X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fghci%2FRtClosureInspect.hs;h=b9fd192e9ed76f3f2e28337207cc7ece51be1f40;hb=f0cecc6c982a5761343b6b1f8671bb50cd11145a;hp=e30d1b8faa5870d93791dec2571c8649ad3f8315;hpb=d4da7630f82ea1e808a632623351b6a35e772689;p=ghc-hetmet.git diff --git a/compiler/ghci/RtClosureInspect.hs b/compiler/ghci/RtClosureInspect.hs index e30d1b8..b9fd192 100644 --- a/compiler/ghci/RtClosureInspect.hs +++ b/compiler/ghci/RtClosureInspect.hs @@ -8,12 +8,16 @@ module RtClosureInspect( - cvObtainTerm, -- :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term + cvObtainTerm, -- :: HscEnv -> Int -> Bool -> Maybe Type -> HValue -> IO Term Term(..), + isTerm, + isSuspension, + isPrim, pprTerm, cPprTerm, cPprTermBase, + CustomTermPrinter, termType, foldTerm, TermFold(..), @@ -25,34 +29,41 @@ module RtClosureInspect( mapTermType, termTyVars, -- unsafeDeepSeq, - cvReconstructType + cvReconstructType, + computeRTTIsubst, + sigmaType, + Closure(..), + getClosureData, + ClosureType(..), + isConstr, + isIndirection ) where #include "HsVersions.h" import ByteCodeItbls ( StgInfoTable ) import qualified ByteCodeItbls as BCI( StgInfoTable(..) ) -import ByteCodeLink ( HValue ) import HscTypes ( HscEnv ) +import Linker -import DataCon -import Type -import TcRnMonad ( TcM, initTcPrintErrors, ioToTcRn, recoverM) +import DataCon +import Type +import Var +import TcRnMonad ( TcM, initTc, ioToTcRn, + tryTcErrs, traceTc) import TcType import TcMType import TcUnify import TcGadt import TcEnv -import TyCon -import Var -import Name +import DriverPhases +import TyCon +import Name import VarEnv -import OccName import Util import VarSet -import {-#SOURCE#-} TcRnDriver ( tcRnRecoverDataCon ) -import TysPrim +import TysPrim import PrelNames import TysWiredIn @@ -60,16 +71,18 @@ import Constants import Outputable import Maybes import Panic -import FiniteMap import GHC.Arr ( Array(..) ) -import GHC.Ptr ( Ptr(..), castPtr ) import GHC.Exts import Control.Monad import Data.Maybe import Data.Array.Base -import Data.List ( partition, nub ) +import Data.Ix +import Data.List ( partition ) +import qualified Data.Sequence as Seq +import Data.Monoid +import Data.Sequence hiding (null, length, index, take, drop, splitAt, reverse) import Foreign import System.IO.Unsafe @@ -89,8 +102,9 @@ import System.IO.Unsafe -} data Term = Term { ty :: Type - , dc :: DataCon -- The heap datacon. If ty is a newtype, - -- this is NOT the newtype datacon + , dc :: Either String DataCon + -- Empty if the datacon aint exported by the .hi + -- (private constructors in -O0 libraries) , val :: HValue , subTerms :: [Term] } @@ -102,14 +116,19 @@ data Term = Term { ty :: Type , val :: HValue , bound_to :: Maybe Name -- Useful for printing } + | NewtypeWrap{ ty :: Type + , dc :: Either String DataCon + , wrapped_term :: Term } -isTerm, isSuspension, isPrim :: Term -> Bool +isTerm, isSuspension, isPrim, isNewtypeWrap :: Term -> Bool isTerm Term{} = True isTerm _ = False isSuspension Suspension{} = True isSuspension _ = False isPrim Prim{} = True isPrim _ = False +isNewtypeWrap NewtypeWrap{} = True +isNewtypeWrap _ = False termType :: Term -> Maybe Type termType t@(Suspension {}) = mb_ty t @@ -117,8 +136,9 @@ termType t = Just$ ty t isFullyEvaluatedTerm :: Term -> Bool isFullyEvaluatedTerm Term {subTerms=tt} = all isFullyEvaluatedTerm tt -isFullyEvaluatedTerm Suspension {} = False isFullyEvaluatedTerm Prim {} = True +isFullyEvaluatedTerm NewtypeWrap{wrapped_term=t} = isFullyEvaluatedTerm t +isFullyEvaluatedTerm _ = False instance Outputable (Term) where ppr = head . cPprTerm cPprTermBase @@ -149,6 +169,7 @@ instance Outputable ClosureType where #include "../includes/ClosureTypes.h" +aP_CODE, pAP_CODE :: Int aP_CODE = AP pAP_CODE = PAP #undef AP @@ -158,12 +179,21 @@ getClosureData :: a -> IO Closure getClosureData a = case unpackClosure# a of (# iptr, ptrs, nptrs #) -> do +#ifndef GHCI_TABLES_NEXT_TO_CODE + -- the info pointer we get back from unpackClosure# is to the + -- beginning of the standard info table, but the Storable instance + -- for info tables takes into account the extra entry pointer + -- when !tablesNextToCode, so we must adjust here: + itbl <- peek (Ptr iptr `plusPtr` negate wORD_SIZE) +#else itbl <- peek (Ptr iptr) +#endif let tipe = readCType (BCI.tipe itbl) - elems = BCI.ptrs itbl - ptrsList = Array 0 (fromIntegral$ elems) ptrs + elems = fromIntegral (BCI.ptrs itbl) + ptrsList = Array 0 (elems - 1) elems ptrs nptrs_data = [W# (indexWordArray# nptrs i) | I# i <- [0.. fromIntegral (BCI.nptrs itbl)] ] + ASSERT(elems >= 0) return () ptrsList `seq` return (Closure tipe (Ptr iptr) itbl ptrsList nptrs_data) @@ -199,12 +229,13 @@ isFullyEvaluated a = do case tipe closure of Constr -> do are_subs_evaluated <- amapM isFullyEvaluated (ptrs closure) return$ and are_subs_evaluated - otherwise -> return False + _ -> return False where amapM f = sequence . amap' f -amap' f (Array i0 i arr#) = map (\(I# i#) -> case indexArray# arr# i# of - (# e #) -> f e) - [0 .. i - i0] +amap' :: (t -> b) -> Array Int t -> [b] +amap' f (Array i0 i _ arr#) = map g [0 .. i - i0] + where g (I# i#) = case indexArray# arr# i# of + (# e #) -> f e -- TODO: Fix it. Probably the otherwise case is failing, trace/debug it {- @@ -231,44 +262,52 @@ extractUnboxed tt clos = go tt (nonPtrs clos) | otherwise = pprPanic "Expected a TcTyCon" (ppr t) go [] _ = [] go (t:tt) xx - | (x, rest) <- splitAt (sizeofType t `div` wORD_SIZE) xx + | (x, rest) <- splitAt ((sizeofType t + wORD_SIZE - 1) `div` wORD_SIZE) xx = x : go tt rest +sizeofTyCon :: TyCon -> Int sizeofTyCon = sizeofPrimRep . tyConPrimRep ----------------------------------- -- * Traversals for Terms ----------------------------------- +type TermProcessor a b = Type -> Either String DataCon -> HValue -> [a] -> b -data TermFold a = TermFold { fTerm :: Type -> DataCon -> HValue -> [a] -> a +data TermFold a = TermFold { fTerm :: TermProcessor a a , fPrim :: Type -> [Word] -> a , fSuspension :: ClosureType -> Maybe Type -> HValue -> Maybe Name -> a + , fNewtypeWrap :: Type -> Either String DataCon + -> a -> a } foldTerm :: TermFold a -> Term -> a foldTerm tf (Term ty dc v tt) = fTerm tf ty dc v (map (foldTerm tf) tt) foldTerm tf (Prim ty v ) = fPrim tf ty v foldTerm tf (Suspension ct ty v b) = fSuspension tf ct ty v b +foldTerm tf (NewtypeWrap ty dc t) = fNewtypeWrap tf ty dc (foldTerm tf t) idTermFold :: TermFold Term idTermFold = TermFold { fTerm = Term, fPrim = Prim, - fSuspension = Suspension + fSuspension = Suspension, + fNewtypeWrap = NewtypeWrap } idTermFoldM :: Monad m => TermFold (m Term) idTermFoldM = TermFold { fTerm = \ty dc v tt -> sequence tt >>= return . Term ty dc v, fPrim = (return.). Prim, - fSuspension = (((return.).).). Suspension + fSuspension = (((return.).).). Suspension, + fNewtypeWrap= \ty dc t -> NewtypeWrap ty dc `liftM` t } mapTermType :: (Type -> Type) -> Term -> Term mapTermType f = foldTerm idTermFold { fTerm = \ty dc hval tt -> Term (f ty) dc hval tt, fSuspension = \ct mb_ty hval n -> - Suspension ct (fmap f mb_ty) hval n } + Suspension ct (fmap f mb_ty) hval n, + fNewtypeWrap= \ty dc t -> NewtypeWrap (f ty) dc t} termTyVars :: Term -> TyVarSet termTyVars = foldTerm TermFold { @@ -276,8 +315,10 @@ termTyVars = foldTerm TermFold { tyVarsOfType ty `plusVarEnv` concatVarEnv tt, fSuspension = \_ mb_ty _ _ -> maybe emptyVarEnv tyVarsOfType mb_ty, - fPrim = \ _ _ -> emptyVarEnv } + fPrim = \ _ _ -> emptyVarEnv, + fNewtypeWrap= \ty _ t -> tyVarsOfType ty `plusVarEnv` t} where concatVarEnv = foldr plusVarEnv emptyVarEnv + ---------------------------------- -- Pretty printing of terms ---------------------------------- @@ -286,86 +327,134 @@ app_prec,cons_prec ::Int app_prec = 10 cons_prec = 5 -- TODO Extract this info from GHC itself +pprTerm :: (Int -> Term -> Maybe SDoc) -> Int -> Term -> SDoc pprTerm y p t | Just doc <- pprTermM y p t = doc +pprTerm _ _ _ = panic "pprTerm" -pprTermM :: Monad m => (Int -> Term -> m SDoc) -> Int -> Term -> m SDoc -pprTermM y p t@Term{dc=dc, subTerms=tt, ty=ty} +pprTermM, pprNewtypeWrap :: Monad m => + (Int -> Term -> m SDoc) -> Int -> Term -> m SDoc +pprTermM y p Term{dc=Left dc_tag, subTerms=tt} = do + tt_docs <- mapM (y app_prec) tt + return$ cparen (not(null tt) && p >= app_prec) (text dc_tag <+> sep tt_docs) + +pprTermM y p Term{dc=Right dc, subTerms=tt} {- | dataConIsInfix dc, (t1:t2:tt') <- tt --TODO fixity = parens (pprTerm1 True t1 <+> ppr dc <+> pprTerm1 True ppr t2) <+> hsep (map (pprTerm1 True) tt) --} +-} -- TODO Printing infix constructors properly | null tt = return$ ppr dc - | Just (tc,_) <- splitNewTyConApp_maybe ty - , isNewTyCon tc - , Just new_dc <- maybeTyConSingleCon tc = do - real_value <- y 10 t{ty=repType ty} - return$ cparen (p >= app_prec) (ppr new_dc <+> real_value) | otherwise = do tt_docs <- mapM (y app_prec) tt return$ cparen (p >= app_prec) (ppr dc <+> sep tt_docs) -pprTermM y _ t = pprTermM1 y t +pprTermM y p t@NewtypeWrap{} = pprNewtypeWrap y p t -pprTermM1 _ Prim{value=words, ty=ty} = return$ text$ repPrim (tyConAppTyCon ty) - words -pprTermM1 y t@Term{} = panic "pprTermM1 - unreachable" -pprTermM1 _ Suspension{bound_to=Nothing} = return$ char '_' -pprTermM1 _ Suspension{mb_ty=Just ty, bound_to=Just n} +pprTermM _ _ t = pprTermM1 t + +pprTermM1 :: Monad m => Term -> m SDoc +pprTermM1 Prim{value=words, ty=ty} = + return$ text$ repPrim (tyConAppTyCon ty) words +pprTermM1 Term{} = panic "pprTermM1 - unreachable" +pprTermM1 Suspension{bound_to=Nothing} = return$ char '_' +pprTermM1 Suspension{mb_ty=Just ty, bound_to=Just n} | Just _ <- splitFunTy_maybe ty = return$ ptext SLIT("") | otherwise = return$ parens$ ppr n <> text "::" <> ppr ty +pprTermM1 _ = panic "pprTermM1" + +pprNewtypeWrap y p NewtypeWrap{ty=ty, wrapped_term=t} + | Just (tc,_) <- splitNewTyConApp_maybe ty + , ASSERT(isNewTyCon tc) True + , Just new_dc <- maybeTyConSingleCon tc = do + real_term <- y 10 t + return$ cparen (p >= app_prec) (ppr new_dc <+> real_term) +pprNewtypeWrap _ _ _ = panic "pprNewtypeWrap" + +------------------------------------------------------- +-- Custom Term Pretty Printers +------------------------------------------------------- + +-- We can want to customize the representation of a +-- term depending on its type. +-- However, note that custom printers have to work with +-- type representations, instead of directly with types. +-- We cannot use type classes here, unless we employ some +-- typerep trickery (e.g. Weirich's RepLib tricks), +-- which I didn't. Therefore, this code replicates a lot +-- of what type classes provide for free. + +-- Concretely a custom term printer takes an explicit +-- recursion knot, and produces a list of Term Processors, +-- which additionally need a precedence value to +-- either produce a SDoc or fail (and they do this in some monad m). + +type Precedence = Int +type RecursionKnot m = Precedence -> Term -> m SDoc +type CustomTermPrinter m = RecursionKnot m + -> [Precedence -> Term -> (m (Maybe SDoc))] -- Takes a list of custom