X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fghci%2FRtClosureInspect.hs;h=4025aa2d6fd4781dbd1adc8a5f0a0fee6cd2f05d;hb=241306953f42fa067a9b503ea1f418e75c32c484;hp=97e47f7b1d8af02775fc6669839f55f68866cda4;hpb=f4c9109d7f1deb6f79c2c141f69ec24b7022776b;p=ghc-hetmet.git diff --git a/compiler/ghci/RtClosureInspect.hs b/compiler/ghci/RtClosureInspect.hs index 97e47f7..4025aa2 100644 --- a/compiler/ghci/RtClosureInspect.hs +++ b/compiler/ghci/RtClosureInspect.hs @@ -8,9 +8,12 @@ module RtClosureInspect( - cvObtainTerm, -- :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term + cvObtainTerm, -- :: HscEnv -> Int -> Bool -> Maybe Type -> HValue -> IO Term Term(..), + isTerm, + isSuspension, + isPrim, pprTerm, cPprTerm, cPprTermBase, @@ -27,7 +30,12 @@ module RtClosureInspect( -- unsafeDeepSeq, cvReconstructType, computeRTTIsubst, - sigmaType + sigmaType, + Closure(..), + getClosureData, + ClosureType(..), + isConstr, + isIndirection ) where #include "HsVersions.h" @@ -39,7 +47,7 @@ import Linker import DataCon import Type -import TcRnMonad ( TcM, initTc, initTcPrintErrors, ioToTcRn, +import TcRnMonad ( TcM, initTc, ioToTcRn, tryTcErrs) import TcType import TcMType @@ -68,8 +76,11 @@ import GHC.Exts import Control.Monad import Data.Maybe import Data.Array.Base +import Data.Ix import Data.List ( partition ) import qualified Data.Sequence as Seq +import Data.Monoid +import Data.Sequence hiding (null, length, index, take, drop, splitAt, reverse) import Foreign import System.IO.Unsafe @@ -152,6 +163,7 @@ instance Outputable ClosureType where #include "../includes/ClosureTypes.h" +aP_CODE, pAP_CODE :: Int aP_CODE = AP pAP_CODE = PAP #undef AP @@ -203,9 +215,10 @@ isFullyEvaluated a = do case tipe closure of Constr -> do are_subs_evaluated <- amapM isFullyEvaluated (ptrs closure) return$ and are_subs_evaluated - otherwise -> return False + _ -> return False where amapM f = sequence . amap' f +amap' :: (t -> b) -> Array Int t -> [b] amap' f (Array i0 i _ arr#) = map g [0 .. i - i0] where g (I# i#) = case indexArray# arr# i# of (# e #) -> f e @@ -238,13 +251,15 @@ extractUnboxed tt clos = go tt (nonPtrs clos) | (x, rest) <- splitAt ((sizeofType t + wORD_SIZE - 1) `div` wORD_SIZE) xx = x : go tt rest +sizeofTyCon :: TyCon -> Int sizeofTyCon = sizeofPrimRep . tyConPrimRep ----------------------------------- -- * Traversals for Terms ----------------------------------- +type TermProcessor a b = Type -> Either String DataCon -> HValue -> [a] -> b -data TermFold a = TermFold { fTerm :: Type -> Either String DataCon -> HValue -> [a] -> a +data TermFold a = TermFold { fTerm :: TermProcessor a a , fPrim :: Type -> [Word] -> a , fSuspension :: ClosureType -> Maybe Type -> HValue -> Maybe Name -> a @@ -290,10 +305,12 @@ app_prec,cons_prec ::Int app_prec = 10 cons_prec = 5 -- TODO Extract this info from GHC itself +pprTerm :: (Int -> Term -> Maybe SDoc) -> Int -> Term -> SDoc pprTerm y p t | Just doc <- pprTermM y p t = doc +pprTerm _ _ _ = panic "pprTerm" pprTermM :: Monad m => (Int -> Term -> m SDoc) -> Int -> Term -> m SDoc -pprTermM y p t@Term{dc=Left dc_tag, subTerms=tt, ty=ty} = do +pprTermM y p Term{dc=Left dc_tag, subTerms=tt} = do tt_docs <- mapM (y app_prec) tt return$ cparen (not(null tt) && p >= app_prec) (text dc_tag <+> sep tt_docs) @@ -312,70 +329,81 @@ pprTermM y p t@Term{dc=Right dc, subTerms=tt, ty=ty} tt_docs <- mapM (y app_prec) tt return$ cparen (p >= app_prec) (ppr dc <+> sep tt_docs) -pprTermM y _ t = pprTermM1 y t -pprTermM1 _ Prim{value=words, ty=ty} = +pprTermM _ _ t = pprTermM1 t + +pprTermM1 :: Monad m => Term -> m SDoc +pprTermM1 Prim{value=words, ty=ty} = return$ text$ repPrim (tyConAppTyCon ty) words -pprTermM1 y t@Term{} = panic "pprTermM1 - unreachable" -pprTermM1 _ Suspension{bound_to=Nothing} = return$ char '_' -pprTermM1 _ Suspension{mb_ty=Just ty, bound_to=Just n} +pprTermM1 Term{} = panic "pprTermM1 - unreachable" +pprTermM1 Suspension{bound_to=Nothing} = return$ char '_' +pprTermM1 Suspension{mb_ty=Just ty, bound_to=Just n} | Just _ <- splitFunTy_maybe ty = return$ ptext SLIT("") | otherwise = return$ parens$ ppr n <> text "::" <> ppr ty +pprTermM1 _ = panic "pprTermM1" + +type CustomTermPrinter m = Int -> TermProcessor Term (m (Maybe SDoc)) -- Takes a list of custom printers with a explicit recursion knot and a term, -- and returns the output of the first succesful printer, or the default printer -cPprTerm :: forall m. Monad m => - ((Int->Term->m SDoc)->[Int->Term->m (Maybe SDoc)]) -> Term -> m SDoc -cPprTerm custom = go 0 where - go prec t@Term{} = do - let default_ prec t = Just `liftM` pprTermM go prec t - mb_customDocs = [pp prec t | pp <- custom go ++ [default_]] +cPprTerm :: Monad m => + ((Int->Term->m SDoc)->[CustomTermPrinter m]) -> Term -> m SDoc +cPprTerm printers_ = go 0 where + printers = printers_ go + go prec t@(Term ty dc val tt) = do + let default_ = Just `liftM` pprTermM go prec t + mb_customDocs = [pp prec ty dc val tt | pp <- printers] ++ [default_] Just doc <- firstJustM mb_customDocs return$ cparen (prec>app_prec+1) doc - go _ t = pprTermM1 go t + go _ t = pprTermM1 t firstJustM (mb:mbs) = mb >>= maybe (firstJustM mbs) (return . Just) firstJustM [] = return Nothing -- Default set of custom printers. Note that the recursion knot is explicit -cPprTermBase :: Monad m => (Int->Term-> m SDoc)->[Int->Term->m (Maybe SDoc)] +cPprTermBase :: Monad m => (Int->Term-> m SDoc)->[CustomTermPrinter m] cPprTermBase y = [ - ifTerm isTupleTy (\_ -> liftM (parens . hcat . punctuate comma) - . mapM (y (-1)) . subTerms) - , ifTerm (\t -> isTyCon listTyCon t && subTerms t `lengthIs` 2) - (\ p Term{subTerms=[h,t]} -> doList p h t) + ifTerm isTupleTy (\ _ _ tt -> + liftM (parens . hcat . punctuate comma) + . mapM (y (-1)) + $ tt) + , ifTerm (\ty tt -> isTyCon listTyCon ty tt && tt `lengthIs` 2) + (\ p _ [h,t] -> doList p h t) , ifTerm (isTyCon intTyCon) (coerceShow$ \(a::Int)->a) , ifTerm (isTyCon charTyCon) (coerceShow$ \(a::Char)->a) -- , ifTerm (isTyCon wordTyCon) (coerceShow$ \(a::Word)->a) , ifTerm (isTyCon floatTyCon) (coerceShow$ \(a::Float)->a) , ifTerm (isTyCon doubleTyCon) (coerceShow$ \(a::Double)->a) , ifTerm isIntegerTy (coerceShow$ \(a::Integer)->a) - ] - where ifTerm pred f p t@Term{} | pred t = liftM Just (f p t) - ifTerm _ _ _ _ = return Nothing - isIntegerTy Term{ty=ty} = fromMaybe False $ do + ] + where ifTerm pred f prec ty _ val tt + | pred ty tt = liftM Just (f prec val tt) + | otherwise = return Nothing + isIntegerTy ty _ = fromMaybe False $ do (tc,_) <- splitTyConApp_maybe ty return (tyConName tc == integerTyConName) - isTupleTy Term{ty=ty} = fromMaybe False $ do + isTupleTy ty _ = fromMaybe False $ do (tc,_) <- splitTyConApp_maybe ty return (tc `elem` (fst.unzip.elems) boxedTupleArr) - isTyCon a_tc Term{ty=ty} = fromMaybe False $ do + isTyCon a_tc ty _ = fromMaybe False $ do (tc,_) <- splitTyConApp_maybe ty return (a_tc == tc) - coerceShow f _ = return . text . show . f . unsafeCoerce# . val + coerceShow f _ val _ = (return . text . show . f . unsafeCoerce#) val --TODO pprinting of list terms is not lazy doList p h t = do let elems = h : getListTerms t