X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2FcoreSyn%2FCoreSyn.lhs;h=e09e4f29d31429ca3ad442f4a975dd19dd7b81c5;hb=fc8e106e73a4c375d64b83c387a821fe355f4393;hp=3c905af3e0ce4a7bd1484e1bc0b964bcc81190df;hpb=f278f0676579f67075033a4f9857715909c4b71e;p=ghc-hetmet.git diff --git a/compiler/coreSyn/CoreSyn.lhs b/compiler/coreSyn/CoreSyn.lhs index 3c905af..e09e4f2 100644 --- a/compiler/coreSyn/CoreSyn.lhs +++ b/compiler/coreSyn/CoreSyn.lhs @@ -26,7 +26,7 @@ module CoreSyn ( mkConApp, mkTyBind, varToCoreExpr, varsToCoreExprs, - isTyVar, isId, cmpAltCon, cmpAlt, ltAlt, + isTyCoVar, isId, cmpAltCon, cmpAlt, ltAlt, -- ** Simple 'Expr' access functions and predicates bindersOf, bindersOfBinds, rhssOfBind, rhssOfAlts, @@ -87,7 +87,7 @@ import Util import Data.Data import Data.Word -infixl 4 `mkApps`, `mkTyApps`, `mkVarApps` +infixl 4 `mkApps`, `mkTyApps`, `mkVarApps`, `App` -- Left associative, so that we can say (f `mkTyApps` xs `mkVarApps` ys) \end{code} @@ -100,8 +100,6 @@ infixl 4 `mkApps`, `mkTyApps`, `mkVarApps` These data types are the heart of the compiler \begin{code} -infixl 8 `App` -- App brackets to the left - -- | This is the data type that represents GHCs core intermediate language. Currently -- GHC uses System FC for this purpose, -- which is closely related to the simpler and better known System F . @@ -137,11 +135,15 @@ infixl 8 `App` -- App brackets to the left -- The type parameter @b@ is for the type of binders in the expression tree. data Expr b = Var Id -- ^ Variables + | Lit Literal -- ^ Primitive literals + | App (Expr b) (Arg b) -- ^ Applications: note that the argument may be a 'Type'. -- -- See "CoreSyn#let_app_invariant" for another invariant + | Lam b (Expr b) -- ^ Lambda abstraction + | Let (Bind b) (Expr b) -- ^ Recursive and non recursive @let@s. Operationally -- this corresponds to allocating a thunk for the things -- bound and then executing the sub-expression. @@ -154,14 +156,16 @@ data Expr b -- the meaning of /lifted/ vs. /unlifted/). -- -- #let_app_invariant# - -- The right hand side of of a non-recursive 'Let' _and_ the argument of an 'App', + -- The right hand side of of a non-recursive 'Let' + -- _and_ the argument of an 'App', -- /may/ be of unlifted type, but only if the expression - -- is ok-for-speculation. This means that the let can be floated around - -- without difficulty. For example, this is OK: + -- is ok-for-speculation. This means that the let can be floated + -- around without difficulty. For example, this is OK: -- -- > y::Int# = x +# 1# -- - -- But this is not, as it may affect termination if the expression is floated out: + -- But this is not, as it may affect termination if the + -- expression is floated out: -- -- > y::Int# = fac 4# -- @@ -181,6 +185,7 @@ data Expr b -- At the moment, the rest of the compiler only deals with type-let -- in a Let expression, rather than at top level. We may want to revist -- this choice. + | Case (Expr b) b Type [Alt b] -- ^ Case split. Operationally this corresponds to evaluating -- the scrutinee (expression examined) to weak head normal form -- and then examining at most one level of resulting constructor (i.e. you @@ -190,15 +195,17 @@ data Expr b -- and the 'Type' must be that of all the case alternatives -- -- #case_invariants# - -- This is one of the more complicated elements of the Core language, and comes - -- with a number of restrictions: + -- This is one of the more complicated elements of the Core language, + -- and comes with a number of restrictions: -- - -- The 'DEFAULT' case alternative must be first in the list, if it occurs at all. + -- The 'DEFAULT' case alternative must be first in the list, + -- if it occurs at all. -- -- The