printers with a explicit recursion knot and a term, -- and returns the output of the first succesful printer, or the default printer -cPprTerm :: forall m. Monad m => - ((Int->Term->m SDoc)->[Int->Term->m (Maybe SDoc)]) -> Term -> m SDoc -cPprTerm custom = go 0 where - go prec t@Term{} = do - let default_ prec t = Just `liftM` pprTermM go prec t - mb_customDocs = [pp prec t | pp <- custom go ++ [default_]] +cPprTerm :: Monad m => CustomTermPrinter m -> Term -> m SDoc +cPprTerm printers_ = go 0 where + printers = printers_ go + go prec t | isTerm t || isNewtypeWrap t = do + let default_ = Just `liftM` pprTermM go prec t + mb_customDocs = [pp prec t | pp <- printers] ++ [default_] Just doc <- firstJustM mb_customDocs return$ cparen (prec>app_prec+1) doc - go _ t = pprTermM1 go t + go _ t = pprTermM1 t + firstJustM (mb:mbs) = mb >>= maybe (firstJustM mbs) (return . Just) firstJustM [] = return Nothing -- Default set of custom printers. Note that the recursion knot is explicit -cPprTermBase :: Monad m => (Int->Term-> m SDoc)->[Int->Term->m (Maybe SDoc)] +cPprTermBase :: Monad m => CustomTermPrinter m cPprTermBase y = - [ - ifTerm isTupleTy (\_ -> liftM (parens . hcat . punctuate comma) - . mapM (y (-1)) . subTerms) - , ifTerm (\t -> isTyCon listTyCon t && subTerms t `lengthIs` 2) - (\ p Term{subTerms=[h,t]} -> doList p h t) - , ifTerm (isTyCon intTyCon) (coerceShow$ \(a::Int)->a) - , ifTerm (isTyCon charTyCon) (coerceShow$ \(a::Char)->a) --- , ifTerm (isTyCon wordTyCon) (coerceShow$ \(a::Word)->a) - , ifTerm (isTyCon floatTyCon) (coerceShow$ \(a::Float)->a) - , ifTerm (isTyCon doubleTyCon) (coerceShow$ \(a::Double)->a) - , ifTerm isIntegerTy (coerceShow$ \(a::Integer)->a) - ] - where ifTerm pred f p t@Term{} | pred t = liftM Just (f p t) - | otherwise = return Nothing - isIntegerTy Term{ty=ty} | Just (tc,_) <- splitTyConApp_maybe ty - = tyConName tc == integerTyConName - isTupleTy Term{ty=ty} | Just (tc,_) <- splitTyConApp_maybe ty - = tc `elem` (fst.unzip.elems) boxedTupleArr - isTyCon a_tc Term{ty=ty} | Just (tc,_) <- splitTyConApp_maybe ty - = a_tc == tc - coerceShow f _ = return . text . show . f . unsafeCoerce# . val + [ ifTerm (isTupleTy.ty) (\_p -> liftM (parens . hcat . punctuate comma) + . mapM (y (-1)) + . subTerms) + , ifTerm (\t -> isTyCon listTyCon (ty t) && subTerms t `lengthIs` 2) + (\ p Term{subTerms=[h,t]} -> doList p h t) + , ifTerm (isTyCon intTyCon . ty) (coerceShow$ \(a::Int)->a) + , ifTerm (isTyCon charTyCon . ty) (coerceShow$ \(a::Char)->a) + , ifTerm (isTyCon floatTyCon . ty) (coerceShow$ \(a::Float)->a) + , ifTerm (isTyCon doubleTyCon . ty) (coerceShow$ \(a::Double)->a) + , ifTerm (isIntegerTy . ty) (coerceShow$ \(a::Integer)->a) + ] + where ifTerm pred f prec t@Term{} + | pred t = Just `liftM` f prec t + ifTerm _ _ _ _ = return Nothing + + isIntegerTy ty = fromMaybe False $ do + (tc,_) <- splitTyConApp_maybe ty + return (tyConName tc == integerTyConName) + + isTupleTy ty = fromMaybe False $ do + (tc,_) <- splitTyConApp_maybe ty + return (tc `elem` (fst.unzip.elems) boxedTupleArr) + + isTyCon a_tc ty = fromMaybe False $ do + (tc,_) <- splitTyConApp_maybe ty + return (a_tc == tc) + + coerceShow f _p = return . text . show . f . unsafeCoerce# . val + --TODO pprinting of list terms is not lazy doList p h t = do - let elems = h : getListTerms t + let elems = h : getListTerms t isConsLast = termType(last elems) /= termType h print_elems <- mapM (y cons_prec) elems return$ if isConsLast - then cparen (p >= cons_prec) . hsep . punctuate (space<>colon) - $ print_elems + then cparen (p >= cons_prec) + . hsep + . punctuate (space<>colon) + $ print_elems else brackets (hcat$ punctuate comma print_elems) where