X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fghci%2FRtClosureInspect.hs;h=4a481f3ecdb9ae58c451592df75ae9a37bd34aec;hb=7f474b779449109760d133eef5aba0aa3c38474a;hp=a05830eb65fc5d47ebb5c3efb7b11c144cd11dbf;hpb=9e95b0d6162ea28ad250339affa0d67d2919ef6d;p=ghc-hetmet.git diff --git a/compiler/ghci/RtClosureInspect.hs b/compiler/ghci/RtClosureInspect.hs index a05830e..4a481f3 100644 --- a/compiler/ghci/RtClosureInspect.hs +++ b/compiler/ghci/RtClosureInspect.hs @@ -17,6 +17,7 @@ module RtClosureInspect( pprTerm, cPprTerm, cPprTermBase, + CustomTermPrinter, termType, foldTerm, TermFold(..), @@ -29,7 +30,7 @@ module RtClosureInspect( termTyVars, -- unsafeDeepSeq, cvReconstructType, - computeRTTIsubst, + unifyRTTI, sigmaType, Closure(..), getClosureData, @@ -45,23 +46,24 @@ import qualified ByteCodeItbls as BCI( StgInfoTable(..) ) import HscTypes ( HscEnv ) import Linker -import DataCon -import Type -import TcRnMonad ( TcM, initTc, ioToTcRn, - tryTcErrs) +import DataCon +import Type +import Var +import TcRnMonad ( TcM, initTc, ioToTcRn, + tryTcErrs, traceTc) import TcType import TcMType import TcUnify import TcGadt import TcEnv import DriverPhases -import TyCon -import Name +import TyCon +import Name import VarEnv import Util import VarSet -import TysPrim +import TysPrim import PrelNames import TysWiredIn @@ -101,8 +103,6 @@ import System.IO.Unsafe data Term = Term { ty :: Type , dc :: Either String DataCon - -- The heap datacon. If ty is a newtype, - -- this is NOT the newtype datacon. -- Empty if the datacon aint exported by the .hi -- (private constructors in -O0 libraries) , val :: HValue @@ -116,14 +116,19 @@ data Term = Term { ty :: Type , val :: HValue , bound_to :: Maybe Name -- Useful for printing } + | NewtypeWrap{ ty :: Type + , dc :: Either String DataCon + , wrapped_term :: Term } -isTerm, isSuspension, isPrim :: Term -> Bool +isTerm, isSuspension, isPrim, isNewtypeWrap :: Term -> Bool isTerm Term{} = True isTerm _ = False isSuspension Suspension{} = True isSuspension _ = False isPrim Prim{} = True isPrim _ = False +isNewtypeWrap NewtypeWrap{} = True +isNewtypeWrap _ = False termType :: Term -> Maybe Type termType t@(Suspension {}) = mb_ty t @@ -131,11 +136,13 @@ termType t = Just$ ty t isFullyEvaluatedTerm :: Term -> Bool isFullyEvaluatedTerm Term {subTerms=tt} = all isFullyEvaluatedTerm tt -isFullyEvaluatedTerm Suspension {} = False isFullyEvaluatedTerm Prim {} = True +isFullyEvaluatedTerm NewtypeWrap{wrapped_term=t} = isFullyEvaluatedTerm t +isFullyEvaluatedTerm _ = False instance Outputable (Term) where - ppr = head . cPprTerm cPprTermBase + ppr t | Just doc <- cPprTerm cPprTermBase t = doc + | otherwise = panic "Outputable Term instance" ------------------------------------------------------------------------- -- Runtime Closure Datatype and functions for retrieving closure related stuff @@ -173,7 +180,15 @@ getClosureData :: a -> IO Closure getClosureData a = case unpackClosure# a of (# iptr, ptrs, nptrs #) -> do +#ifndef GHCI_TABLES_NEXT_TO_CODE + -- the info pointer we get back from unpackClosure# is to the + -- beginning of the standard info table, but the Storable instance + -- for info tables takes into account the extra entry pointer + -- when !tablesNextToCode, so