X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fvectorise%2FVectType.hs;h=e61aae5b3aff7dde75b6f964300fdc0f7e57c12d;hb=1a24ae99d0a7c0a2c6d8104b20405a69da9b9754;hp=e47058b5053bd48ed04034c848e343e7daf0d729;hpb=099ead5c6163eb36d49d2883326128111b592825;p=ghc-hetmet.git diff --git a/compiler/vectorise/VectType.hs b/compiler/vectorise/VectType.hs index e47058b..e61aae5 100644 --- a/compiler/vectorise/VectType.hs +++ b/compiler/vectorise/VectType.hs @@ -1,30 +1,37 @@ {-# OPTIONS -fno-warn-missing-signatures #-} -module VectType ( vectTyCon, vectAndLiftType, vectType, vectTypeEnv, - -- arrSumArity, pdataCompTys, pdataCompVars, - buildPADict, - fromVect ) +module VectType ( + vectTyCon, + vectAndLiftType, + vectType, + vectTypeEnv, + buildPADict, + fromVect +) where - import VectUtils import Vectorise.Env +import Vectorise.Convert import Vectorise.Vect import Vectorise.Monad import Vectorise.Builtins import Vectorise.Type.Type +import Vectorise.Type.TyConDecl +import Vectorise.Type.Classify +import Vectorise.Type.Repr +import Vectorise.Type.PADict +import Vectorise.Utils.Closure +import Vectorise.Utils.Hoisting import HscTypes ( TypeEnv, extendTypeEnvList, typeEnvTyCons ) import BasicTypes import CoreSyn import CoreUtils import CoreUnfold -import MkCore ( mkWildCase ) import BuildTyCl import DataCon import TyCon -import Class import Type -import TypeRep import Coercion import FamInstEnv ( FamInst, mkLocalFamInst ) import OccName @@ -36,32 +43,27 @@ import NameEnv import Unique import UniqFM -import UniqSet import Util -import Digraph ( SCC(..), stronglyConnCompFromEdgedVertices ) import Outputable import FastString -import MonadUtils ( zipWith3M, foldrM, concatMapM ) -import Control.Monad ( liftM, liftM2, zipWithM, zipWithM_, mapAndUnzipM ) +import MonadUtils +import Control.Monad import Data.List debug = False dtrace s x = if debug then pprTrace "VectType" s x else x --- ---------------------------------------------------------------------------- --- Types - - --- ---------------------------------------------------------------------------- --- Type definitions - -type TyConGroup = ([TyCon], UniqSet TyCon) -- | Vectorise a type environment. -- The type environment contains all the type things defined in a module. -vectTypeEnv :: TypeEnv -> VM (TypeEnv, [FamInst], [(Var, CoreExpr)]) +vectTypeEnv + :: TypeEnv + -> VM ( TypeEnv -- Vectorised type environment. + , [FamInst] -- New type family instances. + , [(Var, CoreExpr)]) -- New top level bindings. + vectTypeEnv env = dtrace (ppr env) $ do @@ -73,15 +75,11 @@ vectTypeEnv env let (conv_tcs, keep_tcs) = classifyTyCons cs groups keep_dcs = concatMap tyConDataCons keep_tcs - dtrace (text "conv_tcs = " <> ppr conv_tcs) $ return () - zipWithM_ defTyCon keep_tcs keep_tcs zipWithM_ defDataCon keep_dcs keep_dcs new_tcs <- vectTyConDecls conv_tcs - dtrace (text "new_tcs = " <> ppr new_tcs) $ return () - let orig_tcs = keep_tcs ++ conv_tcs -- We don't need to make new representation types for dictionary @@ -91,11 +89,6 @@ vectTypeEnv env let vect_tcs = filter (not . isClassTyCon) $ keep_tcs ++ new_tcs - dtrace (text "vect_tcs = " <> ppr vect_tcs) $ return () - - mapM_ dumpTycon $ new_tcs - - (_, binds, inst_tcs) <- fixV $ \ ~(dfuns', _, _) -> do defTyConPAs (zipLazy vect_tcs dfuns') @@ -129,162 +122,6 @@ vectTypeEnv env mk_map env = listToUFM_Directly [(u, getUnique