Just a /= Just b = not (a `coreEqType` b) _ /= _ = True getListTerms Term{subTerms=[h,t]} = h : getListTerms t - getListTerms t@Term{subTerms=[]} = [] + getListTerms Term{subTerms=[]} = [] getListTerms t@Suspension{} = [t] getListTerms t = pprPanic "getListTerms" (ppr t) @@ -427,10 +516,16 @@ type TR a = TcM a runTR :: HscEnv -> TR a -> IO a runTR hsc_env c = do - mb_term <- initTcPrintErrors hsc_env iNTERACTIVE c + mb_term <- runTR_maybe hsc_env c case mb_term of Nothing -> panic "Can't unify" - Just x -> return x + Just x -> return x + +runTR_maybe :: HscEnv -> TR a -> IO (Maybe a) +runTR_maybe hsc_env = fmap snd . initTc hsc_env HsSrcFile False iNTERACTIVE + +traceTR :: SDoc -> TR () +traceTR = liftTcM . traceTc trIO :: IO a -> TR a trIO = liftTcM . ioToTcRn @@ -438,14 +533,14 @@ trIO = liftTcM . ioToTcRn liftTcM :: TcM a -> TR a liftTcM = id -newVar :: Kind -> TR TcTyVar -newVar = liftTcM . newFlexiTyVar +newVar :: Kind -> TR TcType +newVar = liftTcM . fmap mkTyVarTy . newFlexiTyVar -- | Returns the instantiated type scheme ty', and the substitution sigma -- such that sigma(ty') = ty instScheme :: Type -> TR (TcType, TvSubst) -instScheme ty | (tvs, rho) <- tcSplitForAllTys ty = liftTcM$ do - (tvs',theta,ty') <- tcInstType (mapM tcInstTyVar) ty +instScheme ty | (tvs, _rho) <- tcSplitForAllTys ty = liftTcM$ do + (tvs',_theta,ty') <- tcInstType (mapM tcInstTyVar) ty return (ty', zipTopTvSubst tvs' (mkTyVarTys tvs)) -- Adds a constraint of the form t1 == t2 @@ -455,24 +550,32 @@ instScheme ty | (tvs, rho) <- tcSplitForAllTys ty = liftTcM$ do -- do its magic. addConstraint :: TcType -> TcType -> TR () addConstraint t1 t2 = congruenceNewtypes t1 t2 >>= uncurry unifyType - - + >> return () -- TOMDO: what about the coercion? + -- we should consider family instances -- Type & Term reconstruction -cvObtainTerm :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Term -cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do - tv <- liftM mkTyVarTy (newVar argTypeKind) +cvObtainTerm :: HscEnv -> Int -> Bool -> Maybe Type -> HValue -> IO Term +cvObtainTerm hsc_env bound force mb_ty hval = runTR hsc_env $ do + tv <- newVar argTypeKind case mb_ty of - Nothing -> go tv tv hval >>= zonkTerm - Just ty | isMonomorphic ty -> go ty ty hval >>= zonkTerm + Nothing -> go bound tv tv hval + >>= zonkTerm + >>= return . expandNewtypes + Just ty | isMonomorphic ty -> go bound ty ty hval + >>= zonkTerm + >>= return . expandNewtypes Just ty -> do (ty',rev_subst) <- instScheme (sigmaType ty) addConstraint tv ty' - term <- go tv tv hval >>= zonkTerm + term <- go bound tv tv hval >>= zonkTerm --restore original Tyvars - return$ mapTermType (substTy rev_subst) term + return$ expandNewtypes $ mapTermType (substTy rev_subst) term where - go tv ty a = do + go bound _ _ _ | seq bound False = undefined + go 0 tv _ty a = do + clos <- trIO $ getClosureData a + return (Suspension (tipe clos) (Just tv) a Nothing) + go bound tv ty a = do let monomorphic = not(isTyVarTy tv) -- This ^^^ is a convention. The ancestor tests for -- monomorphism and passes a type instead of a tv @@ -482,14 +585,25 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do -- NB. this won't attempt to force a BLACKHOLE. Even with :force, we never -- force blackholes, because it would almost certainly result in deadlock, -- and showing the '_' is more useful. - t | isThunk t && force -> seq a $ go tv ty a + t | isThunk t && force -> seq a $ go (pred bound) tv ty a -- We always follow indirections - Indirection _ -> go tv ty $! (ptrs clos ! 0) + Indirection _ -> go bound tv ty $! (ptrs clos ! 