we must adjust here: + itbl <- peek (Ptr iptr `plusPtr` negate wORD_SIZE) +#else itbl <- peek (Ptr iptr) +#endif let tipe = readCType (BCI.tipe itbl) elems = fromIntegral (BCI.ptrs itbl) ptrsList = Array 0 (elems - 1) elems ptrs @@ -263,31 +278,37 @@ data TermFold a = TermFold { fTerm :: TermProcessor a a , fPrim :: Type -> [Word] -> a , fSuspension :: ClosureType -> Maybe Type -> HValue -> Maybe Name -> a + , fNewtypeWrap :: Type -> Either String DataCon + -> a -> a } foldTerm :: TermFold a -> Term -> a foldTerm tf (Term ty dc v tt) = fTerm tf ty dc v (map (foldTerm tf) tt) foldTerm tf (Prim ty v ) = fPrim tf ty v foldTerm tf (Suspension ct ty v b) = fSuspension tf ct ty v b +foldTerm tf (NewtypeWrap ty dc t) = fNewtypeWrap tf ty dc (foldTerm tf t) idTermFold :: TermFold Term idTermFold = TermFold { fTerm = Term, fPrim = Prim, - fSuspension = Suspension + fSuspension = Suspension, + fNewtypeWrap = NewtypeWrap } idTermFoldM :: Monad m => TermFold (m Term) idTermFoldM = TermFold { fTerm = \ty dc v tt -> sequence tt >>= return . Term ty dc v, fPrim = (return.). Prim, - fSuspension = (((return.).).). Suspension + fSuspension = (((return.).).). Suspension, + fNewtypeWrap= \ty dc t -> NewtypeWrap ty dc `liftM` t } mapTermType :: (Type -> Type) -> Term -> Term mapTermType f = foldTerm idTermFold { fTerm = \ty dc hval tt -> Term (f ty) dc hval tt, fSuspension = \ct mb_ty hval n -> - Suspension ct (fmap f mb_ty) hval n } + Suspension ct (fmap f mb_ty) hval n, + fNewtypeWrap= \ty dc t -> NewtypeWrap (f ty) dc t} termTyVars :: Term -> TyVarSet termTyVars = foldTerm TermFold { @@ -295,115 +316,149 @@ termTyVars = foldTerm TermFold { tyVarsOfType ty `plusVarEnv` concatVarEnv tt, fSuspension = \_ mb_ty _ _ -> maybe emptyVarEnv tyVarsOfType mb_ty, - fPrim = \ _ _ -> emptyVarEnv } + fPrim = \ _ _ -> emptyVarEnv, + fNewtypeWrap= \ty _ t -> tyVarsOfType ty `plusVarEnv` t} where concatVarEnv = foldr plusVarEnv emptyVarEnv + ---------------------------------- -- Pretty printing of terms ---------------------------------- -app_prec,cons_prec ::Int -app_prec = 10 +type Precedence = Int +type TermPrinter = Precedence -> Term -> SDoc +type TermPrinterM m = Precedence -> Term -> m SDoc + +app_prec,cons_prec, max_prec ::Int +max_prec = 10 +app_prec = max_prec cons_prec = 5 -- TODO Extract this info from GHC itself -pprTerm :: (Int -> Term -> Maybe SDoc) -> Int -> Term -> SDoc -pprTerm y p t | Just doc <- pprTermM y p t = doc +pprTerm :: TermPrinter -> TermPrinter +pprTerm y p t | Just doc <- pprTermM (\p -> Just . y p) p t = doc pprTerm _ _ _ = panic "pprTerm" -pprTermM :: Monad m => (Int -> Term -> m SDoc) -> Int -> Term -> m SDoc -pprTermM y p Term{dc=Left dc_tag, subTerms=tt} = do +pprTermM, ppr_termM, pprNewtypeWrap :: Monad m => TermPrinterM m -> TermPrinterM m +pprTermM y p t = pprDeeper `liftM` ppr_termM y p t + +pprTermM1, ppr_termM1 :: Monad m => Term -> m SDoc +pprTermM1 t = pprDeeper `liftM` ppr_termM1 t + +ppr_termM y p Term{dc=Left dc_tag, subTerms=tt} = do tt_docs <- mapM (y app_prec) tt - return$ cparen (not(null tt) && p >= app_prec) (text dc_tag <+> sep tt_docs) + return$ cparen (not(null tt) && p >= app_prec) (text dc_tag <+> pprDeeperList fsep tt_docs) -pprTermM y p t@Term{dc=Right