remaining cases are in order of increasing -- tag (for 'DataAlts') or -- lit (for 'LitAlts'). - -- This makes finding the relevant constructor easy, and makes comparison easier too. + -- This makes finding the relevant constructor easy, + -- and makes comparison easier too. -- -- The list of alternatives must be exhaustive. An /exhaustive/ case -- does not necessarily mention all constructors: @@ -212,12 +219,16 @@ data Expr b -- Blue -> ... ) ... -- @ -- - -- The inner case does not need a @Red@ alternative, because @x@ can't be @Red@ at - -- that program point. - | Cast (Expr b) Coercion -- ^ Cast an expression to a particular type. This is used to implement @newtype@s - -- (a @newtype@ constructor or destructor just becomes a 'Cast' in Core) and GADTs. + -- The inner case does not need a @Red@ alternative, because @x@ + -- can't be @Red@ at that program point. + + | Cast (Expr b) Coercion -- ^ Cast an expression to a particular type. + -- This is used to implement @newtype@s (a @newtype@ constructor or + -- destructor just becomes a 'Cast' in Core) and GADTs. + | Note Note (Expr b) -- ^ Notes. These allow general information to be -- added to expressions in the syntax tree + | Type Type -- ^ A type: this should only show up at the top -- level of an Arg deriving (Data, Typeable) @@ -407,12 +418,17 @@ data Unfolding -- -- Here, @f@ gets an @OtherCon []@ unfolding. - | DFunUnfolding DataCon [CoreExpr] - -- The Unfolding of a DFunId + | DFunUnfolding -- The Unfolding of a DFunId + -- See Note [DFun unfoldings] -- df = /\a1..am. \d1..dn. MkD (op1 a1..am d1..dn) -- (op2 a1..am d1..dn) - -- where Arity = n, the number of dict args to the dfun - -- The [CoreExpr] are the superclasses and methods [op1,op2], + + Arity -- Arity = m+n, the *total* number of args + -- (unusually, both type and value) to the dfun + + DataCon -- The dictionary data constructor (possibly a newtype datacon) + + [CoreExpr] -- The [CoreExpr] are the superclasses and methods [op1,op2], -- in positional order. -- They are usually variables, but can be trivial expressions -- instead (e.g. a type application). @@ -496,7 +512,37 @@ data UnfoldingGuidance -- (where there are the right number of arguments.) | UnfNever -- The RHS is big, so don't inline it +\end{code} + + +Note [DFun unfoldings] +~~~~~~~~~~~~~~~~~~~~~~ +The Arity in a DFunUnfolding is total number of args (type and value) +that the DFun needs to produce a dictionary. That's not necessarily +related to the ordinary arity of the dfun Id, esp if the class has +one method, so the dictionary is represented by a newtype. Example + + class C a where { op :: a -> Int } + instance C a -> C [a] where op xs = op (head xs) + +The instance translates to + $dfCList :: forall a. C a => C [a] -- Arity 2! + $dfCList = /\a.\d. $copList {a} d |> co + + $copList :: forall a. C a => [a] -> Int -- Arity 2! + $copList = /\a.\d.\xs. op {a} d (head xs) + +Now we might encounter (op (dfCList {ty} d) a1 a2) +and we want the (op (dfList {ty} d)) rule to fire, because $dfCList +has all its arguments, even though its (value) arity is 2. That's +why we record the number of expected arguments in the DFunUnfolding. + +Note that although it's an Arity, it's most convenient for it to give +the *total* number of arguments, both type and value. See the use +site in exprIsConApp_maybe. + +\begin{code} -- Constants for the UnfWhen constructor needSaturated, unSaturatedOk :: Bool needSaturated = False @@ -930,7 +976,7 @@ collectTyAndValBinders expr collectTyBinders expr = go [] expr where - go tvs (Lam b e) | isTyVar b = go (b:tvs) e + go tvs (Lam b e) | isTyCoVar b = go (b:tvs) e go tvs e = (reverse tvs, e) collectValBinders expr