0) -- The interesting case Constr -> do - m_dc <- trIO$ tcRnRecoverDataCon hsc_env (infoPtr clos) - case m_dc of - Nothing -> panic "Can't find the DataCon for a term" + Right dcname <- dataConInfoPtrToName (infoPtr clos) + (_,mb_dc) <- tryTcErrs (tcLookupDataCon dcname) + case mb_dc of + Nothing -> do -- This can happen for private constructors compiled -O0 + -- where the .hi descriptor does not export them + -- In such case, we return a best approximation: + -- ignore the unpointed args, and recover the pointeds + -- This preserves laziness, and should be safe. + let tag = showSDoc (ppr dcname) + vars <- replicateM (length$ elems$ ptrs clos) + (newVar (liftedTypeKind)) + subTerms <- sequence [appArr (go (pred bound) tv tv) (ptrs clos) i + | (i, tv) <- zip [0..] vars] + return (Term tv (Left ('<' : tag ++ ">")) a subTerms) Just dc -> do let extra_args = length(dataConRepArgTys dc) - length(dataConOrigArgTys dc) @@ -497,7 +611,7 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do (subTtypesP, subTtypesNP) = partition isPointed subTtypes subTermTvs <- sequence [ if isMonomorphic t then return t - else (mkTyVarTy `fmap` newVar k) + else (newVar k) | (t,k) <- zip subTtypesP (map typeKind subTtypesP)] -- It is vital for newtype reconstruction that the unification step -- is done right here, _before_ the subterms are RTTI reconstructed @@ -510,22 +624,22 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do addConstraint myType signatureType subTermsP <- sequence $ drop extra_args -- ^^^ all extra arguments are pointed - [ appArr (go tv t) (ptrs clos) i + [ appArr (go (pred bound) tv t) (ptrs clos) i | (i,tv,t) <- zip3 [0..] subTermTvs subTtypesP] let unboxeds = extractUnboxed subTtypesNP clos subTermsNP = map (uncurry Prim) (zip subTtypesNP unboxeds) subTerms = reOrderTerms subTermsP subTermsNP (drop extra_args subTtypes) - return (Term tv dc a subTerms) + return (Term tv (Right dc) a subTerms) -- The otherwise case: can be a Thunk,AP,PAP,etc. - otherwise -> - return (Suspension (tipe clos) (Just tv) a Nothing) + tipe_clos -> + return (Suspension tipe_clos (Just tv) a Nothing) matchSubTypes dc ty | Just (_,ty_args) <- splitTyConApp_maybe (repType ty) +-- assumption: ^^^ looks through newtypes , isVanillaDataCon dc --TODO non-vanilla case = dataConInstArgTys dc ty_args --- assumes that newtypes are looked ^^^ through | otherwise = dataConRepArgTys dc -- This is used to put together pointed and nonpointed subterms in the @@ -535,67 +649,102 @@ cvObtainTerm hsc_env force mb_ty hval = runTR hsc_env $ do | isPointed ty = ASSERT2(not(null pointed) , ptext SLIT("reOrderTerms") $$ (ppr pointed $$ ppr unpointed)) - head pointed : reOrderTerms (tail pointed) unpointed tys + let (t:tt) = pointed in t : reOrderTerms tt unpointed tys | otherwise = ASSERT2(not(null unpointed) , ptext SLIT("reOrderTerms") $$ (ppr pointed $$ ppr unpointed)) - head unpointed : reOrderTerms pointed (tail unpointed) tys + let (t:tt) = unpointed in t : reOrderTerms pointed tt tys + + expandNewtypes t@Term{ ty=ty, subTerms=tt } + | Just (tc, args) <- splitNewTyConApp_maybe ty + , isNewTyCon tc + , wrapped_type <- newTyConInstRhs tc args + , Just dc <- maybeTyConSingleCon tc + , t' <- expandNewtypes t{ ty = wrapped_type + , subTerms = map expandNewtypes tt } + = NewtypeWrap ty (Right dc) t' + | otherwise = t{ subTerms = map expandNewtypes tt } + + expandNewtypes t = t -- Fast, breadth-first Type reconstruction -max_depth = 10 :: Int -cvReconstructType :: HscEnv -> Bool -> Maybe Type -> HValue -> IO Type -cvReconstructType hsc_env force mb_ty hval = runTR hsc_env $ do - tv <- liftM mkTyVarTy (newVar argTypeKind) +cvReconstructType :: HscEnv -> Int -> Maybe Type -> HValue -> IO (Maybe Type) +cvReconstructType hsc_env