n /= u) | (u,n) <- nameEnvUniqueElts env] --- | Vectorise some (possibly recursively defined) type constructors. -vectTyConDecls :: [TyCon] -> VM [TyCon] -vectTyConDecls tcs = fixV $ \tcs' -> - do - mapM_ (uncurry defTyCon) (zipLazy tcs tcs') - mapM vectTyConDecl tcs - -dumpTycon :: TyCon -> VM () -dumpTycon tycon - | Just cls <- tyConClass_maybe tycon - = dtrace (vcat [ ppr tycon - , ppr [(m, varType m) | m <- classMethods cls ]]) - $ return () - - | otherwise - = return () - - --- | Vectorise a single type construcrtor. -vectTyConDecl :: TyCon -> VM TyCon -vectTyConDecl tycon - -- a type class constructor. - -- TODO: check for no stupid theta, fds, assoc types. - | isClassTyCon tycon - , Just cls <- tyConClass_maybe tycon - - = do -- make the name of the vectorised class tycon. - name' <- cloneName mkVectTyConOcc (tyConName tycon) - - -- vectorise right of definition. - rhs' <- vectAlgTyConRhs tycon (algTyConRhs tycon) - - -- vectorise method selectors. - -- This also adds a mapping between the original and vectorised method selector - -- to the state. - methods' <- mapM vectMethod - $ [(id, defMethSpecOfDefMeth meth) - | (id, meth) <- classOpItems cls] - - -- keep the original recursiveness flag. - let rec_flag = boolToRecFlag (isRecursiveTyCon tycon) - - -- Calling buildclass here attaches new quantifiers and dictionaries to the method types. - cls' <- liftDs - $ buildClass - False -- include unfoldings on dictionary selectors. - name' -- new name V_T:Class - (tyConTyVars tycon) -- keep original type vars - [] -- no stupid theta - [] -- no functional dependencies - [] -- no associated types - methods' -- method info - rec_flag -- whether recursive - - let tycon' = mkClassTyCon name' - (tyConKind tycon) - (tyConTyVars tycon) - rhs' - cls' - rec_flag - - return $ tycon' - - -- a regular algebraic type constructor. - -- TODO: check for stupid theta, generaics, GADTS etc - | isAlgTyCon tycon - = do name' <- cloneName mkVectTyConOcc (tyConName tycon) - rhs' <- vectAlgTyConRhs tycon (algTyConRhs tycon) - let rec_flag = boolToRecFlag (isRecursiveTyCon tycon) - - liftDs $ buildAlgTyCon - name' -- new name - (tyConTyVars tycon) -- keep original type vars. - [] -- no stupid theta. - rhs' -- new constructor defs. - rec_flag -- FIXME: is this ok? - False -- FIXME: no generics - False -- not GADT syntax - Nothing -- not a family instance - - -- some other crazy thing that we don't handle. - | otherwise - = cantVectorise "Can't vectorise type constructor: " (ppr tycon) - - --- | Vectorise a class method. -vectMethod :: (Id, DefMethSpec) -> VM (Name, DefMethSpec, Type) -vectMethod (id, defMeth) - = do - -- Vectorise the method type. - typ' <- vectType (varType id) - - -- Create a name for the vectorised method. - id' <- cloneId mkVectOcc id typ' - defGlobalVar id id' - - -- When we call buildClass in vectTyConDecl, it adds foralls and dictionaries - -- to the types of each method. However, the types we get back from vectType - -- above already already have these, so we need to chop them off here otherwise - -- we'll get two copies in the final version. - let (_tyvars, tyBody) = splitForAllTys typ' - let (_dict, tyRest) = splitFunTy tyBody - - return (Var.varName id', defMeth, tyRest) - - --- | Vectorise the RHS of an algebraic type. -vectAlgTyConRhs :: TyCon -> AlgTyConRhs -> VM AlgTyConRhs -vectAlgTyConRhs _ (DataTyCon { data_cons = data_cons - , is_enum = is_enum - }) - = do - data_cons' <- mapM vectDataCon data_cons - zipWithM_ defDataCon data_cons data_cons' - return $ DataTyCon { data_cons = data_cons' - , is_enum = is_enum - } - -vectAlgTyConRhs tc _ - = cantVectorise "Can't vectorise type definition:" (ppr tc) - - --- | Vectorise a data constructor. --- Vectorises its argument and return types. -vectDataCon :: DataCon -> VM DataCon -vectDataCon dc - | not . null $ dataConExTyVars dc - = cantVectorise "Can't vectorise constructor (existentials):" (ppr dc) - - | not . null $ dataConEqSpec dc - = cantVectorise "Can't vectorise constructor (eq spec):" (ppr dc) - - | otherwise - = do - name' <- cloneName mkVectDataConOcc name - tycon' <- vectTyCon tycon - arg_tys <- mapM vectType rep_arg_tys - - liftDs $ buildDataCon - name' - False -- not infix - (map (const HsNoBang) arg_tys) -- strictness annots on args. - [] -- no labelled fields - univ_tvs -- universally quantified vars - [] -- no existential tvs for now - [] -- no eq spec for now - [] -- no context - arg_tys -- argument types - (mkFamilyTyConApp tycon' (mkTyVarTys univ_tvs)) -- return type - tycon' -- representation tycon - where - name = dataConName dc - univ_tvs = dataConUnivTyVars dc - rep_arg_tys = dataConRepArgTys dc - tycon = dataConTyCon dc - mk_fam_inst :: TyCon -> TyCon -> (TyCon, [Type]) mk_fam_inst fam_tc arg_tc = (fam_tc, [mkTyConApp arg_tc . mkTyVarTys $ tyConTyVars arg_tc]) @@ -305,386 +142,7 @@ buildPReprTyCon orig_tc vect_tc repr where tyvars = tyConTyVars vect_tc -data CompRepr = Keep Type - CoreExpr -- PR dictionary for the type - | Wrap Type - -data ProdRepr = EmptyProd - | UnaryProd CompRepr - | Prod { repr_tup_tc :: TyCon -- representation tuple tycon - , repr_ptup_tc :: TyCon -- PData representation tycon - , repr_comp_tys :: [Type] -- representation types of - , repr_comps :: [CompRepr] -- components - } -data ConRepr = ConRepr DataCon ProdRepr - -data SumRepr = EmptySum - | UnarySum ConRepr - | Sum { repr_sum_tc :: TyCon -- representation sum tycon - , repr_psum_tc :: TyCon -- PData representation tycon - , repr_sel_ty :: Type -- type of selector - , repr_con_tys :: [Type] -- representation types of - , repr_cons :: [ConRepr] -- components - } - -tyConRepr :: TyCon -> VM SumRepr -tyConRepr tc = sum_repr (tyConDataCons tc) - where - sum_repr [] = return EmptySum - sum_repr [con] = liftM UnarySum (con_repr con) - sum_repr cons = do - rs <- mapM con_repr cons - sum_tc <- builtin (sumTyCon arity) - tys <- mapM conReprType rs - (psum_tc, _) <- pdataReprTyCon (mkTyConApp sum_tc tys) - sel_ty <- builtin (selTy arity) - return $ Sum { repr_sum_tc = sum_tc - , repr_psum_tc = psum_tc - , repr_sel_ty = sel_ty - , repr_con_tys = tys - , repr_cons = rs - } - where - arity = length cons - - con_repr con = liftM (ConRepr con) (prod_repr (dataConRepArgTys con)) - - prod_repr [] = return EmptyProd - prod_repr [ty] = liftM UnaryProd (comp_repr ty) - prod_repr tys = do - rs <- mapM comp_repr tys - tup_tc <- builtin (prodTyCon arity) - tys' <- mapM compReprType rs - (ptup_tc, _) <- pdataReprTyCon (mkTyConApp tup_tc tys') - return $ Prod { repr_tup_tc = tup_tc - , repr_ptup_tc = ptup_tc - , repr_comp_tys = tys' - , repr_comps = rs - } - where - arity = length tys - - comp_repr ty = liftM (Keep ty) (prDictOfType ty) - `orElseV` return (Wrap ty) - -sumReprType :: SumRepr -> VM Type -sumReprType EmptySum = voidType -sumReprType (UnarySum r) = conReprType r -sumReprType (Sum { repr_sum_tc = sum_tc, repr_con_tys = tys }) - = return $ mkTyConApp sum_tc tys - -conReprType :: ConRepr -> VM Type -conReprType (ConRepr _ r) = prodReprType r - -prodReprType :: ProdRepr -> VM Type -prodReprType EmptyProd = voidType -prodReprType (UnaryProd r) = compReprType r -prodReprType (Prod { repr_tup_tc = tup_tc, repr_comp_tys = tys }) - = return $ mkTyConApp tup_tc tys - -compReprType :: CompRepr -> VM Type -compReprType (Keep ty _) = return ty -compReprType (Wrap ty) = do - wrap_tc <- builtin wrapTyCon - return $ mkTyConApp wrap_tc [ty] - -compOrigType :: CompRepr -> Type -compOrigType (Keep ty _) = ty -compOrigType (Wrap ty) = ty - -buildToPRepr :: TyCon -> TyCon -> TyCon -> SumRepr -> VM CoreExpr -buildToPRepr vect_tc repr_tc _ repr - = do - let arg_ty = mkTyConApp vect_tc ty_args - res_ty <- mkPReprType arg_ty - arg <- newLocalVar (fsLit "x") arg_ty - result <- to_sum (Var arg) arg_ty res_ty repr - return $ Lam arg result - where - ty_args = mkTyVarTys (tyConTyVars vect_tc) - - wrap_repr_inst = wrapFamInstBody repr_tc ty_args - - to_sum _ _ _ EmptySum - = do - void <- builtin voidVar - return $ wrap_repr_inst $ Var void - - to_sum arg arg_ty res_ty (UnarySum r) - = do - (pat, vars, body) <- con_alt r - return $ mkWildCase arg arg_ty res_ty - [(pat, vars, wrap_repr_inst body)] - - to_sum arg arg_ty res_ty (Sum { repr_sum_tc = sum_tc - , repr_con_tys = tys - , repr_cons = cons }) - = do - alts <- mapM con_alt cons - let alts' = [(pat, vars, wrap_repr_inst - $ mkConApp sum_con (map Type tys ++ [body])) - | ((pat, vars, body), sum_con) - <- zip alts (tyConDataCons sum_tc)] - return $ mkWildCase arg arg_ty res_ty alts' - - con_alt (ConRepr con r) - = do - (vars, body) <- to_prod r - return (DataAlt con, vars, body) - - to_prod EmptyProd - = do - void <- builtin voidVar - return ([], Var void) - - to_prod (UnaryProd comp) - = do - var <- newLocalVar (fsLit "x") (compOrigType comp) - body <- to_comp (Var var) comp - return ([var], body) - to_prod(Prod { repr_tup_tc = tup_tc - , repr_comp_tys = tys - , repr_comps = comps }) - = do - vars <- newLocalVars (fsLit "x") (map compOrigType comps) - exprs <- zipWithM to_comp (map Var vars) comps - return (vars, mkConApp tup_con (map Type tys ++ exprs)) - where - [tup_con] = tyConDataCons tup_tc - - to_comp expr (Keep _ _) = return expr - to_comp expr (Wrap ty) = do - wrap_tc <- builtin wrapTyCon - return $ wrapNewTypeBody wrap_tc [ty] expr - - -buildFromPRepr :: TyCon -> TyCon -> TyCon -> SumRepr -> VM CoreExpr -buildFromPRepr vect_tc repr_tc _ repr - = do - arg_ty <- mkPReprType res_ty - arg <- newLocalVar (fsLit "x") arg_ty - - result <- from_sum (unwrapFamInstScrut repr_tc ty_args (Var arg)) - repr - return $ Lam arg result - where - ty_args = mkTyVarTys (tyConTyVars vect_tc) - res_ty = mkTyConApp vect_tc ty_args - - from_sum _ EmptySum - = do - dummy <- builtin fromVoidVar - return $ Var dummy `App` Type res_ty - - from_sum expr (UnarySum r) = from_con expr r - from_sum expr (Sum { repr_sum_tc = sum_tc - , repr_con_tys = tys - , repr_cons = cons }) - = do - vars <- newLocalVars (fsLit "x") tys - es <- zipWithM from_con (map Var vars) cons - return $ mkWildCase expr (exprType expr) res_ty - [(DataAlt con, [var], e) - | (con, var, e) <- zip3 (tyConDataCons sum_tc) vars es] - - from_con expr (ConRepr con r) - = from_prod expr (mkConApp con $ map Type ty_args) r - - from_prod _ con EmptyProd = return con - from_prod expr con (UnaryProd r) - = do - e <- from_comp expr r - return $ con `App` e - - from_prod expr con (Prod { repr_tup_tc = tup_tc - , repr_comp_tys = tys - , repr_comps = comps - }) - = do - vars <- newLocalVars (fsLit "y") tys - es <- zipWithM from_comp (map Var vars) comps - return $ mkWildCase expr (exprType expr) res_ty - [(DataAlt tup_con, vars, con `mkApps` es)] - where - [tup_con] = tyConDataCons tup_tc - - from_comp expr (Keep _ _) = return expr - from_comp expr (Wrap ty) - = do - wrap <- builtin wrapTyCon - return $ unwrapNewTypeBody wrap [ty] expr - - -buildToArrPRepr :: TyCon -> TyCon -> TyCon -> SumRepr -> VM CoreExpr -buildToArrPRepr vect_tc prepr_tc pdata_tc r - = do - arg_ty <- mkPDataType el_ty - res_ty <- mkPDataType =<< mkPReprType el_ty - arg <- newLocalVar (fsLit "xs") arg_ty - - pdata_co <- mkBuiltinCo pdataTyCon - let Just repr_co = tyConFamilyCoercion_maybe prepr_tc - co = mkAppCoercion pdata_co - . mkSymCoercion - $ mkTyConApp repr_co ty_args - - scrut = unwrapFamInstScrut pdata_tc ty_args (Var arg) - - (vars, result) <- to_sum r - - return . Lam arg - $ mkWildCase scrut (mkTyConApp pdata_tc ty_args) res_ty - [(DataAlt pdata_dc, vars, mkCoerce co result)] - where - ty_args = mkTyVarTys $ tyConTyVars vect_tc - el_ty = mkTyConApp vect_tc ty_args - - [pdata_dc] = tyConDataCons pdata_tc - - - to_sum EmptySum = do - pvoid <- builtin pvoidVar - return ([], Var pvoid) - to_sum (UnarySum r) = to_con r - to_sum (Sum { repr_psum_tc = psum_tc - , repr_sel_ty = sel_ty - , repr_con_tys = tys - , repr_cons = cons - }) - = do - (vars, exprs) <- mapAndUnzipM to_con cons - sel <- newLocalVar (fsLit "sel") sel_ty - return (sel : concat vars, mk_result (Var sel) exprs) - where - [psum_con] = tyConDataCons psum_tc - mk_result sel exprs = wrapFamInstBody psum_tc tys - $ mkConApp psum_con - $ map Type tys ++ (sel : exprs) - - to_con (ConRepr _ r) = to_prod r - - to_prod EmptyProd = do - pvoid <- builtin pvoidVar - return ([], Var pvoid) - to_prod (UnaryProd r) - = do - pty <- mkPDataType (compOrigType r) - var <- newLocalVar (fsLit "x") pty - expr <- to_comp (Var var) r - return ([var], expr) - - to_prod (Prod { repr_ptup_tc = ptup_tc - , repr_comp_tys = tys - , repr_comps = comps }) - = do - ptys <- mapM (mkPDataType . compOrigType) comps - vars <- newLocalVars (fsLit "x") ptys - es <- zipWithM to_comp (map Var vars) comps - return (vars, mk_result es) - where - [ptup_con] = tyConDataCons ptup_tc - mk_result exprs = wrapFamInstBody ptup_tc tys - $ mkConApp ptup_con - $ map Type tys ++ exprs - - to_comp expr (Keep _ _) = return expr - - -- FIXME: this is bound to be wrong! - to_comp expr (Wrap ty) - = do - wrap_tc <- builtin wrapTyCon - (pwrap_tc, _) <- pdataReprTyCon (mkTyConApp wrap_tc [ty]) - return $ wrapNewTypeBody pwrap_tc [ty] expr - - -buildFromArrPRepr :: TyCon -> TyCon -> TyCon -> SumRepr -> VM CoreExpr -buildFromArrPRepr vect_tc prepr_tc pdata_tc r - = do - arg_ty <- mkPDataType =<< mkPReprType el_ty - res_ty <- mkPDataType el_ty - arg <- newLocalVar (fsLit "xs") arg_ty - - pdata_co <- mkBuiltinCo pdataTyCon - let Just repr_co = tyConFamilyCoercion_maybe prepr_tc - co = mkAppCoercion pdata_co - $ mkTyConApp repr_co