isConsLast = termType(last elems) /= termType h print_elems <- mapM (y cons_prec) elems return$ if isConsLast - then cparen (p >= cons_prec) . hsep . punctuate (space<>colon) - $ print_elems + then cparen (p >= cons_prec) + . hsep + . punctuate (space<>colon) + $ print_elems else brackets (hcat$ punctuate comma print_elems) where Just a /= Just b = not (a `coreEqType` b) _ /= _ = True getListTerms Term{subTerms=[h,t]} = h : getListTerms t - getListTerms t@Term{subTerms=[]} = [] + getListTerms Term{subTerms=[]} = [] getListTerms t@Suspension{} = [t] getListTerms t = pprPanic "getListTerms" (ppr t) @@ -457,8 +485,8 @@ newVar = liftTcM . fmap mkTyVarTy . newFlexiTyVar -- | Returns the instantiated type scheme ty', and the substitution sigma -- such that sigma(ty') = ty instScheme :: Type -> TR (TcType, TvSubst) -instScheme ty | (tvs, rho) <- tcSplitForAllTys ty = liftTcM$ do - (tvs',theta,ty') <- tcInstType (mapM tcInstTyVar) ty +instScheme ty | (tvs, _rho) <- tcSplitForAllTys ty = liftTcM$ do + (tvs',_theta,ty') <- tcInstType (mapM tcInstTyVar) ty return (ty', zipTopTvSubst tvs' (mkTyVarTys tvs)) -- Adds a constraint of the form t1 == t2 @@ -468,24 +496,28 @@ instScheme ty | (tvs, rho) <- tcSplitForAllTys ty = liftTcM$ do -- do its magic. addConstraint :: TcType -> TcType -> TR () addConstraint t1 t2 = congruenceNewtypes t1 t2 >>= uncurry unifyType - - + >> return () -- TOMDO: what about the coercion? + -- we should consider family instances -- Type & Term reconstruction -cvObtainTerm :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term -cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do +cvObtainTerm :: HscEnv -> Int -> Bool -> Maybe Type -> HValue -> IO Term +cvObtainTerm hsc_env bound force mb_ty hval = runTR hsc_env $ do tv <- newVar argTypeKind case mb_ty of - Nothing -> go tv tv hval >>= zonkTerm - Just ty | isMonomorphic ty -> go ty ty hval >>= zonkTerm + Nothing -> go bound tv tv hval >>= zonkTerm + Just ty | isMonomorphic ty -> go bound ty ty hval >>= zonkTerm Just ty -> do (ty',rev_subst) <- instScheme (sigmaType ty) addConstraint tv ty' - term <- go tv tv hval >>= zonkTerm + term <- go bound tv tv hval >>= zonkTerm --restore original Tyvars return$ mapTermType (substTy rev_subst) term where - go tv ty a = do + go bound _ _ _ | seq bound False = undefined + go 0 tv _ty a = do + clos <- trIO $ getClosureData a + return (Suspension (tipe clos) (Just tv) a Nothing) + go bound tv ty a = do let monomorphic = not(isTyVarTy tv) -- This ^^^ is a convention. The ancestor tests for -- monomorphism and passes a type instead of a tv @@ -495,9 +527,9 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do -- NB. this won't attempt to force a BLACKHOLE. Even with :force, we never -- force blackholes, because it would almost certainly result in deadlock, -- and showing the '_' is more useful. - t | isThunk t && force -> seq a $ go tv ty a + t | isThunk t && force -> seq a $ go (pred bound) tv ty a -- We always follow indirections - Indirection _ -> go tv ty $! (ptrs clos ! 0) + Indirection _ -> go (pred bound) tv ty $! (ptrs clos ! 