X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fvectorise%2FVectType.hs;h=96d48b542fbe59c2d17b411a853ce3283af8f262;hb=b8dbedceefebb3cf0bf05534033391a0211b0e63;hp=eec036ac40417314420ea18de3fab83f347e40be;hpb=cb482d83091413830831305db007da2f088619f7;p=ghc-hetmet.git diff --git a/compiler/vectorise/VectType.hs b/compiler/vectorise/VectType.hs index eec036a..96d48b5 100644 --- a/compiler/vectorise/VectType.hs +++ b/compiler/vectorise/VectType.hs @@ -6,10 +6,17 @@ module VectType ( vectTyCon, vectAndLiftType, vectType, vectTypeEnv, fromVect ) where -import VectMonad import VectUtils -import VectCore import Vectorise.Env +import Vectorise.Convert +import Vectorise.Vect +import Vectorise.Monad +import Vectorise.Builtins +import Vectorise.Type.Type +import Vectorise.Type.TyConDecl +import Vectorise.Type.Classify +import Vectorise.Utils.Closure +import Vectorise.Utils.Hoisting import HscTypes ( TypeEnv, extendTypeEnvList, typeEnvTyCons ) import BasicTypes @@ -20,23 +27,19 @@ import MkCore ( mkWildCase ) import BuildTyCl import DataCon import TyCon -import Class import Type -import TypeRep import Coercion import FamInstEnv ( FamInst, mkLocalFamInst ) import OccName import Id import MkId -import Var ( Var, TyVar, varType, varName ) +import Var import Name ( Name, getOccName ) import NameEnv import Unique import UniqFM -import UniqSet import Util -import Digraph ( SCC(..), stronglyConnCompFromEdgedVertices ) import Outputable import FastString @@ -44,119 +47,19 @@ import FastString import MonadUtils ( zipWith3M, foldrM, concatMapM ) import Control.Monad ( liftM, liftM2, zipWithM, zipWithM_, mapAndUnzipM ) import Data.List -import Data.Maybe debug = False dtrace s x = if debug then pprTrace "VectType" s x else x --- ---------------------------------------------------------------------------- --- Types - --- | Vectorise a type constructor. -vectTyCon :: TyCon -> VM TyCon -vectTyCon tc - | isFunTyCon tc = builtin closureTyCon - | isBoxedTupleTyCon tc = return tc - | isUnLiftedTyCon tc = return tc - | otherwise - = maybeCantVectoriseM "Tycon not vectorised: " (ppr tc) - $ lookupTyCon tc - - -vectAndLiftType :: Type -> VM (Type, Type) -vectAndLiftType ty | Just ty' <- coreView ty = vectAndLiftType ty' -vectAndLiftType ty - = do - mdicts <- mapM paDictArgType tyvars - let dicts = [dict | Just dict <- mdicts] - vmono_ty <- vectType mono_ty - lmono_ty <- mkPDataType vmono_ty - return (abstractType tyvars dicts vmono_ty, - abstractType tyvars dicts lmono_ty) - where - (tyvars, mono_ty) = splitForAllTys ty - - --- | Vectorise a type. -vectType :: Type -> VM Type -vectType ty - | Just ty' <- coreView ty - = vectType ty' - -vectType (TyVarTy tv) = return $ TyVarTy tv -vectType (AppTy ty1 ty2) = liftM2 AppTy (vectType ty1) (vectType ty2) -vectType (TyConApp tc tys) = liftM2 TyConApp (vectTyCon tc) (mapM vectType tys) -vectType (FunTy ty1 ty2) = liftM2 TyConApp (builtin closureTyCon) - (mapM vectAndBoxType [ty1,ty2]) - --- For each quantified var we need to add a PA dictionary out the front of the type. --- So forall a. C a => a -> a --- turns into forall a. Cv a => PA a => a :-> a -vectType ty@(ForAllTy _ _) - = do - -- split the type into the quantified vars, its dictionaries and the body. - let (tyvars, tyBody) = splitForAllTys ty - let (tyArgs, tyResult) = splitFunTys tyBody - - let (tyArgs_dict, tyArgs_regular) - = partition isDictType tyArgs - - -- vectorise the body. - let tyBody' = mkFunTys tyArgs_regular tyResult - tyBody'' <- vectType tyBody' - - -- vectorise the dictionary parameters. - dictsVect <- mapM vectType tyArgs_dict - - -- make a PA dictionary for each of the type variables. - dictsPA <- liftM catMaybes $ mapM paDictArgType tyvars - - -- pack it all back together. - return $ abstractType tyvars (dictsVect ++ dictsPA) tyBody'' - -vectType ty = cantVectorise "Can't vectorise type" (ppr ty) - - --- | Add quantified vars and dictionary parameters to the front of a type. -abstractType :: [TyVar] -> [Type] -> Type -> Type -abstractType tyvars dicts = mkForAllTys tyvars . mkFunTys dicts - - --- | Check if some type is a type class dictionary. -isDictType :: Type -> Bool -isDictType ty - = case splitTyConApp_maybe ty of - Just (tyCon, _) -> isClassTyCon tyCon - _ -> False - - --- ---------------------------------------------------------------------------- --- Boxing - -boxType :: Type -> VM Type -boxType ty - | Just (tycon, []) <- splitTyConApp_maybe ty - , isUnLiftedTyCon tycon - = do - r <- lookupBoxedTyCon tycon - case r of - Just tycon' -> return $ mkTyConApp tycon' [] - Nothing -> return ty - -boxType ty = return ty - -vectAndBoxType :: Type -> VM Type -vectAndBoxType ty = vectType ty >>= boxType - - --- ---------------------------------------------------------------------------- --- Type definitions - -type TyConGroup = ([TyCon], UniqSet TyCon) -- | Vectorise a type environment. -- The type environment contains all the type things defined in a module. -vectTypeEnv :: TypeEnv -> VM (TypeEnv, [FamInst], [(Var, CoreExpr)]) +vectTypeEnv + :: TypeEnv + -> VM ( TypeEnv -- Vectorised type environment. + , [FamInst] -- New type family instances. + , [(Var, CoreExpr)]) -- New top level bindings. + vectTypeEnv env = dtrace (ppr env) $ do @@ -168,15 +71,11 @@ vectTypeEnv env let (conv_tcs, keep_tcs) = classifyTyCons cs groups keep_dcs = concatMap tyConDataCons keep_tcs - dtrace (text "conv_tcs = " <> ppr conv_tcs) $ return () - zipWithM_ defTyCon keep_tcs keep_tcs zipWithM_ defDataCon keep_dcs keep_dcs new_tcs <- vectTyConDecls conv_tcs - dtrace (text "new_tcs = " <> ppr new_tcs) $ return () - let orig_tcs = keep_tcs ++ conv_tcs -- We don't need to make new representation types for dictionary @@ -186,11 +85,6 @@ vectTypeEnv env let vect_tcs = filter (not . isClassTyCon) $ keep_tcs ++ new_tcs - dtrace (text "vect_tcs = " <> ppr vect_tcs) $ return () - - mapM_ dumpTycon $ new_tcs - - (_, binds, inst_tcs) <- fixV $ \ ~(dfuns', _, _) -> do defTyConPAs (zipLazy vect_tcs dfuns') @@ -224,162 +118,6 @@ vectTypeEnv env mk_map env = listToUFM_Directly [(u, getUnique n /= u) | (u,n) <- nameEnvUniqueElts env] --- | Vectorise some (possibly recursively defined) type constructors. -vectTyConDecls :: [TyCon] -> VM [TyCon] -vectTyConDecls tcs = fixV $ \tcs' -> - do - mapM_ (uncurry defTyCon) (zipLazy tcs tcs') - mapM vectTyConDecl tcs - -dumpTycon :: TyCon -> VM () -dumpTycon tycon - | Just cls <- tyConClass_maybe tycon - = dtrace (vcat [ ppr tycon - , ppr [(m, varType m) | m <- classMethods cls ]]) - $ return () - - | otherwise - = return () - - --- | Vectorise a single type construcrtor. -vectTyConDecl :: TyCon -> VM TyCon -vectTyConDecl tycon - -- a type class constructor. - -- TODO: check for no stupid theta, fds, assoc types. - | isClassTyCon tycon - , Just cls <- tyConClass_maybe tycon - - = do -- make the name of the vectorised class tycon. - name' <- cloneName mkVectTyConOcc (tyConName tycon) - - -- vectorise right of definition. - rhs' <- vectAlgTyConRhs tycon (algTyConRhs tycon) - - -- vectorise method selectors. - -- This also adds a mapping between the original and vectorised method selector - -- to the state. - methods' <- mapM vectMethod - $ [(id, defMethSpecOfDefMeth meth) - | (id, meth) <- classOpItems cls] - - -- keep the original recursiveness flag. - let rec_flag = boolToRecFlag (isRecursiveTyCon tycon) - - -- Calling buildclass here attaches new quantifiers and dictionaries to the method types. - cls' <- liftDs - $ buildClass - False -- include unfoldings on dictionary selectors. - name' -- new name V_T:Class - (tyConTyVars tycon) -- keep original