X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fvectorise%2FVectorise.hs;h=4994e3f1659cbd1d333bba333ba07587f6f2219d;hb=2c8aabcad1d2f2c469cb8a10afa7b66beeaedd45;hp=5fbd05337ab45b960cb4cf877c08b8f6e4f16a03;hpb=b715bd166c52e5a06457f5e5c84abef9633f56b0;p=ghc-hetmet.git diff --git a/compiler/vectorise/Vectorise.hs b/compiler/vectorise/Vectorise.hs index 5fbd053..4994e3f 100644 --- a/compiler/vectorise/Vectorise.hs +++ b/compiler/vectorise/Vectorise.hs @@ -1,256 +1,269 @@ -module Vectorise( vectorise ) -where - -#include "HsVersions.h" +{-# OPTIONS -fno-warn-missing-signatures -fno-warn-unused-do-bind #-} -import DynFlags -import HscTypes +module Vectorise ( vectorise ) +where -import CoreLint ( showPass, endPass ) +import Vectorise.Type.Env +import Vectorise.Type.Type +import Vectorise.Convert +import Vectorise.Utils.Hoisting +import Vectorise.Exp +import Vectorise.Vect +import Vectorise.Env +import Vectorise.Monad + +import HscTypes hiding ( MonadThings(..) ) +import CoreUnfold ( mkInlineUnfolding ) +import CoreFVs +import PprCore import CoreSyn -import TyCon +import CoreMonad ( CoreM, getHscEnv ) import Type -import TypeRep -import Var -import VarEnv -import Name ( mkSysTvName ) -import NameEnv - -import DsMonad - -import PrelNames - +import Id +import OccName +import DynFlags +import BasicTypes ( isLoopBreaker ) import Outputable -import FastString -import Control.Monad ( liftM2 ) - -vectorise :: HscEnv -> ModGuts -> IO ModGuts -vectorise hsc_env guts - | not (Opt_Vectorise `dopt` dflags) = return guts - | otherwise - = do - showPass dflags "Vectorisation" - eps <- hscEPS hsc_env - let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps - Just guts' <- initDs hsc_env (mg_module guts) - (mg_rdr_env guts) - (mg_types guts) - (vectoriseModule info guts) - endPass dflags "Vectorisation" Opt_D_dump_vect (mg_binds guts') - return guts' - where - dflags = hsc_dflags hsc_env - --- ---------------------------------------------------------------------------- --- Vectorisation monad - -data Builtins = Builtins { - parrayTyCon :: TyCon - , paTyCon :: TyCon - , closureTyCon :: TyCon - , mkClosureVar :: Var - , applyClosureVar :: Var - , mkClosurePVar :: Var - , applyClosurePVar :: Var - , closurePAVar :: Var - , lengthPAVar :: Var - , replicatePAVar :: Var - } - -initBuiltins :: DsM Builtins -initBuiltins - = do - parrayTyCon <- dsLookupTyCon parrayTyConName - paTyCon <- dsLookupTyCon paTyConName - closureTyCon <- dsLookupTyCon closureTyConName - - mkClosureVar <- dsLookupGlobalId mkClosureName - applyClosureVar <- dsLookupGlobalId applyClosureName - mkClosurePVar <- dsLookupGlobalId mkClosurePName - applyClosurePVar <- dsLookupGlobalId applyClosurePName - closurePAVar <- dsLookupGlobalId closurePAName - lengthPAVar <- dsLookupGlobalId lengthPAName - replicatePAVar <- dsLookupGlobalId replicatePAName - - return $ Builtins { - parrayTyCon = parrayTyCon - , paTyCon = paTyCon - , closureTyCon = closureTyCon - , mkClosureVar = mkClosureVar - , applyClosureVar = applyClosureVar - , mkClosurePVar = mkClosurePVar - , applyClosurePVar = applyClosurePVar - , closurePAVar = closurePAVar - , lengthPAVar = lengthPAVar - , replicatePAVar = replicatePAVar - } - -data VEnv = VEnv { - -- Mapping from variables to their vectorised versions. Mapping - -- to expressions instead of just Vars gives us more freedom. - -- - vect_vars :: VarEnv CoreExpr - - -- Exported variables which have a vectorised version - -- - , vect_exported_vars :: VarEnv (Var, Var) - - -- Mapping from TyCons to their vectorised versions. - -- TyCons which do not have to be vectorised are mapped to - -- themselves. - , vect_tycons :: NameEnv TyCon - } - -initVEnv :: VectInfo -> DsM VEnv -initVEnv info - = return $ VEnv { - vect_vars = mapVarEnv (Var . snd) $ vectInfoCCVar info - , vect_exported_vars = emptyVarEnv - , vect_tycons = mapNameEnv snd $ vectInfoCCTyCon info - } - --- FIXME -updVectInfo :: VEnv -> ModGuts -> ModGuts -updVectInfo env