dc, subTerms=tt, ty=ty} +ppr_termM y p Term{dc=Right dc, subTerms=tt} {- | dataConIsInfix dc, (t1:t2:tt') <- tt --TODO fixity - = parens (pprTerm1 True t1 <+> ppr dc <+> pprTerm1 True ppr t2) - <+> hsep (map (pprTerm1 True) tt) + = parens (ppr_term1 True t1 <+> ppr dc <+> ppr_term1 True ppr t2) + <+> hsep (map (ppr_term1 True) tt) -} -- TODO Printing infix constructors properly | null tt = return$ ppr dc - | Just (tc,_) <- splitNewTyConApp_maybe ty - , isNewTyCon tc - , Just new_dc <- maybeTyConSingleCon tc = do - real_value <- y 10 t{ty=repType ty} - return$ cparen (p >= app_prec) (ppr new_dc <+> real_value) | otherwise = do tt_docs <- mapM (y app_prec) tt - return$ cparen (p >= app_prec) (ppr dc <+> sep tt_docs) + return$ cparen (p >= app_prec) (ppr dc <+> pprDeeperList fsep tt_docs) -pprTermM _ _ t = pprTermM1 t +ppr_termM y p t@NewtypeWrap{} = pprNewtypeWrap y p t -pprTermM1 :: Monad m => Term -> m SDoc -pprTermM1 Prim{value=words, ty=ty} = +ppr_termM _ _ t = ppr_termM1 t + + +ppr_termM1 Prim{value=words, ty=ty} = return$ text$ repPrim (tyConAppTyCon ty) words -pprTermM1 Term{} = panic "pprTermM1 - unreachable" -pprTermM1 Suspension{bound_to=Nothing} = return$ char '_' -pprTermM1 Suspension{mb_ty=Just ty, bound_to=Just n} +ppr_termM1 Term{} = panic "ppr_termM1 - unreachable" +ppr_termM1 Suspension{bound_to=Nothing} = return$ char '_' +ppr_termM1 Suspension{mb_ty=Just ty, bound_to=Just n} | Just _ <- splitFunTy_maybe ty = return$ ptext SLIT("") | otherwise = return$ parens$ ppr n <> text "::" <> ppr ty -pprTermM1 _ = panic "pprTermM1" - -type CustomTermPrinter m = Int -> TermProcessor Term (m (Maybe SDoc)) +ppr_termM1 _ = panic "ppr_termM1" --- Takes a list of custom printers with a explicit recursion knot and a term, +pprNewtypeWrap y p NewtypeWrap{ty=ty, wrapped_term=t} + | Just (tc,_) <- splitNewTyConApp_maybe ty + , ASSERT(isNewTyCon tc) True + , Just new_dc <- maybeTyConSingleCon tc = do + real_term <- y max_prec t + return$ cparen (p >= app_prec) (ppr new_dc <+> real_term) +pprNewtypeWrap _ _ _ = panic "pprNewtypeWrap" + +------------------------------------------------------- +-- Custom Term Pretty Printers +------------------------------------------------------- + +-- We can want to customize the representation of a +-- term depending on its type. +-- However, note that custom printers have to work with +-- type representations, instead of directly with types. +-- We cannot use type classes here, unless we employ some +-- typerep trickery (e.g. Weirich's RepLib tricks), +-- which I didn't. Therefore, this code replicates a lot +-- of what type classes provide for free. + +type CustomTermPrinter m = TermPrinterM m + -> [Precedence -> Term -> (m (Maybe SDoc))] + +-- | Takes a list of custom printers with a explicit recursion knot and a term, -- and returns the output of the first succesful printer, or the default printer -cPprTerm :: Monad m => - ((Int->Term->m SDoc)->[CustomTermPrinter m]) -> Term -> m SDoc +cPprTerm :: Monad m => CustomTermPrinter m -> Term -> m SDoc cPprTerm printers_ = go 0 where printers = printers_ go - go prec t@(Term ty dc val tt) = do + go prec t | isTerm t || isNewtypeWrap t = do let default_ = Just `liftM` pprTermM go prec t - mb_customDocs = [pp prec ty dc val tt | pp <- printers] ++ [default_] + mb_customDocs = [pp prec t | pp <- printers] ++ [default_] Just doc <- firstJustM mb_customDocs return$ cparen (prec>app_prec+1) doc go _ t = pprTermM1 t + firstJustM (mb:mbs) = mb >>= maybe (firstJustM mbs) (return . Just) firstJustM [] = return Nothing -- Default set of custom printers. Note that the recursion knot is explicit -cPprTermBase :: Monad m => (Int->Term-> m SDoc)->[CustomTermPrinter m] +cPprTermBase :: Monad m => CustomTermPrinter m cPprTermBase y = - [ - ifTerm isTupleTy (\ _ _ tt -> - liftM (parens . hcat . punctuate comma) - . mapM (y (-1)) - $ tt) - , ifTerm (\ty tt -> isTyCon listTyCon ty tt && tt `lengthIs` 2) - (\ p _ [h,t] -> doList p h t) - , ifTerm (isTyCon intTyCon) (coerceShow$ \(a::Int)->a) - , ifTerm (isTyCon charTyCon) (coerceShow$ \(a::Char)->a) --- , ifTerm (isTyCon wordTyCon) (coerceShow$ \(a::Word)->a) - , ifTerm (isTyCon floatTyCon) (coerceShow$ \(a::Float)->a) - , ifTerm (isTyCon doubleTyCon) (coerceShow$ \(a::Double)->a) - , ifTerm isIntegerTy (coerceShow$ \(a::Integer)->a) + [ ifTerm (isTupleTy.ty) (\_p -> liftM (parens . hcat . punctuate comma) + . mapM (y (-1)) + . subTerms) + , ifTerm (\t -> isTyCon listTyCon (ty t) && subTerms t `lengthIs` 2) + (\ p Term{subTerms=[h,t]} -> doList p h t) + , ifTerm (isTyCon intTyCon . ty) (coerceShow$ \(a::Int)->a) + , ifTerm (isTyCon charTyCon . ty) (coerceShow$ \(a::Char)->a) + , ifTerm (isTyCon floatTyCon . ty) (coerceShow$ \(a::Float)->a) + , ifTerm (isTyCon doubleTyCon . ty) (coerceShow$ \(a::Double)->a) + , ifTerm (isIntegerTy . ty) (coerceShow$ \(a::Integer)->a) ] - where ifTerm pred f prec ty _ val tt - | pred ty tt = liftM Just (f prec val tt) - | otherwise = return Nothing - isIntegerTy ty _ = fromMaybe False $ do + where ifTerm pred f prec t@Term{} + | pred t = Just `liftM` f prec t + ifTerm _ _ _ _ = return Nothing + + isIntegerTy ty = fromMaybe False $ do (tc,_) <- splitTyConApp_maybe ty return (tyConName tc == integerTyConName) - isTupleTy ty _ = fromMaybe False $ do + + isTupleTy ty = fromMaybe False $ do (tc,_) <- splitTyConApp_maybe ty return (tc `elem` (fst.unzip.elems) boxedTupleArr) - isTyCon a_tc ty _ = fromMaybe False $ do + + isTyCon a_tc ty = fromMaybe False $ do (tc,_) <- splitTyConApp_maybe ty return (a_tc == tc) - coerceShow f _ val _ = (return . text . show . f . unsafeCoerce#) val - --TODO pprinting of list terms is not lazy + + coerceShow f _p = return . text . show . f . unsafeCoerce# . val + + --Note pprinting of list terms is not lazy doList p h t = do - let elems = h : getListTerms t + let elems = h : getListTerms t isConsLast = termType(last elems) /= termType h print_elems <- mapM (y cons_prec) elems return$ if isConsLast then cparen (p >= cons_prec) - . hsep + . pprDeeperList fsep . punctuate (space<>colon) $ print_elems - else brackets (hcat$ punctuate comma print_elems) + else brackets (pprDeeperList fcat$ + punctuate comma print_elems) where Just a /= Just b = not (a `coreEqType` b) _ /= _ = True getListTerms Term{subTerms=[h,t]} = h : getListTerms t - getListTerms Term{subTerms=[]} = [] + getListTerms Term{subTerms=[]} = [] getListTerms t@Suspension{} = [t] getListTerms t = pprPanic "getListTerms" (ppr