type vars - [] -- no stupid theta - [] -- no functional dependencies - [] -- no associated types - methods' -- method info - rec_flag -- whether recursive - - let tycon' = mkClassTyCon name' - (tyConKind tycon) - (tyConTyVars tycon) - rhs' - cls' - rec_flag - - return $ tycon' - - -- a regular algebraic type constructor. - -- TODO: check for stupid theta, generaics, GADTS etc - | isAlgTyCon tycon - = do name' <- cloneName mkVectTyConOcc (tyConName tycon) - rhs' <- vectAlgTyConRhs tycon (algTyConRhs tycon) - let rec_flag = boolToRecFlag (isRecursiveTyCon tycon) - - liftDs $ buildAlgTyCon - name' -- new name - (tyConTyVars tycon) -- keep original type vars. - [] -- no stupid theta. - rhs' -- new constructor defs. - rec_flag -- FIXME: is this ok? - False -- FIXME: no generics - False -- not GADT syntax - Nothing -- not a family instance - - -- some other crazy thing that we don't handle. - | otherwise - = cantVectorise "Can't vectorise type constructor: " (ppr tycon) - - --- | Vectorise a class method. -vectMethod :: (Id, DefMethSpec) -> VM (Name, DefMethSpec, Type) -vectMethod (id, defMeth) - = do - -- Vectorise the method type. - typ' <- vectType (varType id) - - -- Create a name for the vectorised method. - id' <- cloneId mkVectOcc id typ' - defGlobalVar id id' - - -- When we call buildClass in vectTyConDecl, it adds foralls and dictionaries - -- to the types of each method. However, the types we get back from vectType - -- above already already have these, so we need to chop them off here otherwise - -- we'll get two copies in the final version. - let (_tyvars, tyBody) = splitForAllTys typ' - let (_dict, tyRest) = splitFunTy tyBody - - return (Var.varName id', defMeth, tyRest) - - --- | Vectorise the RHS of an algebraic type. -vectAlgTyConRhs :: TyCon -> AlgTyConRhs -> VM AlgTyConRhs -vectAlgTyConRhs _ (DataTyCon { data_cons = data_cons - , is_enum = is_enum - }) - = do - data_cons' <- mapM vectDataCon data_cons - zipWithM_ defDataCon data_cons data_cons' - return $ DataTyCon { data_cons = data_cons' - , is_enum = is_enum - } - -vectAlgTyConRhs tc _ - = cantVectorise "Can't vectorise type definition:" (ppr tc) - - --- | Vectorise a data constructor. --- Vectorises its argument and return types. -vectDataCon :: DataCon -> VM DataCon -vectDataCon dc - | not . null $ dataConExTyVars dc - = cantVectorise "Can't vectorise constructor (existentials):" (ppr dc) - - | not . null $ dataConEqSpec dc - = cantVectorise "Can't vectorise constructor (eq spec):" (ppr dc) - - | otherwise - = do - name' <- cloneName mkVectDataConOcc name - tycon' <- vectTyCon tycon - arg_tys <- mapM vectType rep_arg_tys - - liftDs $ buildDataCon - name' - False -- not infix - (map (const HsNoBang) arg_tys) -- strictness annots on args. - [] -- no labelled fields - univ_tvs -- universally quantified vars - [] -- no existential tvs for now - [] -- no eq spec for now - [] -- no context - arg_tys -- argument types - (mkFamilyTyConApp tycon' (mkTyVarTys univ_tvs)) -- return type - tycon' -- representation tycon - where - name = dataConName dc - univ_tvs = dataConUnivTyVars dc - rep_arg_tys = dataConRepArgTys dc - tycon = dataConTyCon dc - mk_fam_inst :: TyCon -> TyCon -> (TyCon, [Type]) mk_fam_inst fam_tc arg_tc = (fam_tc, [mkTyConApp arg_tc . mkTyVarTys $ tyConTyVars arg_tc]) @@ -1011,132 +749,3 @@ paMethods = [("dictPRepr", buildPRDict), ("fromArrPRepr", buildFromArrPRepr)] --- | Split the given tycons into two sets depending on whether they have to be --- converted (first list) or not (second list). The first argument contains --- information about the conversion status of external tycons: --- --- * tycons which have converted versions are mapped to True --- * tycons which are not changed by vectorisation are mapped to False --- * tycons which can't be converted