0) -- The interesting case Constr -> do Right dcname <- dataConInfoPtrToName (infoPtr clos) @@ -511,7 +543,7 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do let tag = showSDoc (ppr dcname) vars <- replicateM (length$ elems$ ptrs clos) (newVar (liftedTypeKind)) - subTerms <- sequence [appArr (go tv tv) (ptrs clos) i + subTerms <- sequence [appArr (go (pred bound) tv tv) (ptrs clos) i | (i, tv) <- zip [0..] vars] return (Term tv (Left ('<' : tag ++ ">")) a subTerms) Just dc -> do @@ -534,7 +566,7 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do addConstraint myType signatureType subTermsP <- sequence $ drop extra_args -- ^^^ all extra arguments are pointed - [ appArr (go tv t) (ptrs clos) i + [ appArr (go (pred bound) tv t) (ptrs clos) i | (i,tv,t) <- zip3 [0..] subTermTvs subTtypesP] let unboxeds = extractUnboxed subTtypesNP clos subTermsNP = map (uncurry Prim) (zip subTtypesNP unboxeds) @@ -542,9 +574,10 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do (drop extra_args subTtypes) return (Term tv (Right dc) a subTerms) -- The otherwise case: can be a Thunk,AP,PAP,etc. - otherwise -> - return (Suspension (tipe clos) (Just tv) a Nothing) + tipe_clos -> + return (Suspension tipe_clos (Just tv) a Nothing) +-- matchSubTypes dc ty | pprTrace "matchSubtypes" (ppr dc <+> ppr ty) False = undefined matchSubTypes dc ty | Just (_,ty_args) <- splitTyConApp_maybe (repType ty) -- assumption: ^^^ looks through newtypes @@ -568,37 +601,38 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do -- Fast, breadth-first Type reconstruction -max_depth = 10 :: Int -cvReconstructType :: HscEnv -> Bool -> Maybe Type -> HValue -> IO (Maybe Type) -cvReconstructType hsc_env force mb_ty hval = runTR_maybe hsc_env $ do +cvReconstructType :: HscEnv -> Int -> Maybe Type -> HValue -> IO (Maybe Type) +cvReconstructType hsc_env max_depth mb_ty hval = runTR_maybe hsc_env $ do tv <- newVar argTypeKind case mb_ty of Nothing -> do search (isMonomorphic `fmap` zonkTcType tv) - (uncurry go) - [(tv, hval)] + (uncurry go) + (Seq.singleton (tv, hval)) max_depth zonkTcType tv -- TODO untested! Just ty | isMonomorphic ty -> return ty - Just ty -> do - (ty',rev_subst) <- instScheme (sigmaType ty) + Just ty -> do + (ty',rev_subst) <- instScheme (sigmaType ty) addConstraint tv ty' - search (isMonomorphic `fmap` zonkTcType tv) - (\(ty,a) -> go ty a) - [(tv, hval)] + search (isMonomorphic `fmap` zonkTcType tv) + (\(ty,a) -> go ty a) + (Seq.singleton (tv, hval)) max_depth substTy rev_subst `fmap` zonkTcType tv where -- search :: m Bool -> ([a] -> [a] -> [a]) -> [a] -> m () - search stop expand [] depth = return () - search stop expand x 0 = fail$ "Failed to reconstruct a type after " ++ + search _ _ _ 0 = fail$ "Failed to reconstruct a type after " ++ show max_depth ++ " steps" - search stop expand (x:xx) d = unlessM stop $ do - new <- expand x - search stop expand (xx ++ new) $! (pred d) + search stop expand l d = + case viewl l of + EmptyL -> return () + x :< xx -> unlessM stop $ do + new <- expand x + search stop expand (xx `mappend` Seq.fromList new) $! (pred d) -- returns unification tasks,since we are going to want a breadth-first search go :: Type -> HValue -> TR [(Type, HValue)] - go tv a = do + go tv a = do clos <- trIO $ getClosureData a case tipe clos of Indirection _ -> go tv $! (ptrs clos ! 0) @@ -606,36 +640,35 @@ cvReconstructType hsc_env force mb_ty hval = runTR_maybe hsc_env $ do Right dcname <- dataConInfoPtrToName (infoPtr clos) (_,mb_dc) <- tryTcErrs (tcLookupDataCon dcname) case mb_dc of - Nothing-> do + Nothing-> do -- TODO: Check this case - vars <- replicateM (length$ elems$ ptrs clos) - (newVar (liftedTypeKind)) - subTerms <- sequence [ appArr (go tv) (ptrs clos) i - | (i, tv) <- zip [0..] vars] forM [0..length (elems $ ptrs clos)] $ \i -> do - tv <- newVar liftedTypeKind + tv <- newVar liftedTypeKind return$ appArr (\e->(tv,e)) (ptrs clos) i - Just dc -> do - let extra_args = length(dataConRepArgTys dc) - + Just dc -> do + let extra_args = length(dataConRepArgTys