X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fghci%2FRtClosureInspect.hs;h=255c8e1f9215ba610aa77dc69cfc3bbb5519ebed;hb=98e1486635c889e023097d63da0c9b68393de1fd;hp=7294894ad55ddd4c2203d47acf4dd613d4935d47;hpb=5e5cecc9096826a276d4fa56b280fd216579b7f6;p=ghc-hetmet.git diff --git a/compiler/ghci/RtClosureInspect.hs b/compiler/ghci/RtClosureInspect.hs index 7294894..255c8e1 100644 --- a/compiler/ghci/RtClosureInspect.hs +++ b/compiler/ghci/RtClosureInspect.hs @@ -25,32 +25,33 @@ module RtClosureInspect( mapTermType, termTyVars, -- unsafeDeepSeq, - cvReconstructType + cvReconstructType, + computeRTTIsubst, + sigmaType ) where #include "HsVersions.h" import ByteCodeItbls ( StgInfoTable ) import qualified ByteCodeItbls as BCI( StgInfoTable(..) ) -import ByteCodeLink ( HValue ) import HscTypes ( HscEnv ) +import Linker import DataCon import Type -import TcRnMonad ( TcM, initTcPrintErrors, ioToTcRn, recoverM - , writeMutVar ) +import TcRnMonad ( TcM, initTc, initTcPrintErrors, ioToTcRn, + tryTcErrs) import TcType import TcMType import TcUnify import TcGadt +import TcEnv +import DriverPhases import TyCon -import Var import Name import VarEnv -import OccName import Util import VarSet -import {-#SOURCE#-} TcRnDriver ( tcRnRecoverDataCon ) import TysPrim import PrelNames @@ -60,16 +61,15 @@ import Constants import Outputable import Maybes import Panic -import FiniteMap import GHC.Arr ( Array(..) ) -import GHC.Ptr ( Ptr(..), castPtr ) import GHC.Exts import Control.Monad import Data.Maybe import Data.Array.Base -import Data.List ( partition, nub ) +import Data.List ( partition ) +import qualified Data.Sequence as Seq import Foreign import System.IO.Unsafe @@ -89,8 +89,11 @@ import System.IO.Unsafe -} data Term = Term { ty :: Type - , dc :: DataCon -- The heap datacon. If ty is a newtype, - -- this is NOT the newtype datacon + , dc :: Either String DataCon + -- The heap datacon. If ty is a newtype, + -- this is NOT the newtype datacon. + -- Empty if the datacon aint exported by the .hi + -- (private constructors in -O0 libraries) , val :: HValue , subTerms :: [Term] } @@ -103,6 +106,7 @@ data Term = Term { ty :: Type , bound_to :: Maybe Name -- Useful for printing } +isTerm, isSuspension, isPrim :: Term -> Bool isTerm Term{} = True isTerm _ = False isSuspension Suspension{} = True @@ -110,6 +114,7 @@ isSuspension _ = False isPrim Prim{} = True isPrim _ = False +termType :: Term -> Maybe Type termType t@(Suspension {}) = mb_ty t termType t = Just$ ty t @@ -158,10 +163,11 @@ getClosureData a = (# iptr, ptrs, nptrs #) -> do itbl <- peek (Ptr iptr) let tipe = readCType (BCI.tipe itbl) - elems = BCI.ptrs itbl - ptrsList = Array 0 (fromIntegral$ elems) ptrs + elems = fromIntegral (BCI.ptrs itbl) + ptrsList = Array 0 (elems - 1) elems ptrs nptrs_data = [W# (indexWordArray# nptrs i) | I# i <- [0.. fromIntegral (BCI.nptrs itbl)] ] + ASSERT(fromIntegral elems >= 0) return () ptrsList `seq` return (Closure tipe (Ptr iptr) itbl ptrsList nptrs_data) @@ -178,7 +184,7 @@ readCType i | fromIntegral i == pAP_CODE = PAP | otherwise = Other (fromIntegral i) -isConstr, isIndirection :: ClosureType -> Bool +isConstr, isIndirection, isThunk :: ClosureType -> Bool isConstr Constr = True isConstr _ = False @@ -200,9 +206,9 @@ isFullyEvaluated a = do otherwise -> return False where amapM f = sequence . amap' f -amap' f (Array i0 i arr#) = map (\(I# i#) -> case indexArray# arr# i# of - (# e #) -> f e) - [0 .. i - i0] +amap' f (Array i0 i _ arr#) = map g [0 .. i - i0] + where g (I# i#) = case indexArray# arr# i# of + (# e #) -> f e -- TODO: Fix it. Probably the otherwise case is failing, trace/debug it {- @@ -229,7 +235,7 @@ extractUnboxed tt clos = go tt (nonPtrs clos) | otherwise = pprPanic "Expected a TcTyCon" (ppr t) go [] _ = [] go (t:tt) xx - | (x, rest) <- splitAt (sizeofType t `div` wORD_SIZE) xx + | (x, rest) <- splitAt ((sizeofType t + wORD_SIZE - 1) `div` wORD_SIZE) xx = x : go tt rest sizeofTyCon = sizeofPrimRep . tyConPrimRep @@ -238,7 +244,7 @@ sizeofTyCon = sizeofPrimRep . tyConPrimRep -- * Traversals for Terms ----------------------------------- -data TermFold a = TermFold { fTerm :: Type -> DataCon -> HValue -> [a] -> a +data TermFold a = TermFold { fTerm :: Type -> Either String DataCon -> HValue -> [a] -> a , fPrim :: Type -> [Word] -> a , fSuspension :: ClosureType -> Maybe Type -> HValue -> Maybe Name -> a @@ -262,11 +268,13 @@ idTermFoldM = TermFold { fSuspension = (((return.).).). Suspension } +mapTermType :: (Type -> Type) -> Term -> Term mapTermType f = foldTerm idTermFold { fTerm = \ty dc hval tt -> Term (f ty) dc hval tt, fSuspension = \ct mb_ty hval n -> Suspension ct (fmap f mb_ty) hval n } +termTyVars :: Term -> TyVarSet termTyVars = foldTerm TermFold { fTerm = \ty _ _ tt -> tyVarsOfType ty `plusVarEnv` concatVarEnv tt, @@ -285,11 +293,15 @@ cons_prec = 5 -- TODO Extract this info from GHC itself pprTerm y p t | Just doc <- pprTermM y p t = doc pprTermM :: Monad m => (Int -> Term -> m SDoc) -> Int -> Term -> m SDoc -pprTermM y p t@Term{dc=dc, subTerms=tt, ty=ty} +pprTermM y p t@Term{dc=Left dc_tag, subTerms=tt, ty=ty} = do + tt_docs <- mapM (y app_prec) tt + return$ cparen (not(null tt) && p >= app_prec) (text dc_tag <+> sep tt_docs) + +pprTermM y p t@Term{dc=Right dc, subTerms=tt, ty=ty} {- | dataConIsInfix dc, (t1:t2:tt') <- tt --TODO fixity = parens (pprTerm1 True t1 <+> ppr dc <+> pprTerm1 True ppr t2) <+> hsep (map (pprTerm1 True) tt) --} +-} -- TODO Printing infix constructors properly | null tt = return$ ppr dc | Just (tc,_) <- splitNewTyConApp_maybe ty , isNewTyCon tc @@ -301,9 +313,8 @@ pprTermM y p t@Term{dc=dc, subTerms=tt, ty=ty} return$ cparen (p >= app_prec) (ppr dc <+> sep tt_docs) pprTermM y _ t = pprTermM1 y t - -pprTermM1 _ Prim{value=words, ty=ty} = return$ text$ repPrim (tyConAppTyCon ty) - words +pprTermM1 _ Prim{value=words, ty=ty} = + return$ text$ repPrim (tyConAppTyCon ty) words pprTermM1 y t@Term{} = panic "pprTermM1 - unreachable" pprTermM1 _ Suspension{bound_to=Nothing} = return$ char '_' pprTermM1 _ Suspension{mb_ty=Just ty, bound_to=Just n} @@ -315,7 +326,7 @@ pprTermM1 _ Suspension{mb_ty=Just ty, bound_to=Just n} cPprTerm :: forall m. Monad m => ((Int->Term->m SDoc)->[Int->Term->m (Maybe SDoc)]) -> Term -> m SDoc cPprTerm custom = go 0 where - go prec t@Term{subTerms=tt, dc=dc} = do + go prec t@Term{} = do let default_ prec t = Just `liftM` pprTermM go prec t mb_customDocs = [pp prec t | pp <- custom go ++ [default_]] Just doc <- firstJustM mb_customDocs @@ -339,14 +350,17 @@ cPprTermBase y = , ifTerm (isTyCon doubleTyCon) (coerceShow$ \(a::Double)->a) , ifTerm isIntegerTy (coerceShow$ \(a::Integer)->a) ] - where ifTerm pred f p t@Term{} | pred t = liftM Just (f p t) - | otherwise = return Nothing - isIntegerTy Term{ty=ty} | Just (tc,_) <- splitTyConApp_maybe ty - = tyConName tc == integerTyConName - isTupleTy Term{ty=ty} | Just (tc,_) <- splitTyConApp_maybe ty - = tc `elem` (fst.unzip.elems) boxedTupleArr - isTyCon a_tc Term{ty=ty} | Just (tc,_) <- splitTyConApp_maybe ty - = a_tc == tc + where ifTerm pred f p t@Term{} | pred t = liftM Just (f p t) + ifTerm _ _ _ _ = return Nothing + isIntegerTy Term{ty=ty} = fromMaybe False $ do + (tc,_) <- splitTyConApp_maybe ty + return (tyConName tc == integerTyConName) + isTupleTy Term{ty=ty} = fromMaybe False $ do + (tc,_) <- splitTyConApp_maybe ty + return (tc `elem` (fst.unzip.elems) boxedTupleArr) + isTyCon a_tc Term{ty=ty} = fromMaybe False $ do + (tc,_) <- splitTyConApp_maybe ty + return (a_tc == tc) coerceShow f _ = return . text . show . f . unsafeCoerce# . val --TODO pprinting of list terms is not lazy doList p h t = do @@ -423,18 +437,22 @@ type TR a = TcM a runTR :: HscEnv -> TR a -> IO a runTR hsc_env c = do - mb_term <- initTcPrintErrors hsc_env iNTERACTIVE c + mb_term <- runTR_maybe hsc_env c case mb_term of Nothing -> panic "Can't unify" - Just x -> return x + Just x -> return x + +runTR_maybe :: HscEnv -> TR a -> IO (Maybe a) +runTR_maybe hsc_env = fmap snd . initTc hsc_env HsSrcFile False iNTERACTIVE trIO :: IO a -> TR a trIO = liftTcM . ioToTcRn +liftTcM :: TcM a -> TR a liftTcM = id -newVar :: Kind -> TR TcTyVar -newVar = liftTcM . newFlexiTyVar +newVar :: Kind -> TR TcType +newVar = liftTcM . fmap mkTyVarTy . newFlexiTyVar -- | Returns the instantiated type scheme ty', and the substitution sigma -- such that sigma(ty') = ty @@ -450,13 +468,15 @@ instScheme ty | (tvs, rho) <- tcSplitForAllTys ty = liftTcM$ do -- do its magic. addConstraint :: TcType -> TcType -> TR () addConstraint t1 t2 = congruenceNewtypes t1 t2 >>= uncurry unifyType + >> return () -- TOMDO: what about the coercion? + -- we should consider family instances -- Type & Term reconstruction cvObtainTerm :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do - tv <- liftM mkTyVarTy (newVar argTypeKind) + tv <- newVar argTypeKind case mb_ty of Nothing -> go tv tv hval >>= zonkTerm Just ty | isMonomorphic ty -> go ty ty hval >>= zonkTerm @@ -482,9 +502,20 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do Indirection _ -> go tv ty $! (ptrs clos ! 0) -- The interesting case Constr -> do - m_dc <- trIO$ tcRnRecoverDataCon hsc_env (infoPtr clos) - case m_dc of - Nothing -> panic "Can't find the DataCon for a term" + Right dcname <- dataConInfoPtrToName (infoPtr clos) + (_,mb_dc) <- tryTcErrs (tcLookupDataCon dcname) + case mb_dc of + Nothing -> do -- This can happen for private constructors compiled -O0 + -- where the .hi descriptor does not export them + -- In such case, we return a best approximation: + -- ignore the unpointed args, and recover the pointeds + -- This preserves laziness, and should be safe. + let tag = showSDoc (ppr dcname) + vars <- replicateM (length$ elems$ ptrs clos) + (newVar (liftedTypeKind)) + subTerms <- sequence [appArr (go tv tv) (ptrs clos) i + | (i, tv) <- zip [0..] vars] + return (Term tv (Left ('<' : tag ++ ">")) a subTerms) Just dc -> do let extra_args = length(dataConRepArgTys dc) - length(dataConOrigArgTys dc) @@ -492,7 +523,7 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do (subTtypesP, subTtypesNP) = partition isPointed subTtypes subTermTvs <- sequence [ if isMonomorphic t then return t - else (mkTyVarTy `fmap` newVar k) + else (newVar k) | (t,k) <- zip subTtypesP (map typeKind subTtypesP)] -- It is vital for newtype reconstruction that the unification step -- is done right here, _before_ the subterms are RTTI reconstructed @@ -511,16 +542,16 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do subTermsNP = map (uncurry Prim) (zip subTtypesNP unboxeds) subTerms = reOrderTerms subTermsP subTermsNP (drop extra_args subTtypes) - return (Term tv dc a subTerms) + return (Term tv (Right dc) a subTerms) -- The otherwise case: can be a Thunk,AP,PAP,etc. otherwise -> return (Suspension (tipe clos) (Just tv) a Nothing) matchSubTypes dc ty | Just (_,ty_args) <- splitTyConApp_maybe (repType ty) - , null (dataConExTyVars dc) --TODO case of extra existential tyvars +-- assumption: ^^^ looks through newtypes + , isVanillaDataCon dc --TODO non-vanilla case = dataConInstArgTys dc ty_args --- assumes that newtypes are looked ^^^ through | otherwise = dataConRepArgTys dc -- This is used to put together pointed and nonpointed subterms in the @@ -539,28 +570,33 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do -- Fast, breadth-first Type reconstruction - -cvReconstructType :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Type -cvReconstructType hsc_env force mb_ty hval = runTR hsc_env $ do - tv <- liftM mkTyVarTy (newVar argTypeKind) +max_depth = 10 :: Int +cvReconstructType :: HscEnv -> Bool -> Maybe Type -> HValue -> IO (Maybe Type) +cvReconstructType hsc_env force mb_ty hval = runTR_maybe hsc_env $ do + tv <- newVar argTypeKind case mb_ty of - Nothing -> do search (isMonomorphic `fmap` zonkTcType tv) - (uncurry go) - [(tv, hval)] + Nothing -> do search (isMonomorphic `fmap` zonkTcType tv) + (uncurry go) + [(tv, hval)] + max_depth zonkTcType tv -- TODO untested! Just ty | isMonomorphic ty -> return ty Just ty -> do - (ty',rev_subst) <- instScheme (sigmaType ty) + (ty',rev_subst) <- instScheme (sigmaType ty) addConstraint tv ty' search (isMonomorphic `fmap` zonkTcType tv) - (uncurry go) + (\(ty,a) -> go ty a) [(tv, hval)] + max_depth substTy rev_subst `fmap` zonkTcType tv where -- search :: m Bool -> ([a] -> [a] -> [a]) -> [a] -> m () - search stop expand [] = return () - search stop expand (x:xx) = do new <- expand x - unlessM stop $ search stop expand (xx ++ new) + search stop expand [] depth = return () + search stop expand x 0 = fail$ "Failed to reconstruct a type after " ++ + show max_depth ++ " steps" + search stop expand (x:xx) d = unlessM stop $ do + new <- expand x + search stop expand (xx ++ new) $! (pred d) -- returns unification tasks,since we are going to want a breadth-first search go :: Type -> HValue -> TR [(Type, HValue)] @@ -569,26 +605,47 @@ cvReconstructType hsc_env force mb_ty hval = runTR hsc_env $ do case tipe clos of Indirection _ -> go tv $! (ptrs clos ! 