guts = guts { mg_vect_info = info' } - where - info' = info { - vectInfoCCVar = vect_exported_vars env - , vectInfoCCTyCon = tc_env - } - - info = mg_vect_info guts - tyenv = mg_types guts - - tc_env = mkNameEnv [(tc_name, (tc,tc')) | tc <- typeEnvTyCons tyenv - , let tc_name = tyConName tc - , Just tc' <- [lookupNameEnv (vect_tycons env) tc_name]] +import Util ( zipLazy ) +import MonadUtils -data VResult a = Yes VEnv a | No +import Control.Monad -newtype VM a = VM { runVM :: Builtins -> VEnv -> DsM (VResult a) } -instance Monad VM where - return x = VM $ \bi env -> return (Yes env x) - VM p >>= f = VM $ \bi env -> do - r <- p bi env - case r of - Yes env' x -> runVM (f x) bi env' - No -> return No +-- | Vectorise a single module. +-- +vectorise :: ModGuts -> CoreM ModGuts +vectorise guts + = do { hsc_env <- getHscEnv + ; liftIO $ vectoriseIO hsc_env guts + } -noV :: VM a -noV = VM $ \bi env -> return No +-- | Vectorise a single monad, given the dynamic compiler flags and HscEnv. +-- +vectoriseIO :: HscEnv -> ModGuts -> IO ModGuts +vectoriseIO hsc_env guts + = do { -- Get information about currently loaded external packages. + ; eps <- hscEPS hsc_env -tryV :: VM a -> VM (Maybe a) -tryV (VM p) = VM $ \bi env -> do - r <- p bi env - case r of - Yes env' x -> return (Yes env' (Just x)) - No -> return (Yes env Nothing) + -- Combine vectorisation info from the current module, and external ones. + ; let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps -maybeV :: VM (Maybe a) -> VM a -maybeV p = maybe noV return =<< p - -liftDs :: DsM a -> VM a -liftDs p = VM $ \bi env -> do { x <- p; return (Yes env x) } - -builtin :: (Builtins -> a) -> VM a -builtin f = VM $ \bi env -> return (Yes env (f bi)) - -readEnv :: (VEnv -> a) -> VM a -readEnv f = VM $ \bi env -> return (Yes env (f env)) - -setEnv :: VEnv -> VM () -setEnv env = VM $ \_ _ -> return (Yes env ()) - -updEnv :: (VEnv -> VEnv) -> VM () -updEnv f = VM $ \_ env -> return (Yes (f env) ()) - -newTyVar :: FastString -> Kind -> VM Var -newTyVar fs k - = do - u <- liftDs newUnique - return $ mkTyVar (mkSysTvName u fs) k - -lookupVar :: Var -> VM CoreExpr -lookupVar v = maybeV . readEnv $ \env -> lookupVarEnv (vect_vars env) v - -lookupTyCon :: TyCon -> VM (Maybe TyCon) -lookupTyCon tc = readEnv $ \env -> lookupNameEnv (vect_tycons env) (tyConName tc) - --- ---------------------------------------------------------------------------- --- Bindings - -vectoriseModule :: VectInfo -> ModGuts -> DsM ModGuts -vectoriseModule info guts - = do - builtins <- initBuiltins - env <- initVEnv info - r <- runVM (vectModule guts) builtins env - case r of - Yes env' guts' -> return $ updVectInfo env' guts' - No -> return guts + -- Run the main VM computation. + ; Just (info', guts') <- initV hsc_env guts info (vectModule guts) + ; return (guts' { mg_vect_info = info' }) + } +-- | Vectorise a single module, in the VM monad. +-- vectModule :: ModGuts -> VM ModGuts -vectModule guts = return guts - --- ---------------------------------------------------------------------------- --- Types - -paArgType :: Type -> Kind -> VM (Maybe Type) -paArgType ty k - | Just k' <- kindView k = paArgType ty k' - --- Here, we assume that for a kind (k1 -> k2) to be valid, k1 and k2 can only --- be made up of * and (->), i.e., they can't be coercion kinds or #. -paArgType ty (FunTy k1 k2) - = do - tv <- newTyVar FSLIT("a") k1 - ty1 <- paArgType' (TyVarTy tv) k1 - ty2 <- paArgType' (AppTy ty (TyVarTy tv)) k2 - return . Just $ ForAllTy tv (FunTy ty1 ty2) - -paArgType ty k - | isLiftedTypeKind k - = do - tc <- builtin paTyCon - return . Just $ TyConApp tc [ty] - - | otherwise - = return Nothing - -paArgType' :: Type -> Kind -> VM Type -paArgType' ty k - = do - r <- paArgType ty k - case r of - Just ty' -> return ty' - Nothing -> pprPanic "paArgType'" (ppr ty) - -vectTyCon :: TyCon -> VM TyCon -vectTyCon tc - | isFunTyCon tc = builtin closureTyCon - | isBoxedTupleTyCon tc = return tc - | isUnLiftedTyCon tc = return tc - | otherwise = do - r <- lookupTyCon tc - case r of - Just tc' -> return tc' - - -- FIXME: just for now - Nothing -> pprTrace "ccTyCon:" (ppr tc) $ return tc - -vectType :: Type -> VM Type -vectType ty | Just ty' <- coreView ty = vectType ty -vectType (TyVarTy tv) = return $ TyVarTy tv -vectType (AppTy ty1 ty2) = liftM2 AppTy (vectType ty1) (vectType ty2) -vectType (TyConApp tc tys) = liftM2 TyConApp (vectTyCon tc) (mapM vectType tys) -vectType (FunTy ty1 ty2) = liftM2 TyConApp (builtin closureTyCon) - (mapM vectType [ty1,ty2]) -vectType (ForAllTy tv ty) - = do - r <- paArgType (TyVarTy tv) (tyVarKind tv) - ty' <- vectType ty - return . ForAllTy tv $ case r of { Just paty -> FunTy paty ty'; Nothing -> ty' } - -vectType ty = pprPanic "vectType:" (ppr ty) - +vectModule guts@(ModGuts { mg_types = types + , mg_binds = binds + , mg_fam_insts = fam_insts + }) + = do { dumpOptVt Opt_D_dump_vt_trace "Before vectorisation" $ + pprCoreBindings binds + + -- Vectorise the type environment. + -- This may add new TyCons and DataCons. + ; (types', new_fam_insts, tc_binds) <- vectTypeEnv types + + ; (_, fam_inst_env) <- readGEnv global_fam_inst_env + + -- dicts <- mapM buildPADict pa_insts + -- workers <- mapM vectDataConWorkers pa_insts + + -- Vectorise all the top level bindings. + ; binds' <- mapM vectTopBind binds + + ; return $ guts { mg_types = types' + , mg_binds = Rec tc_binds : binds' + , mg_fam_inst_env = fam_inst_env + , mg_fam_insts = fam_insts ++ new_fam_insts + } + } + +-- | Try to vectorise a top-level binding. +-- If it doesn't vectorise then return it unharmed. +-- +-- For example, for the binding +-- +-- @ +-- foo :: Int -> Int +-- foo = \x -> x + x +-- @ +-- +-- we get +-- @ +-- foo :: Int -> Int +-- foo = \x -> vfoo $: x +-- +-- v_foo :: Closure void vfoo lfoo +-- v_foo = closure vfoo lfoo void +-- +-- vfoo :: Void -> Int -> Int +-- vfoo = ... +-- +-- lfoo :: PData Void -> PData Int -> PData Int +-- lfoo = ... +-- @ +-- +-- @vfoo@ is the "vectorised", or scalar, version that does the same as the original +-- function foo, but takes an explicit environment. +-- +-- @lfoo@ is the "lifted" version that works on arrays. +-- +-- @v_foo@ combines both of these into a `Closure` that also contains the +-- environment. +-- +-- The original binding @foo@ is rewritten to call the vectorised version +-- present in the closure. +-- +vectTopBind :: CoreBind -> VM CoreBind +vectTopBind b@(NonRec var expr) + = do { -- Vectorise the right-hand side, create an appropriate top-level binding and add it to + -- the vectorisation map. + ; (inline, isScalar, expr') <- vectTopRhs [] var expr + ; var' <- vectTopBinder var inline expr' + ; when isScalar $ + addGlobalScalar var + + -- We replace the original top-level binding by a value projected from the vectorised + -- closure and add any newly created hoisted top-level bindings. + ; cexpr <- tryConvert var var' expr + ; hs <- takeHoisted + ; return . Rec $ (var, cexpr) : (var', expr') : hs + } + `orElseV` + return b +vectTopBind b@(Rec bs) + = let (vars, exprs) = unzip bs + in + do { (vars', _, exprs', hs) <- fixV $ + \ ~(_, inlines, rhss, _) -> + do { -- Vectorise the right-hand sides, create an appropriate top-level bindings and + -- add them to the vectorisation map. + ; vars' <- sequence [vectTopBinder var inline rhs + | (var, ~(inline, rhs)) <- zipLazy vars (zip inlines rhss)] + ; (inlines, areScalars, exprs') <- mapAndUnzip3M (uncurry $ vectTopRhs vars) bs + ; hs <- takeHoisted + ; if and areScalars + then -- (1) Entire recursive group is scalar + -- => add all variables to the global set of scalars + do { mapM addGlobalScalar vars + ; return (vars', inlines, exprs', hs) + } + else -- (2) At least one binding is not scalar + -- => vectorise again with empty set of local scalars + do { (inlines, _, exprs') <- mapAndUnzip3M (uncurry $ vectTopRhs []) bs + ; hs <- takeHoisted + ; return (vars', inlines, exprs', hs) + } + } + + -- Replace