dc) - length(dataConOrigArgTys dc) subTtypes <- mapMif (not . isMonomorphic) (\t -> newVar (typeKind t)) (dataConRepArgTys dc) + -- It is vital for newtype reconstruction that the unification step -- is done right here, _before_ the subterms are RTTI reconstructed let myType = mkFunTys subTtypes tv (signatureType,_) <- instScheme(dataConRepType dc) addConstraint myType signatureType return $ [ appArr (\e->(t,e)) (ptrs clos) i - | (i,t) <- drop extra_args $ zip [0..] subTtypes] - otherwise -> return [] + | (i,t) <- drop extra_args $ + zip [0..] (filter isPointed subTtypes)] + _ -> return [] -- This helper computes the difference between a base type t and the -- improved rtti_t computed by RTTI -- The main difference between RTTI types and their normal counterparts -- is that the former are _not_ polymorphic, thus polymorphism must -- be stripped. Syntactically, forall's must be stripped +computeRTTIsubst :: Type -> Type -> Maybe TvSubst computeRTTIsubst ty rtti_ty = -- In addition, we strip newtypes too, since the reconstructed type might -- not have recovered them all @@ -681,7 +714,7 @@ congruenceNewtypes lhs rhs | Just tv <- getTyVar_maybe lhs = recoverTc (return (lhs,rhs)) $ do Indirect ty_v <- readMetaTyVar tv - (lhs1, rhs1) <- congruenceNewtypes ty_v rhs + (_lhs1, rhs1) <- congruenceNewtypes ty_v rhs return (lhs, rhs1) -- FunTy inductive case | Just (l1,l2) <- splitFunTy_maybe lhs @@ -690,8 +723,8 @@ congruenceNewtypes lhs rhs (l1',r1') <- congruenceNewtypes l1 r1 return (mkFunTy l1' l2', mkFunTy r1' r2') -- TyconApp Inductive case; this is the interesting bit. - | Just (tycon_l, args_l) <- splitNewTyConApp_maybe lhs - , Just (tycon_r, args_r) <- splitNewTyConApp_maybe rhs + | Just (tycon_l, _) <- splitNewTyConApp_maybe lhs + , Just (tycon_r, _) <- splitNewTyConApp_maybe rhs , tycon_l /= tycon_r = return (lhs, upgrade tycon_l rhs) @@ -703,6 +736,7 @@ congruenceNewtypes lhs rhs | ty' <- mkTyConApp new_tycon (map mkTyVarTy $ tyConTyVars new_tycon) , Just subst <- tcUnifyTys (const BindMe) [ty] [repType ty'] = substTy subst ty' + upgrade _ _ = panic "congruenceNewtypes.upgrade" -- assumes that reptype doesn't touch tyconApp args ^^^ @@ -710,24 +744,29 @@ congruenceNewtypes lhs rhs -- Semantically different to recoverM in TcRnMonad -- recoverM retains the errors in the first action, -- whereas recoverTc here does not +recoverTc :: TcM a -> TcM a -> TcM a recoverTc recover thing = do (_,mb_res) <- tryTcErrs thing case mb_res of Nothing -> recover Just res -> return res +isMonomorphic :: Type -> Bool isMonomorphic ty | (tvs, ty') <- splitForAllTys ty = null tvs && (isEmptyVarSet . tyVarsOfType) ty' mapMif :: Monad m => (a -> Bool) -> (a -> m a) -> [a] -> m [a] mapMif pred f xx = sequence $ mapMif_ pred f xx -mapMif_ pred f [] = [] -mapMif_ pred f (x:xx) = (if pred x then f x else return x) : mapMif_ pred f xx + where + mapMif_ _ _ [] = [] + mapMif_ pred f (x:xx) = (if pred x then f x else return x) : mapMif_ pred f xx +unlessM :: Monad m => m Bool -> m () -> m () unlessM condM acc = condM >>= \c -> unless c acc -- Strict application of f at index i -appArr f a@(Array _ _ _ ptrs#) i@(I# i#) +appArr :: Ix i => (e -> a) -> Array i e -> Int -> a +appArr f (Array _ _ _ ptrs#) (I# i#) = ASSERT (i < length(elems a)) case indexArray# ptrs# i# of (# e #) -> f e @@ -743,6 +782,7 @@ zonkTerm = foldTerm idTermFoldM { -- Is this defined elsewhere? -- Generalize the type: find all free tyvars and wrap in the appropiate ForAll. +sigmaType :: Type -> Type sigmaType ty = mkForAllTys (varSetElems$ tyVarsOfType (dropForAlls ty)) ty