X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fghci%2FRtClosureInspect.hs;h=96edf90a6a3648eefce2ff40ae437bb285baf9f2;hb=cf48cf640cc96fc0cb50b5c683cf16bbede064a0;hp=e0a1250ddae9f8cf96d8da8dd96d2a97787cad5e;hpb=5cceab60a792e0d05a544135d1d65b1255645970;p=ghc-hetmet.git diff --git a/compiler/ghci/RtClosureInspect.hs b/compiler/ghci/RtClosureInspect.hs index e0a1250..96edf90 100644 --- a/compiler/ghci/RtClosureInspect.hs +++ b/compiler/ghci/RtClosureInspect.hs @@ -10,21 +10,11 @@ module RtClosureInspect( cvObtainTerm, -- :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term - AddressEnv(..), - DataConEnv, - extendAddressEnvList, - elemAddressEnv, - delFromAddressEnv, - emptyAddressEnv, - lookupAddressEnv, - ClosureType(..), getClosureData, -- :: a -> IO Closure - Closure ( tipe, infoTable, ptrs, nonPtrs ), - getClosureType, -- :: a -> IO ClosureType + Closure ( tipe, infoPtr, ptrs, nonPtrs ), isConstr, -- :: ClosureType -> Bool isIndirection, -- :: ClosureType -> Bool - getInfoTablePtr, -- :: a -> Ptr StgInfoTable Term(..), printTerm, @@ -39,8 +29,6 @@ module RtClosureInspect( isPointed, isFullyEvaluatedTerm, -- unsafeDeepSeq, - - sigmaType ) where #include "HsVersions.h" @@ -87,6 +75,8 @@ import Data.Array.Base import Data.List ( partition ) import Foreign.Storable +import IO + --------------------------------------------- -- * A representation of semi evaluated Terms --------------------------------------------- @@ -149,6 +139,7 @@ data ClosureType = Constr deriving (Show, Eq) data Closure = Closure { tipe :: ClosureType + , infoPtr :: Ptr () , infoTable :: StgInfoTable , ptrs :: Array Int HValue -- What would be the type here? HValue is ok? Should I build a Ptr? @@ -158,14 +149,6 @@ data Closure = Closure { tipe :: ClosureType instance Outputable ClosureType where ppr = text . show -getInfoTablePtr :: a -> Ptr StgInfoTable -getInfoTablePtr x = - case infoPtr# x of - itbl_ptr -> castPtr ( Ptr itbl_ptr ) - -getClosureType :: a -> IO ClosureType -getClosureType = liftM (readCType . BCI.tipe ) . peek . getInfoTablePtr - #include "../includes/ClosureTypes.h" aP_CODE = AP @@ -174,14 +157,14 @@ pAP_CODE = PAP #undef PAP getClosureData :: a -> IO Closure -getClosureData a = do - itbl <- peek (getInfoTablePtr a) - let tipe = readCType (BCI.tipe itbl) - case closurePayload# a of - (# ptrs, nptrs #) -> - let elems = BCI.ptrs itbl +getClosureData a = + case unpackClosure# a of + (# iptr, ptrs, nptrs #) -> do + itbl <- peek (Ptr iptr) + let tipe = readCType (BCI.tipe itbl) + elems = BCI.ptrs itbl ptrsList = Array 0 (fromIntegral$ elems) ptrs - in ptrsList `seq` return (Closure tipe itbl ptrsList nptrs) + ptrsList `seq` return (Closure tipe (Ptr iptr) itbl ptrsList nptrs) readCType :: Integral a => a -> ClosureType readCType i @@ -276,7 +259,7 @@ extractUnboxed tt ba = helper tt (byteArrayContents# ba) -- TODO: Improve the offset handling in decode (make it machine dependant) ----------------------------------- --- Boilerplate Fold code for Term +-- * Traversals for Terms ----------------------------------- data TermFold a = TermFold { fTerm :: Type -> DataCon -> HValue -> [a] -> a @@ -315,8 +298,9 @@ printTerm :: Term -> SDoc printTerm Prim{value=value} = text value printTerm t@Term{} = printTerm1 0 t printTerm Suspension{bound_to=Nothing} = char '_' -- <> ppr ct <> char '_' -printTerm