var_tys - - scrut = mkCoerce co (Var arg) - - mk_result args = wrapFamInstBody pdata_tc var_tys - $ mkConApp pdata_con - $ map Type var_tys ++ args - - (expr, _) <- fixV $ \ ~(_, args) -> - from_sum res_ty (mk_result args) scrut r - - return $ Lam arg expr - - -- (args, mk) <- from_sum res_ty scrut r - - -- let result = wrapFamInstBody pdata_tc var_tys - -- . mkConApp pdata_dc - -- $ map Type var_tys ++ args - - -- return $ Lam arg (mk result) - where - var_tys = mkTyVarTys $ tyConTyVars vect_tc - el_ty = mkTyConApp vect_tc var_tys - - [pdata_con] = tyConDataCons pdata_tc - - from_sum _ res _ EmptySum = return (res, []) - from_sum res_ty res expr (UnarySum r) = from_con res_ty res expr r - from_sum res_ty res expr (Sum { repr_psum_tc = psum_tc - , repr_sel_ty = sel_ty - , repr_con_tys = tys - , repr_cons = cons }) - = do - sel <- newLocalVar (fsLit "sel") sel_ty - ptys <- mapM mkPDataType tys - vars <- newLocalVars (fsLit "xs") ptys - (res', args) <- fold from_con res_ty res (map Var vars) cons - let scrut = unwrapFamInstScrut psum_tc tys expr - body = mkWildCase scrut (exprType scrut) res_ty - [(DataAlt psum_con, sel : vars, res')] - return (body, Var sel : args) - where - [psum_con] = tyConDataCons psum_tc - - - from_con res_ty res expr (ConRepr _ r) = from_prod res_ty res expr r - - from_prod _ res _ EmptyProd = return (res, []) - from_prod res_ty res expr (UnaryProd r) - = from_comp res_ty res expr r - from_prod res_ty res expr (Prod { repr_ptup_tc = ptup_tc - , repr_comp_tys = tys - , repr_comps = comps }) - = do - ptys <- mapM mkPDataType tys - vars <- newLocalVars (fsLit "ys") ptys - (res', args) <- fold from_comp res_ty res (map Var vars) comps - let scrut = unwrapFamInstScrut ptup_tc tys expr - body = mkWildCase scrut (exprType scrut) res_ty - [(DataAlt ptup_con, vars, res')] - return (body, args) - where - [ptup_con] = tyConDataCons ptup_tc - - from_comp _ res expr (Keep _ _) = return (res, [expr]) - from_comp _ res expr (Wrap ty) - = do - wrap_tc <- builtin wrapTyCon - (pwrap_tc, _) <- pdataReprTyCon (mkTyConApp wrap_tc [ty]) - return (res, [unwrapNewTypeBody pwrap_tc [ty] - $ unwrapFamInstScrut pwrap_tc [ty] expr]) - - fold f res_ty res exprs rs = foldrM f' (res, []) (zip exprs rs) - where - f' (expr, r) (res, args) = do - (res', args') <- f res_ty res expr r - return (res', args' ++ args) buildPRDict :: TyCon -> TyCon -> TyCon -> SumRepr -> VM CoreExpr buildPRDict vect_tc prepr_tc _ r @@ -916,132 +374,3 @@ paMethods = [("dictPRepr", buildPRDict), ("fromArrPRepr", buildFromArrPRepr)] --- | Split the given tycons into two sets depending on whether they have to be --- converted (first list) or not (second list). The first argument contains --- information about the conversion status of external tycons: --- --- * tycons which have converted versions are mapped to True --- * tycons which are not changed by vectorisation are mapped to False --- * tycons which can't be converted are not elements of the map --- -classifyTyCons :: UniqFM Bool -> [TyConGroup] -> ([TyCon], [TyCon]) -classifyTyCons = classify [] [] - where - classify conv keep _ [] = (conv, keep) - classify conv keep cs ((tcs, ds) : rs) - | can_convert && must_convert - = classify (tcs ++ conv) keep (cs `addListToUFM` [(tc,True) | tc <- tcs]) rs - | can_convert - = classify conv (tcs ++ keep) (cs `addListToUFM` [(tc,False) | tc <- tcs]) rs - | otherwise - = classify conv keep cs rs - where - refs = ds `delListFromUniqSet` tcs - - can_convert = isNullUFM (refs `minusUFM` cs) && all convertable tcs - must_convert = foldUFM (||) False (intersectUFM_C const cs refs) - - convertable tc = isDataTyCon tc && all isVanillaDataCon (tyConDataCons tc) - --- | Compute mutually recursive groups of tycons in topological order --- -tyConGroups :: [TyCon] -> [TyConGroup] -tyConGroups tcs = map mk_grp (stronglyConnCompFromEdgedVertices edges) - where - edges = [((tc, ds), tc, uniqSetToList ds) | tc <- tcs - , let ds = tyConsOfTyCon tc] - - mk_grp (AcyclicSCC (tc, ds)) = ([tc], ds) - mk_grp (CyclicSCC els) = (tcs, unionManyUniqSets dss) - where - (tcs, dss) = unzip els - -tyConsOfTyCon :: TyCon -> UniqSet TyCon -tyConsOfTyCon - = tyConsOfTypes . concatMap dataConRepArgTys . tyConDataCons - -tyConsOfType :: Type -> UniqSet TyCon -tyConsOfType ty - | Just ty' <- coreView ty = tyConsOfType ty' -tyConsOfType (TyVarTy _) = emptyUniqSet -tyConsOfType (TyConApp tc tys) = extend (tyConsOfTypes tys) - where - extend | isUnLiftedTyCon tc - || isTupleTyCon tc = id - - | otherwise = (`addOneToUniqSet` tc) - -tyConsOfType (AppTy a b) = tyConsOfType a `unionUniqSets` tyConsOfType b -tyConsOfType (FunTy a b) = (tyConsOfType a `unionUniqSets` tyConsOfType b) - `addOneToUniqSet` funTyCon -tyConsOfType (ForAllTy _ ty) = tyConsOfType ty -tyConsOfType other = pprPanic "ClosureConv.tyConsOfType" $ ppr other - -tyConsOfTypes :: [Type] -> UniqSet TyCon -tyConsOfTypes = unionManyUniqSets . map tyConsOfType - - --- ---------------------------------------------------------------------------- --- Conversions - --- | Build an expression that calls the vectorised version of some --- function from a `Closure`. --- --- For example --- @ --- \(x :: Double) -> --- \(y :: Double) -> --- ($v_foo $: x) $: y --- @ --- --- We use the type of the original binding to work out how many --- outer lambdas to add. --- -fromVect - :: Type -- ^ The type of the original binding. - -> CoreExpr -- ^ Expression giving the closure to use, eg @$v_foo@. - -> VM CoreExpr - --- Convert the type to the core view if it isn't already. -fromVect ty expr - | Just ty' <- coreView ty - = fromVect ty' expr - --- For each function constructor in the original type we add an outer --- lambda to bind the parameter variable, and an inner application of it. -fromVect (FunTy arg_ty res_ty) expr - = do - arg <- newLocalVar (fsLit "x") arg_ty - varg <- toVect arg_ty (Var arg) - varg_ty <- vectType arg_ty - vres_ty <- vectType res_ty - apply <- builtin applyVar - body <- fromVect res_ty - $ Var apply `mkTyApps` [varg_ty, vres_ty] `mkApps` [expr, varg] - return $ Lam arg body - --- If the type isn't a function then it's time to call on the closure. -fromVect ty expr - = identityConv ty >> return expr - - -toVect :: Type -> CoreExpr -> VM CoreExpr -toVect ty expr = identityConv ty >> return expr - - -identityConv :: Type -> VM () -identityConv ty | Just ty' <- coreView ty = identityConv ty' -identityConv (TyConApp tycon tys) - = do - mapM_ identityConv tys - identityConvTyCon tycon -identityConv _ = noV - -identityConvTyCon :: TyCon -> VM () -identityConvTyCon tc - | isBoxedTupleTyCon tc = return () - | isUnLiftedTyCon tc = return () - | otherwise = do - tc' <- maybeV (lookupTyCon tc) - if tc == tc' then return () else noV -