANAGER_WAKEUP = 0xff io_MANAGER_DIE = 0xfe io_MANAGER_SYNC = 0xfd --- | the stick is for poking the IO manager with -stick :: IORef Fd -{-# NOINLINE stick #-} -stick = unsafePerformIO $ newIORef (-1) - {-# NOINLINE sync #-} sync :: IORef [MVar ()] sync = unsafePerformIO (newIORef []) @@ -1072,18 +1136,11 @@ syncIOManager :: IO () syncIOManager = do m <- newEmptyMVar atomicModifyIORef sync (\old -> (m:old,())) - fd <- readIORef stick - when (fd /= (-1)) $ - with io_MANAGER_SYNC $ \pbuf -> do - warnErrnoIfMinus1_ "syncIOManager" $ c_write (fromIntegral fd) pbuf 1 + c_ioManagerSync takeMVar m -wakeupIOManager :: IO () -wakeupIOManager = do - fd <- readIORef stick - when (fd /= (-1)) $ - with io_MANAGER_WAKEUP $ \pbuf -> do - warnErrnoIfMinus1_ "wakeupIOManager" $ c_write (fromIntegral fd) pbuf 1 +foreign import ccall unsafe "ioManagerSync" c_ioManagerSync :: IO () +foreign import ccall unsafe "ioManagerWakeup" wakeupIOManager :: IO () -- For the non-threaded RTS runHandlers :: Ptr Word8 -> Int -> IO () @@ -1137,17 +1194,10 @@ signal_handlers :: MVar (IOArray Int (Maybe (HandlerFun,Dynamic))) signal_handlers = unsafePerformIO $ do arr <- newIOArray (0,maxSig) Nothing m <- newMVar arr - block $ do - stable_ref <- newStablePtr m - let ref = castStablePtrToPtr stable_ref - ref2 <- getOrSetSignalHandlerStore ref - if ref==ref2 - then return m - else do freeStablePtr stable_ref - deRefStablePtr (castPtrToStablePtr ref2) + sharedCAF m getOrSetGHCConcSignalHandlerStore -foreign import ccall unsafe "getOrSetSignalHandlerStore" - getOrSetSignalHandlerStore :: Ptr a -> IO (Ptr a) +foreign import ccall unsafe "getOrSetGHCConcSignalHandlerStore" + getOrSetGHCConcSignalHandlerStore :: Ptr a -> IO (Ptr a) setHandler :: Signal -> Maybe (HandlerFun,Dynamic) -> IO (Maybe (HandlerFun,Dynamic)) setHandler sig handler = do