Suspension{mb_ty=Just ty, bound_to=Just n} = - parens$ ppr n <> text "::" <> ppr ty +printTerm Suspension{mb_ty=Just ty, bound_to=Just n} + | Just _ <- splitFunTy_maybe ty = text "" + | otherwise = parens$ ppr n <> text "::" <> ppr ty printTerm1 p Term{dc=dc, subTerms=tt} {- | dataConIsInfix dc, (t1:t2:tt') <- tt @@ -331,20 +315,21 @@ printTerm1 p Term{dc=dc, subTerms=tt} printTerm1 _ t = printTerm t -customPrintTerm :: Monad m => ((Int->Term->m SDoc)->[Term->m (Maybe SDoc)]) -> Term -> m SDoc -customPrintTerm custom = let +customPrintTerm :: forall m. Monad m => ((Int->Term->m SDoc)->[Term->m (Maybe SDoc)]) -> Term -> m SDoc +customPrintTerm custom = go 0 where -- go :: Monad m => Int -> Term -> m SDoc go prec t@Term{subTerms=tt, dc=dc} = do - mb_customDocs <- sequence$ sequence (custom go) t -- Inner sequence is List monad - case msum mb_customDocs of -- msum is in Maybe monad + let mb_customDocs = map ($t) (custom go) :: [m (Maybe SDoc)] + first_success <- firstJustM mb_customDocs + case first_success of Just doc -> return$ parensCond (prec>app_prec+1) doc -- | dataConIsInfix dc, (t1:t2:tt') <- tt = Nothing -> do pprSubterms <- mapM (go (app_prec+1)) tt return$ parensCond (prec>app_prec+1) (ppr dc <+> sep pprSubterms) go _ t = return$ printTerm t - in go 0 - where fixity = undefined + firstJustM (mb:mbs) = mb >>= maybe (firstJustM mbs) (return . Just) + firstJustM [] = return Nothing customPrintTermBase :: Monad m => (Int->Term-> m SDoc)->[Term->m (Maybe SDoc)] customPrintTermBase showP = @@ -403,45 +388,81 @@ trIO :: IO a -> TR a trIO = liftTcM . ioToTcRn addConstraint :: TcType -> TcType -> TR () -addConstraint t1 t2 = congruenceNewtypes t1 t2 >> unifyType t1 t2 - --- A parallel fold over a Type value, replacing --- in the right side reptypes for newtypes as found in the lhs --- Sadly it doesn't cover all the possibilities. It does not always manage --- to recover the highest level type. See test print016 for an example -congruenceNewtypes :: TcType -> TcType -> TcM TcType -congruenceNewtypes lhs rhs --- | pprTrace "Congruence" (ppr lhs $$ ppr rhs) False = undefined - -- We have a tctyvar at the other side +addConstraint t1 t2 = congruenceNewtypes t1 t2 >>= uncurry unifyType + +{- + A parallel fold over two Type values, + compensating for missing newtypes on both sides. + This is necessary because newtypes are not present + in runtime, but since sometimes there is evidence + available we do our best to reconstruct them. + Evidence can come from DataCon signatures or + from compile-time type inference. + I am using the words congruence and rewriting + because what we are doing here is an approximation + of unification modulo a set of equations, which would + come from newtype definitions. These should be the + equality coercions seen in System Fc. Rewriting + is performed, taking those equations as rules, + before launching unification. + + It doesn't make sense to rewrite everywhere, + or we would end up with all newtypes. So we rewrite + only in presence of evidence. + The lhs comes from the heap structure of ptrs,nptrs. + The rhs comes from a DataCon type signature. + Rewriting in the rhs is restricted to the result type. + + Note that it is very tricky to make this 'rewriting' + work with the unification implemented by TcM, where + substitutions are 'inlined'. The order in which + constraints are unified is vital for this (or I am + using TcM wrongly). +-} +congruenceNewtypes :: TcType -> TcType -> TcM (TcType,TcType) +congruenceNewtypes = go True + where + go rewriteRHS lhs rhs + -- TyVar lhs inductive case + | Just tv <- getTyVar_maybe lhs + = recoverM (return (lhs,rhs)) $ do + Indirect ty_v <- readMetaTyVar tv + (lhs', rhs') <- go rewriteRHS ty_v rhs + writeMutVar (metaTvRef tv) (Indirect lhs') + return (lhs, rhs') + -- TyVar rhs inductive case | Just tv <- getTyVar_maybe rhs --- , trace "congruence, entering tyvar" True - = recoverM (return rhs) $ do + = recoverM (return (lhs,rhs)) $ do Indirect ty_v <- readMetaTyVar tv - newtyped_tytv <- congruenceNewtypes lhs ty_v - writeMutVar (metaTvRef tv) (Indirect newtyped_tytv) - return newtyped_tytv --- We have a function type: go on inductively - | Just (r1,r2) <- splitFunTy_maybe rhs - , Just (l1,l2) <- splitFunTy_maybe lhs - = liftM2 mkFunTy ( congruenceNewtypes l1 r1) - (congruenceNewtypes l2 r2) --- There is a newtype at the top level tycon and we can manage it - | Just (tycon, args) <- splitNewTyConApp_maybe lhs - , isNewTyCon tycon - , (tvs, realtipe) <- newTyConRep tycon - = case tcUnifyTys (const BindMe) [realtipe] [rhs] of - Just subst -> - let tvs' = substTys subst (map mkTyVarTy tvs) in - liftM (mkTyConApp tycon) (zipWithM congruenceNewtypes args tvs') - otherwise -> panic "congruenceNewtypes: Can't unify a newtype" - --- We have a TyconApp: go on inductively - | Just (tycon, args) <- splitNewTyConApp_maybe lhs - , Just (tycon_v, args_v) <- splitNewTyConApp_maybe rhs - = liftM (mkTyConApp tycon_v) (zipWithM congruenceNewtypes args args_v) - - | otherwise = return rhs - + (lhs', rhs') <- go rewriteRHS lhs ty_v + writeMutVar (metaTvRef tv) (Indirect rhs') + return (lhs', rhs) +-- FunTy inductive case + | Just (l1,l2) <- splitFunTy_maybe lhs + , Just (r1,r2) <- splitFunTy_maybe rhs + = do (l2',r2') <- go True l2 r2 + (l1',r1') <- go False l1 r1 + return (mkFunTy l1' l2', mkFunTy r1' r2') +-- TyconApp Inductive case; this is the interesting bit. + | Just (tycon_l, args_l) <- splitNewTyConApp_maybe lhs + , Just (tycon_r, args_r) <- splitNewTyConApp_maybe rhs = do + + let (tycon_l',args_l') = if isNewTyCon tycon_r && not(isNewTyCon tycon_l) + then (tycon_r, rewrite tycon_r lhs) + else (tycon_l, args_l) + (tycon_r',args_r') = if rewriteRHS && isNewTyCon tycon_l && not(isNewTyCon tycon_r) + then (tycon_l, rewrite tycon_l rhs) + else (tycon_r, args_r) + (args_l'', args_r'') <- unzip `liftM` zipWithM (go rewriteRHS) args_l' args_r' + return (mkTyConApp tycon_l' args_l'', mkTyConApp tycon_r' args_r'') + + | otherwise = return (lhs,rhs) + + where rewrite newtyped_tc lame_tipe + | (tvs, tipe) <- newTyConRep newtyped_tc + = case tcUnifyTys (const BindMe) [tipe] [lame_tipe] of + Just subst -> substTys subst (map mkTyVarTy tvs) + otherwise -> panic "congruenceNewtypes: Can't unify a newtype" newVar :: Kind -> TR TcTyVar newVar = liftTcM . newFlexiTyVar @@ -454,9 +475,10 @@ instScheme ty = liftTcM$ liftM trd (tcInstType (liftM fst3 . tcInstTyVars) ty) trd (x,y,z) = z cvObtainTerm :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term -cvObtainTerm hsc_env force mb_ty a = - -- Obtain the term and tidy the type before returning it - cvObtainTerm1 hsc_env force mb_ty a >>= return . tidyTypes +cvObtainTerm hsc_env force