max_depth mb_ty hval = runTR_maybe hsc_env $ do + tv <- newVar argTypeKind case mb_ty of Nothing -> do search (isMonomorphic `fmap` zonkTcType tv) - (uncurry go) - [(tv, hval)] + (uncurry go) + (Seq.singleton (tv, hval)) max_depth zonkTcType tv -- TODO untested! Just ty | isMonomorphic ty -> return ty - Just ty -> do + Just ty -> do (ty',rev_subst) <- instScheme (sigmaType ty) addConstraint tv ty' - search (isMonomorphic `fmap` zonkTcType tv) - (uncurry go) - [(tv, hval)] + search (isMonomorphic `fmap` zonkTcType tv) + (\(ty,a) -> go ty a) + (Seq.singleton (tv, hval)) max_depth substTy rev_subst `fmap` zonkTcType tv where -- search :: m Bool -> ([a] -> [a] -> [a]) -> [a] -> m () - search stop expand [] depth = return () - search stop expand x 0 = fail$ "Failed to reconstruct a type after " ++ - show max_depth ++ " steps" - search stop expand (x:xx) d = do - new <- expand x - unlessM stop $ search stop expand (xx ++ new) $! (pred d) + search _ _ _ 0 = traceTR (text "Failed to reconstruct a type after " <> + int max_depth <> text " steps") + search stop expand l d = + case viewl l of + EmptyL -> return () + x :< xx -> unlessM stop $ do + new <- expand x + search stop expand (xx `mappend` Seq.fromList new) $! (pred d) -- returns unification tasks,since we are going to want a breadth-first search go :: Type -> HValue -> TR [(Type, HValue)] - go tv a = do + go tv a = do clos <- trIO $ getClosureData a case tipe clos of Indirection _ -> go tv $! (ptrs clos ! 0) Constr -> do - m_dc <- trIO$ tcRnRecoverDataCon hsc_env (infoPtr clos) - case m_dc of - Nothing -> panic "Can't find the DataCon for a term" - Just dc -> do - let extra_args = length(dataConRepArgTys dc) - + Right dcname <- dataConInfoPtrToName (infoPtr clos) + (_,mb_dc) <- tryTcErrs (tcLookupDataCon dcname) + case mb_dc of + Nothing-> do + -- TODO: Check this case + forM [0..length (elems $ ptrs clos)] $ \i -> do + tv <- newVar liftedTypeKind + return$ appArr (\e->(tv,e)) (ptrs clos) i + + Just dc -> do + let extra_args = length(dataConRepArgTys dc) - length(dataConOrigArgTys dc) subTtypes <- mapMif (not . isMonomorphic) - (\t -> mkTyVarTy `fmap` newVar (typeKind t)) + (\t -> newVar (typeKind t)) (dataConRepArgTys dc) + -- It is vital for newtype reconstruction that the unification step -- is done right here, _before_ the subterms are RTTI reconstructed let myType = mkFunTys subTtypes tv (signatureType,_) <- instScheme(dataConRepType dc) addConstraint myType signatureType return $ [ appArr (\e->(t,e)) (ptrs clos) i - | (i,t) <- drop extra_args $ zip [0..] subTtypes] - otherwise -> return [] + | (i,t) <- drop extra_args $ + zip [0..] (filter isPointed subTtypes)] + _ -> return [] + + -- This helper computes the difference between a base type t and the + -- improved rtti_t computed by RTTI + -- The main difference between RTTI types and their normal counterparts + -- is that the former are _not_ polymorphic, thus polymorphism must + -- be stripped. Syntactically, forall's must be stripped +computeRTTIsubst :: Type -> Type -> Maybe TvSubst +computeRTTIsubst ty rtti_ty = + -- In addition, we strip newtypes too, since the reconstructed type might + -- not have recovered them all + tcUnifyTys (const BindMe) + [repType' $ dropForAlls$ ty] + [repType' $ rtti_ty] +-- TODO stripping newtypes shouldn't be necessary, test -- Dealing with newtypes @@ -625,16 +774,18 @@ cvReconstructType hsc_env force mb_ty hval = runTR hsc_env $ do Note that it is very tricky to make this 'rewriting' work with the unification implemented by TcM, where substitutions are 'inlined'. The order in which - constraints are unified is vital for this (or I am - using TcM wrongly). + constraints are