t) @@ -473,6 +528,9 @@ runTR hsc_env c = do runTR_maybe :: HscEnv -> TR a -> IO (Maybe a) runTR_maybe hsc_env = fmap snd . initTc hsc_env HsSrcFile False iNTERACTIVE +traceTR :: SDoc -> TR () +traceTR = liftTcM . traceTc + trIO :: IO a -> TR a trIO = liftTcM . ioToTcRn @@ -504,14 +562,18 @@ cvObtainTerm :: HscEnv -> Int -> Bool -> Maybe Type -> HValue -> IO Term cvObtainTerm hsc_env bound force mb_ty hval = runTR hsc_env $ do tv <- newVar argTypeKind case mb_ty of - Nothing -> go bound tv tv hval >>= zonkTerm - Just ty | isMonomorphic ty -> go bound ty ty hval >>= zonkTerm + Nothing -> go bound tv tv hval + >>= zonkTerm + >>= return . expandNewtypes + Just ty | isMonomorphic ty -> go bound ty ty hval + >>= zonkTerm + >>= return . expandNewtypes Just ty -> do (ty',rev_subst) <- instScheme (sigmaType ty) addConstraint tv ty' term <- go bound tv tv hval >>= zonkTerm --restore original Tyvars - return$ mapTermType (substTy rev_subst) term + return$ expandNewtypes $ mapTermType (substTy rev_subst) term where go bound _ _ _ | seq bound False = undefined go 0 tv _ty a = do @@ -529,7 +591,7 @@ cvObtainTerm hsc_env bound force mb_ty hval = runTR hsc_env $ do -- and showing the '_' is more useful. t | isThunk t && force -> seq a $ go (pred bound) tv ty a -- We always follow indirections - Indirection _ -> go (pred bound) tv ty $! (ptrs clos ! 0) + Indirection _ -> go bound tv ty $! (ptrs clos ! 0) -- The interesting case Constr -> do Right dcname <- dataConInfoPtrToName (infoPtr clos) @@ -577,7 +639,6 @@ cvObtainTerm hsc_env bound force mb_ty hval = runTR hsc_env $ do tipe_clos -> return (Suspension tipe_clos (Just tv) a Nothing) --- matchSubTypes dc ty | pprTrace "matchSubtypes" (ppr dc <+> ppr ty) False = undefined matchSubTypes dc ty | Just (_,ty_args) <- splitTyConApp_maybe (repType ty) -- assumption: ^^^ looks through newtypes @@ -592,12 +653,24 @@ cvObtainTerm hsc_env bound force mb_ty hval = runTR hsc_env $ do | isPointed ty = ASSERT2(not(null pointed) , ptext SLIT("reOrderTerms") $$ (ppr pointed $$ ppr unpointed)) - head pointed : reOrderTerms (tail pointed) unpointed tys + let (t:tt) = pointed in t : reOrderTerms tt unpointed tys | otherwise = ASSERT2(not(null unpointed) , ptext SLIT("reOrderTerms") $$ (ppr pointed $$ ppr unpointed)) - head unpointed : reOrderTerms pointed (tail unpointed) tys + let (t:tt) = unpointed in t : reOrderTerms pointed tt tys + + expandNewtypes t@Term{ ty=ty, subTerms=tt } + | Just (tc, args) <- splitNewTyConApp_maybe ty + , isNewTyCon tc + , wrapped_type <- newTyConInstRhs tc args + , Just dc <- maybeTyConSingleCon tc + , t' <- expandNewtypes t{ ty = wrapped_type + , subTerms = map expandNewtypes tt } + = NewtypeWrap ty (Right dc) t' + | otherwise = t{ subTerms = map expandNewtypes tt } + + expandNewtypes t = t -- Fast, breadth-first Type reconstruction @@ -621,8 +694,8 @@ cvReconstructType hsc_env max_depth mb_ty hval = runTR_maybe hsc_env $ do substTy rev_subst `fmap` zonkTcType tv where -- search :: m Bool -> ([a] -> [a] -> [a]) -> [a] -> m () - search _ _ _ 0 = fail$ "Failed to reconstruct a type after " ++ - show max_depth ++ " steps" + search _ _ _ 0 = traceTR (text "Failed to reconstruct a type after " <> + int max_depth <> text " steps") search