are not elements of the map --- -classifyTyCons :: UniqFM Bool -> [TyConGroup] -> ([TyCon], [TyCon]) -classifyTyCons = classify [] [] - where - classify conv keep _ [] = (conv, keep) - classify conv keep cs ((tcs, ds) : rs) - | can_convert && must_convert - = classify (tcs ++ conv) keep (cs `addListToUFM` [(tc,True) | tc <- tcs]) rs - | can_convert - = classify conv (tcs ++ keep) (cs `addListToUFM` [(tc,False) | tc <- tcs]) rs - | otherwise - = classify conv keep cs rs - where - refs = ds `delListFromUniqSet` tcs - - can_convert = isNullUFM (refs `minusUFM` cs) && all convertable tcs - must_convert = foldUFM (||) False (intersectUFM_C const cs refs) - - convertable tc = isDataTyCon tc && all isVanillaDataCon (tyConDataCons tc) - --- | Compute mutually recursive groups of tycons in topological order --- -tyConGroups :: [TyCon] -> [TyConGroup] -tyConGroups tcs = map mk_grp (stronglyConnCompFromEdgedVertices edges) - where - edges = [((tc, ds), tc, uniqSetToList ds) | tc <- tcs - , let ds = tyConsOfTyCon tc] - - mk_grp (AcyclicSCC (tc, ds)) = ([tc], ds) - mk_grp (CyclicSCC els) = (tcs, unionManyUniqSets dss) - where - (tcs, dss) = unzip els - -tyConsOfTyCon :: TyCon -> UniqSet TyCon -tyConsOfTyCon - = tyConsOfTypes . concatMap dataConRepArgTys . tyConDataCons - -tyConsOfType :: Type -> UniqSet TyCon -tyConsOfType ty - | Just ty' <- coreView ty = tyConsOfType ty' -tyConsOfType (TyVarTy _) = emptyUniqSet -tyConsOfType (TyConApp tc tys) = extend (tyConsOfTypes tys) - where - extend | isUnLiftedTyCon tc - || isTupleTyCon tc = id - - | otherwise = (`addOneToUniqSet` tc) - -tyConsOfType (AppTy a b) = tyConsOfType a `unionUniqSets` tyConsOfType b -tyConsOfType (FunTy a b) = (tyConsOfType a `unionUniqSets` tyConsOfType b) - `addOneToUniqSet` funTyCon -tyConsOfType (ForAllTy _ ty) = tyConsOfType ty -tyConsOfType other = pprPanic "ClosureConv.tyConsOfType" $ ppr other - -tyConsOfTypes :: [Type] -> UniqSet TyCon -tyConsOfTypes = unionManyUniqSets . map tyConsOfType - - --- ---------------------------------------------------------------------------- --- Conversions - --- | Build an expression that calls the vectorised version of some --- function from a `Closure`. --- --- For example --- @ --- \(x :: Double) -> --- \(y :: Double) -> --- ($v_foo $: x) $: y --- @ --- --- We use the type of the original binding to work out how many --- outer lambdas to add. --- -fromVect - :: Type -- ^ The type of the original binding. - -> CoreExpr -- ^ Expression giving the closure to use, eg @$v_foo@. - -> VM CoreExpr - --- Convert the type to the core view if it isn't already. -fromVect ty expr - | Just ty' <- coreView ty - = fromVect ty' expr - --- For each function constructor in the original type we add an outer --- lambda to bind the parameter variable, and an inner application of it. -fromVect (FunTy arg_ty res_ty) expr - = do - arg <- newLocalVar (fsLit "x") arg_ty - varg <- toVect arg_ty (Var arg) - varg_ty <- vectType arg_ty - vres_ty <- vectType res_ty - apply <- builtin applyVar - body <- fromVect res_ty - $ Var apply `mkTyApps` [varg_ty, vres_ty] `mkApps` [expr, varg] - return $ Lam arg body - --- If the type isn't a function then it's time to call on the closure. -fromVect ty expr - = identityConv ty >> return expr - - -toVect :: Type -> CoreExpr -> VM CoreExpr -toVect ty expr = identityConv ty >> return expr - - -identityConv :: Type -> VM () -identityConv ty | Just ty' <- coreView ty = identityConv ty' -identityConv (TyConApp tycon tys) - = do - mapM_ identityConv tys - identityConvTyCon tycon -identityConv _ = noV - -identityConvTyCon :: TyCon -> VM () -identityConvTyCon tc - | isBoxedTupleTyCon tc = return () - | isUnLiftedTyCon tc = return () - | otherwise = do - tc' <- maybeV (lookupTyCon tc) - if tc == tc' then return () else noV -