unified is vital for this. + This is a simple form of residuation, the technique of + delaying unification steps until enough information + is available. -} -congruenceNewtypes :: TcType -> TcType -> TcM (TcType,TcType) +congruenceNewtypes :: TcType -> TcType -> TR (TcType,TcType) congruenceNewtypes lhs rhs -- TyVar lhs inductive case | Just tv <- getTyVar_maybe lhs - = recoverM (return (lhs,rhs)) $ do + = recoverTc (return (lhs,rhs)) $ do Indirect ty_v <- readMetaTyVar tv - (lhs1, rhs1) <- congruenceNewtypes ty_v rhs + (_lhs1, rhs1) <- congruenceNewtypes ty_v rhs return (lhs, rhs1) -- FunTy inductive case | Just (l1,l2) <- splitFunTy_maybe lhs @@ -643,37 +794,55 @@ congruenceNewtypes lhs rhs (l1',r1') <- congruenceNewtypes l1 r1 return (mkFunTy l1' l2', mkFunTy r1' r2') -- TyconApp Inductive case; this is the interesting bit. - | Just (tycon_l, args_l) <- splitNewTyConApp_maybe lhs - , Just (tycon_r, args_r) <- splitNewTyConApp_maybe rhs + | Just (tycon_l, _) <- splitNewTyConApp_maybe lhs + , Just (tycon_r, _) <- splitNewTyConApp_maybe rhs , tycon_l /= tycon_r - = return (lhs, upgrade tycon_l rhs) + = do rhs' <- upgrade tycon_l rhs + return (lhs, rhs') | otherwise = return (lhs,rhs) - where upgrade :: TyCon -> Type -> Type + where upgrade :: TyCon -> Type -> TR Type upgrade new_tycon ty - | not (isNewTyCon new_tycon) = ty - | ty' <- mkTyConApp new_tycon (map mkTyVarTy $ tyConTyVars new_tycon) - , Just subst <- tcUnifyTys (const BindMe) [ty] [repType ty'] - = substTy subst ty' - -- assumes that reptype doesn't touch tyconApp args ^^^ + | not (isNewTyCon new_tycon) = return ty + | otherwise = do + vars <- mapM (newVar . tyVarKind) (tyConTyVars new_tycon) + let ty' = mkTyConApp new_tycon vars + liftTcM (unifyType ty (repType ty')) + -- assumes that reptype doesn't ^^^^ touch tyconApp args + return ty' -------------------------------------------------------------------------------- - +-- Semantically different to recoverM in TcRnMonad +-- recoverM retains the errors in the first action, +-- whereas recoverTc here does not +recoverTc :: TcM a -> TcM a -> TcM a +recoverTc recover thing = do + (_,mb_res) <- tryTcErrs thing + case mb_res of + Nothing -> recover + Just res -> return res + +isMonomorphic :: Type -> Bool isMonomorphic ty | (tvs, ty') <- splitForAllTys ty = null tvs && (isEmptyVarSet . tyVarsOfType) ty' mapMif :: Monad m => (a -> Bool) -> (a -> m a) -> [a] -> m [a] mapMif pred f xx = sequence $ mapMif_ pred f xx -mapMif_ pred f [] = [] -mapMif_ pred f (x:xx) = (if pred x then f x else return x) : mapMif_ pred f xx + where + mapMif_ _ _ [] = [] + mapMif_ pred f (x:xx) = (if pred x then f x else return x) : mapMif_ pred f xx +unlessM :: Monad m => m Bool -> m () -> m () unlessM condM acc = condM >>= \c -> unless c acc -- Strict application of f at index i -appArr f (Array _ _ ptrs#) (I# i#) = case indexArray# ptrs# i# of - (# e #) -> f e +appArr :: Ix i => (e -> a) -> Array i e -> Int -> a +appArr f a@(Array _ _ _ ptrs#) i@(I# i#) + = ASSERT (i < length(elems a)) + case indexArray# ptrs# i# of + (# e #) -> f e zonkTerm :: Term -> TcM Term zonkTerm = foldTerm idTermFoldM { @@ -681,11 +850,14 @@ zonkTerm = foldTerm idTermFoldM { zonkTcType ty >>= \ty' -> return (Term ty' dc v tt) ,fSuspension = \ct ty v b -> fmapMMaybe zonkTcType ty >>= \ty -> - return (Suspension ct ty v b)} + return (Suspension ct ty v b) + ,fNewtypeWrap= \ty dc t -> + return NewtypeWrap `ap` zonkTcType ty `ap` return dc `ap` t} -- Is this defined elsewhere? -- Generalize the type: find all free tyvars and wrap in the appropiate ForAll. +sigmaType :: Type -> Type sigmaType ty = mkForAllTys (varSetElems$ tyVarsOfType (dropForAlls ty)) ty