mb_ty a = do + -- Obtain the term and tidy the type before returning it + term <- cvObtainTerm1 hsc_env force mb_ty a + return $ tidyTypes term where tidyTypes = foldTerm idTermFold { fTerm = \ty dc hval tt -> Term (tidy ty) dc hval tt, @@ -464,74 +486,82 @@ cvObtainTerm hsc_env force mb_ty a = Suspension ct (fmap tidy mb_ty) hval n } tidy ty = tidyType (emptyTidyOccEnv, tidyVarEnv ty) ty - tidyVarEnv ty = - mkVarEnv$ [ (v, setTyVarName v (tyVarName tv)) - | (tv,v) <- zip alphaTyVars vars] + tidyVarEnv ty = mkVarEnv$ + [ (v, setTyVarName v (tyVarName tv)) + | (tv,v) <- zip alphaTyVars vars] where vars = varSetElems$ tyVarsOfType ty cvObtainTerm1 :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term -cvObtainTerm1 hsc_env force mb_ty hval - | Nothing <- mb_ty = runTR hsc_env . go argTypeKind $ hval - | Just ty <- mb_ty = runTR hsc_env $ do - term <- go argTypeKind hval - ty' <- instScheme (sigmaType ty) - addConstraint ty' (fromMaybe (error "by definition") - (termType term)) - return term +cvObtainTerm1 hsc_env force mb_ty hval = runTR hsc_env $ do + tv <- case (isMonomorphic `fmap` mb_ty) of + Just True -> return (fromJust mb_ty) + _ -> do + tv <- liftM mkTyVarTy (newVar argTypeKind) + instScheme (sigmaType$ fromJust mb_ty) >>= addConstraint tv + return tv + go tv (fromMaybe tv mb_ty) hval where - go k a = do - ctype <- trIO$ getClosureType a - case ctype of + go tv ty a = do + let monomorphic = not(isTyVarTy tv) -- This is a convention. The ancestor tests for + -- monomorphism and passes a type instead of a tv + clos <- trIO $ getClosureData a + case tipe clos of -- Thunks we may want to force - Thunk _ | force -> seq a $ go k a + Thunk _ | force -> seq a $ go tv ty a -- We always follow indirections - _ | isIndirection ctype - -> do - clos <- trIO$ getClosureData a --- dflags <- getSessionDynFlags session --- debugTraceMsg dflags 2 (text "Following an indirection") - go k $! (ptrs clos ! 0) + Indirection _ -> go tv ty $! (ptrs clos ! 0) -- The interesting case Constr -> do - m_dc <- trIO$ tcRnRecoverDataCon hsc_env a + m_dc <- trIO$ tcRnRecoverDataCon hsc_env (infoPtr clos) case m_dc of Nothing -> panic "Can't find the DataCon for a term" Just dc -> do - clos <- trIO$ getClosureData a let extra_args = length(dataConRepArgTys dc) - length(dataConOrigArgTys dc) - subTtypes = drop extra_args (dataConRepArgTys dc) + subTtypes = matchSubTypes dc ty (subTtypesP, subTtypesNP) = partition isPointed subTtypes - - subTermsP <- mapM (\i->extractSubterm i (ptrs clos) - (subTtypesP!!(i-extra_args))) - [extra_args..extra_args + length subTtypesP - 1] + subTermTvs <- sequence + [ if isMonomorphic t then return t else (mkTyVarTy `fmap` newVar k) + | (t,k) <- zip subTtypesP (map typeKind subTtypesP)] + -- It is vital for newtype reconstruction that the unification step is done + -- right here, _before_ the subterms are RTTI reconstructed. + when (not monomorphic) $ do + let myType = mkFunTys (reOrderTerms subTermTvs subTtypesNP subTtypes) tv + instScheme(dataConRepType dc) >>= addConstraint myType + subTermsP <- sequence $ drop extra_args -- all extra arguments are pointed + [ appArr (go tv t) (ptrs clos) i + | (i,tv,t) <- zip3 [0..] subTermTvs subTtypesP] let unboxeds = extractUnboxed subTtypesNP (nonPtrs clos) subTermsNP = map (uncurry Prim) (zip subTtypesNP unboxeds) - subTerms = reOrderTerms