X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Futils%2FGraphColor.hs;h=8e7989dc8cd25dad20af42700c4d751aa3bfde0e;hb=b3ee146e56463e8b492bf7ba1ad95ba7d966ea8d;hp=bd777b775d213457212529d42fc03aa9bffb3475;hpb=6a347ffc34c0ded44c213e2a0217477f7b8196b9;p=ghc-hetmet.git diff --git a/compiler/utils/GraphColor.hs b/compiler/utils/GraphColor.hs index bd777b7..8e7989d 100644 --- a/compiler/utils/GraphColor.hs +++ b/compiler/utils/GraphColor.hs @@ -1,9 +1,9 @@ +{-# OPTIONS -fno-warn-missing-signatures #-} -- | Graph Coloring. -- This is a generic graph coloring library, abstracted over the type of -- the node keys, nodes and colors. -- -{-# OPTIONS -fno-warn-missing-signatures #-} module GraphColor ( module GraphBase, @@ -39,6 +39,7 @@ colorGraph , Eq color, Eq cls, Ord k , Outputable k, Outputable cls, Outputable color) => Bool -- ^ whether to do iterative coalescing + -> Int -- ^ how many times we've tried to color this graph so far. -> UniqFM (UniqSet color) -- ^ map of (node class -> set of colors available for this class). -> Triv k cls color -- ^ fn to decide whether a node is trivially colorable. -> (Graph k cls color -> k) -- ^ fn to choose a node to potentially leave uncolored if nothing is trivially colorable. @@ -49,14 +50,22 @@ colorGraph , UniqFM k ) -- map of regs (r1 -> r2) that were coaleced -- r1 should be replaced by r2 in the source -colorGraph iterative colors triv spill graph0 +colorGraph iterative spinCount colors triv spill graph0 = let - -- If we're not doing iterative coalescing then just do a conservative - -- coalescing stage at the front. + -- If we're not doing iterative coalescing then do an aggressive coalescing first time + -- around and then conservative coalescing for subsequent passes. + -- + -- Aggressive coalescing is a quick way to get rid of many reg-reg moves. However, if + -- there is a lot of register pressure and we do it on every round then it can make the + -- graph less colorable and prevent the algorithm from converging in a sensible number + -- of cycles. + -- (graph_coalesced, kksCoalesce1) - = if not iterative - then coalesceGraph True triv graph0 - else (graph0, []) + = if iterative + then (graph0, []) + else if spinCount == 0 + then coalesceGraph True triv graph0 + else coalesceGraph False triv graph0 -- run the scanner to slurp out all the trivially colorable nodes -- (and do coalescing if iterative coalescing is enabled)