the original top-level bindings by a values projected from the vectorised + -- closures and add any newly created hoisted top-level bindings to the group. + ; cexprs <- sequence $ zipWith3 tryConvert vars vars' exprs + ; return . Rec $ zip vars cexprs ++ zip vars' exprs' ++ hs + } + `orElseV` + return b + +-- | Make the vectorised version of this top level binder, and add the mapping +-- between it and the original to the state. For some binder @foo@ the vectorised +-- version is @$v_foo@ +-- +-- NOTE: vectTopBinder *MUST* be lazy in inline and expr because of how it is +-- used inside of fixV in vectTopBind +-- +vectTopBinder :: Var -- ^ Name of the binding. + -> Inline -- ^ Whether it should be inlined, used to annotate it. + -> CoreExpr -- ^ RHS of binding, used to set the 'Unfolding' of the returned 'Var'. + -> VM Var -- ^ Name of the vectorised binding. +vectTopBinder var inline expr + = do { -- Vectorise the type attached to the var. + ; vty <- vectType (idType var) + + -- If there is a vectorisation declartion for this binding, make sure that its type + -- matches + ; vectDecl <- lookupVectDecl var + ; case vectDecl of + Nothing -> return () + Just (vdty, _) + | eqType vty vdty -> return () + | otherwise -> + cantVectorise ("Type mismatch in vectorisation pragma for " ++ show var) $ + (text "Expected type" <+> ppr vty) + $$ + (text "Inferred type" <+> ppr vdty) + + -- Make the vectorised version of binding's name, and set the unfolding used for inlining + ; var' <- liftM (`setIdUnfoldingLazily` unfolding) + $ cloneId mkVectOcc var vty + + -- Add the mapping between the plain and vectorised name to the state. + ; defGlobalVar var var' + + ; return var' + } + where + unfolding = case inline of + Inline arity -> mkInlineUnfolding (Just arity) expr + DontInline -> noUnfolding + +-- | Vectorise the RHS of a top-level binding, in an empty local environment. +-- +-- We need to distinguish three cases: +-- +-- (1) We have a (non-scalar) vectorisation declaration for the variable (which explicitly provides +-- vectorised code implemented by the user) +-- => no automatic vectorisation & instead use the user-supplied code +-- +-- (2) We have a scalar vectorisation declaration for the variable +-- => generate vectorised code that uses a scalar 'map'/'zipWith' to lift the computation +-- +-- (3) There is no vectorisation declaration for the variable +-- => perform automatic vectorisation of the RHS +-- +vectTopRhs :: [Var] -- ^ Names of all functions in the rec block + -> Var -- ^ Name of the binding. + -> CoreExpr -- ^ Body of the binding. + -> VM ( Inline -- (1) inline specification for the binding + , Bool -- (2) whether the right-hand side is a scalar computation + , CoreExpr) -- (3) the vectorised right-hand side +vectTopRhs recFs var expr + = closedV + $ do { traceVt ("vectTopRhs of " ++ show var) $ ppr expr + + ; globalScalar <- isGlobalScalar var + ; vectDecl <- lookupVectDecl var + ; rhs globalScalar vectDecl + } + where + rhs _globalScalar (Just (_, expr')) -- Case (1) + = return (inlineMe, False, expr') + rhs True Nothing -- Case (2) + = do { expr' <- vectScalarFun True recFs expr + ; return (inlineMe, True, vectorised expr') + } + rhs False Nothing -- Case (3) + = do { let fvs = freeVars expr + ; (inline, isScalar, vexpr) <- inBind var $ + vectPolyExpr (isLoopBreaker $ idOccInfo var) recFs fvs + ; return (inline, isScalar, vectorised vexpr) + } + +-- | Project out the vectorised version of a binding from some closure, +-- or return the original body if that doesn't work or the binding is scalar. +-- +tryConvert :: Var -- ^ Name of the original binding (eg @foo@) + -> Var -- ^ Name of vectorised version of binding (eg @$vfoo@) + -> CoreExpr -- ^ The original body of the binding. + -> VM CoreExpr +tryConvert var vect_var rhs + = do { globalScalar <- isGlobalScalar var + ; if globalScalar + then + return rhs + else + fromVect (idType var) (Var vect_var) `orElseV` return rhs + }