subTermsP subTermsNP subTtypes - resType <- liftM mkTyVarTy (newVar k) - baseType <- instScheme (dataConRepType dc) - let myType = mkFunTys (map (fromMaybe undefined . termType) - subTerms) - resType - addConstraint baseType myType - return (Term resType dc a subTerms) + subTerms = reOrderTerms subTermsP subTermsNP (drop extra_args subTtypes) + return (Term tv dc a subTerms) -- The otherwise case: can be a Thunk,AP,PAP,etc. otherwise -> do - x <- liftM mkTyVarTy (newVar k) - return (Suspension ctype (Just x) a Nothing) + return (Suspension (tipe clos) (Just tv) a Nothing) -- Access the array of pointers and recurse down. Needs to be done with -- care of no introducing a thunk! or go will fail to do its job - extractSubterm (I# i#) ptrs ty = case ptrs of + appArr f arr (I# i#) = case arr of (Array _ _ ptrs#) -> case indexArray# ptrs# i# of - (# e #) -> go (typeKind ty) e + (# e #) -> f e + + matchSubTypes dc ty + | Just (_,ty_args) <- splitTyConApp_maybe (repType ty) + , null (dataConExTyVars dc) --TODO Handle the case of extra existential tyvars + = dataConInstArgTys dc ty_args + + | otherwise = dataConRepArgTys dc -- This is used to put together pointed and nonpointed subterms in the -- correct order. reOrderTerms _ _ [] = [] reOrderTerms pointed unpointed (ty:tys) - | isPointed ty = head pointed : reOrderTerms (tail pointed) unpointed tys - | otherwise = head unpointed : reOrderTerms pointed (tail unpointed) tys + | isPointed ty = head pointed : reOrderTerms (tailSafe "reorderTerms1" pointed) unpointed tys + | otherwise = head unpointed : reOrderTerms pointed (tailSafe "reorderTerms2" unpointed) tys + +tailSafe msg [] = error msg +tailSafe _ (x:xs) = xs + +isMonomorphic = isEmptyVarSet . tyVarsOfType zonkTerm :: Term -> TcM Term zonkTerm = foldTerm idTermFoldM { @@ -543,7 +573,7 @@ zonkTerm = foldTerm idTermFoldM { -- Is this defined elsewhere? --- Find all free tyvars and insert the appropiate ForAll. +-- Generalize the type: find all free tyvars and wrap in the appropiate ForAll. sigmaType ty = mkForAllTys (varSetElems$ tyVarsOfType (dropForAlls ty)) ty {- @@ -596,34 +626,3 @@ map Just [[1,1],[2,2]] :: [Maybe [Integer]] NOTE: (Num t) contexts have been manually replaced by Integer for clarity -} - --------------------------------------------------------------------- --- The DataConEnv is used to store the addresses of datacons loaded --- via the dynamic linker --------------------------------------------------------------------- - -type DataConEnv = AddressEnv StgInfoTable - --- Note that this AddressEnv and DataConEnv I wrote trying to follow --- conventions in ghc, but probably they make not much sense. - -newtype AddressEnv a = AE {aenv:: FiniteMap (Ptr a) Name} - deriving (Outputable) - -emptyAddressEnv = AE emptyFM - -extendAddressEnvList :: AddressEnv a -> [(Ptr a, Name)] -> AddressEnv a -elemAddressEnv :: Ptr a -> AddressEnv a -> Bool -delFromAddressEnv :: AddressEnv a -> Ptr a -> AddressEnv a -nullAddressEnv :: AddressEnv a -> Bool -lookupAddressEnv :: AddressEnv a -> Ptr a -> Maybe Name - -extendAddressEnvList (AE env) = AE . addListToFM env -elemAddressEnv ptr (AE env) = ptr `elemFM` env -delFromAddressEnv (AE env) = AE . delFromFM env -nullAddressEnv = isEmptyFM . aenv -lookupAddressEnv (AE env) = lookupFM env - - -instance Outputable (Ptr a) where - ppr = text . show