0) Constr -> do - m_dc <- trIO$ tcRnRecoverDataCon hsc_env (infoPtr clos) - case m_dc of - Nothing -> panic "Can't find the DataCon for a term" + Right dcname <- dataConInfoPtrToName (infoPtr clos) + (_,mb_dc) <- tryTcErrs (tcLookupDataCon dcname) + case mb_dc of + Nothing-> do + -- TODO: Check this case + vars <- replicateM (length$ elems$ ptrs clos) + (newVar (liftedTypeKind)) + subTerms <- sequence [ appArr (go tv) (ptrs clos) i + | (i, tv) <- zip [0..] vars] + forM [0..length (elems $ ptrs clos)] $ \i -> do + tv <- newVar liftedTypeKind + return$ appArr (\e->(tv,e)) (ptrs clos) i + Just dc -> do let extra_args = length(dataConRepArgTys dc) - length(dataConOrigArgTys dc) subTtypes <- mapMif (not . isMonomorphic) - (\t -> mkTyVarTy `fmap` newVar (typeKind t)) + (\t -> newVar (typeKind t)) (dataConRepArgTys dc) -- It is vital for newtype reconstruction that the unification step -- is done right here, _before_ the subterms are RTTI reconstructed let myType = mkFunTys subTtypes tv (signatureType,_) <- instScheme(dataConRepType dc) addConstraint myType signatureType - return $ map (\(I# i#,t) -> case ptrs clos of - (Array _ _ ptrs#) -> case indexArray# ptrs# i# of - (# e #) -> (t,e)) - (drop extra_args $ zip [0..] subTtypes) + return $ [ appArr (\e->(t,e)) (ptrs clos) i + | (i,t) <- drop extra_args $ zip [0..] subTtypes] otherwise -> return [] + -- This helper computes the difference between a base type t and the + -- improved rtti_t computed by RTTI + -- The main difference between RTTI types and their normal counterparts + -- is that the former are _not_ polymorphic, thus polymorphism must + -- be stripped. Syntactically, forall's must be stripped +computeRTTIsubst ty rtti_ty = + -- In addition, we strip newtypes too, since the reconstructed type might + -- not have recovered them all + tcUnifyTys (const BindMe) + [repType' $ dropForAlls$ ty] + [repType' $ rtti_ty] +-- TODO stripping newtypes shouldn't be necessary, test + -- Dealing with newtypes {- @@ -624,7 +681,7 @@ congruenceNewtypes :: TcType -> TcType -> TcM (TcType,TcType) congruenceNewtypes lhs rhs -- TyVar lhs inductive case | Just tv <- getTyVar_maybe lhs - = recoverM (return (lhs,rhs)) $ do + = recoverTc (return (lhs,rhs)) $ do Indirect ty_v <- readMetaTyVar tv (lhs1, rhs1) <- congruenceNewtypes ty_v rhs return (lhs, rhs1) @@ -652,6 +709,14 @@ congruenceNewtypes lhs rhs -------------------------------------------------------------------------------- +-- Semantically different to recoverM in TcRnMonad +-- recoverM retains the errors in the first action, +-- whereas recoverTc here does not +recoverTc recover thing = do + (_,mb_res) <- tryTcErrs thing + case mb_res of + Nothing -> recover + Just res -> return res isMonomorphic ty | (tvs, ty') <- splitForAllTys ty = null tvs && (isEmptyVarSet . tyVarsOfType) ty' @@ -664,8 +729,10 @@ mapMif_ pred f (x:xx) = (if pred x then f x else return x) : mapMif_ pred f xx unlessM condM acc = condM >>= \c -> unless c acc -- Strict application of f at index i -appArr f (Array _ _ ptrs#) (I# i#) = case indexArray# ptrs# i# of - (# e #) -> f e +appArr f a@(Array _ _ _ ptrs#) i@(I# i#) + = ASSERT (i < length(elems a)) + case indexArray# ptrs# i# of + (# e #) -> f e zonkTerm :: Term -> TcM Term zonkTerm = foldTerm idTermFoldM {