stop expand l d = case viewl l of EmptyL -> return () @@ -667,16 +740,20 @@ cvReconstructType hsc_env max_depth mb_ty hval = runTR_maybe hsc_env $ do -- improved rtti_t computed by RTTI -- The main difference between RTTI types and their normal counterparts -- is that the former are _not_ polymorphic, thus polymorphism must - -- be stripped. Syntactically, forall's must be stripped -computeRTTIsubst :: Type -> Type -> Maybe TvSubst -computeRTTIsubst ty rtti_ty = + -- be stripped. Syntactically, forall's must be stripped. + -- We also remove predicates. +unifyRTTI :: Type -> Type -> TvSubst +unifyRTTI ty rtti_ty = + case mb_subst of + Just subst -> subst + Nothing -> pprPanic "Failed to compute a RTTI substitution" + (ppr (ty, rtti_ty)) -- In addition, we strip newtypes too, since the reconstructed type might -- not have recovered them all - tcUnifyTys (const BindMe) - [repType' $ dropForAlls$ ty] - [repType' $ rtti_ty] --- TODO stripping newtypes shouldn't be necessary, test - + -- TODO stripping newtypes shouldn't be necessary, test + where mb_subst = tcUnifyTys (const BindMe) + [rttiView ty] + [rttiView rtti_ty] -- Dealing with newtypes {- @@ -705,10 +782,12 @@ computeRTTIsubst ty rtti_ty = Note that it is very tricky to make this 'rewriting' work with the unification implemented by TcM, where substitutions are 'inlined'. The order in which - constraints are unified is vital for this (or I am - using TcM wrongly). + constraints are unified is vital for this. + This is a simple form of residuation, the technique of + delaying unification steps until enough information + is available. -} -congruenceNewtypes :: TcType -> TcType -> TcM (TcType,TcType) +congruenceNewtypes :: TcType -> TcType -> TR (TcType,TcType) congruenceNewtypes lhs rhs -- TyVar lhs inductive case | Just tv <- getTyVar_maybe lhs @@ -726,18 +805,20 @@ congruenceNewtypes lhs rhs | Just (tycon_l, _) <- splitNewTyConApp_maybe lhs , Just (tycon_r, _) <- splitNewTyConApp_maybe rhs , tycon_l /= tycon_r - = return (lhs, upgrade tycon_l rhs) + = do rhs' <- upgrade tycon_l rhs + return (lhs, rhs') | otherwise = return (lhs,rhs) - where upgrade :: TyCon -> Type -> Type + where upgrade :: TyCon -> Type -> TR Type upgrade new_tycon ty - | not (isNewTyCon new_tycon) = ty - | ty' <- mkTyConApp new_tycon (map mkTyVarTy $ tyConTyVars new_tycon) - , Just subst <- tcUnifyTys (const BindMe) [ty] [repType ty'] - = substTy subst ty' - upgrade _ _ = panic "congruenceNewtypes.upgrade" - -- assumes that reptype doesn't touch tyconApp args ^^^ + | not (isNewTyCon new_tycon) = return ty + | otherwise = do + vars <- mapM (newVar . tyVarKind) (tyConTyVars new_tycon) + let ty' = mkTyConApp new_tycon vars + liftTcM (unifyType ty (repType ty')) + -- assumes that reptype doesn't ^^^^ touch tyconApp args + return ty' -------------------------------------------------------------------------------- @@ -777,7 +858,9 @@ zonkTerm = foldTerm idTermFoldM { zonkTcType ty >>= \ty' -> return (Term ty' dc v tt) ,fSuspension = \ct ty v b -> fmapMMaybe zonkTcType ty >>= \ty -> - return (Suspension ct ty v b)} + return (Suspension ct ty v b) + ,fNewtypeWrap= \ty dc t -> + return NewtypeWrap `ap` zonkTcType ty `ap` return dc `ap` t} -- Is this defined elsewhere?