X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fvectorise%2FVectorise.hs;h=4994e3f1659cbd1d333bba333ba07587f6f2219d;hb=cbd7463c986d54422de15cb3b56184de116ef7ba;hp=29774d1ad38342b1808bee369920fdf4ff419357;hpb=f48c36d1f3f64570b44fae1737ad34f6ce98bd7d;p=ghc-hetmet.git diff --git a/compiler/vectorise/Vectorise.hs b/compiler/vectorise/Vectorise.hs index 29774d1..4994e3f 100644 --- a/compiler/vectorise/Vectorise.hs +++ b/compiler/vectorise/Vectorise.hs @@ -1,268 +1,269 @@ -module Vectorise( vectorise ) -where - -#include "HsVersions.h" - -import VectMonad +{-# OPTIONS -fno-warn-missing-signatures -fno-warn-unused-do-bind #-} -import DynFlags -import HscTypes +module Vectorise ( vectorise ) +where -import CoreLint ( showPass, endPass ) -import CoreSyn -import CoreUtils +import Vectorise.Type.Env +import Vectorise.Type.Type +import Vectorise.Convert +import Vectorise.Utils.Hoisting +import Vectorise.Exp +import Vectorise.Vect +import Vectorise.Env +import Vectorise.Monad + +import HscTypes hiding ( MonadThings(..) ) +import CoreUnfold ( mkInlineUnfolding ) import CoreFVs -import TyCon +import PprCore +import CoreSyn +import CoreMonad ( CoreM, getHscEnv ) import Type -import TypeRep -import Var -import VarEnv -import Name ( mkSysTvName ) -import NameEnv import Id - -import DsMonad hiding (mapAndUnzipM) - -import PrelNames - +import OccName +import DynFlags +import BasicTypes ( isLoopBreaker ) import Outputable -import FastString -import Control.Monad ( liftM, liftM2, mapAndUnzipM ) +import Util ( zipLazy ) +import MonadUtils -vectorise :: HscEnv -> ModGuts -> IO ModGuts -vectorise hsc_env guts - | not (Opt_Vectorise `dopt` dflags) = return guts - | otherwise - = do - showPass dflags "Vectorisation" - eps <- hscEPS hsc_env - let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps - Just (info', guts') <- initV hsc_env guts info (vectModule guts) - endPass dflags "Vectorisation" Opt_D_dump_vect (mg_binds guts') - return $ guts' { mg_vect_info = info' } - where - dflags = hsc_dflags hsc_env - -vectModule :: ModGuts -> VM ModGuts -vectModule guts = return guts - --- ---------------------------------------------------------------------------- --- Bindings - -vectBndr :: Var -> VM (Var, Var) -vectBndr v - = do - vty <- vectType (idType v) - lty <- mkPArrayTy vty - let vv = v `Id.setIdType` vty - lv = v `Id.setIdType` lty - updLEnv (mapTo vv lv) - return (vv, lv) - where - mapTo vv lv env = env { local_vars = extendVarEnv (local_vars env) v (Var vv, Var lv) } +import Control.Monad -vectBndrIn :: Var -> VM a -> VM (Var, Var, a) -vectBndrIn v p - = localV - $ do - (vv, lv) <- vectBndr v - x <- p - return (vv, lv, x) -vectBndrsIn :: [Var] -> VM a -> VM ([Var], [Var], a) -vectBndrsIn vs p - = localV - $ do - (vvs, lvs) <- mapAndUnzipM vectBndr vs - x <- p - return (vvs, lvs, x) +-- | Vectorise a single module. +-- +vectorise :: ModGuts -> CoreM ModGuts +vectorise guts + = do { hsc_env <- getHscEnv + ; liftIO $ vectoriseIO hsc_env guts + } --- ---------------------------------------------------------------------------- --- Expressions +-- | Vectorise a single monad, given the dynamic compiler flags and HscEnv. +-- +vectoriseIO :: HscEnv -> ModGuts -> IO ModGuts +vectoriseIO hsc_env guts + = do { -- Get information about currently loaded external packages. + ; eps <- hscEPS hsc_env -replicateP :: CoreExpr -> CoreExpr -> VM CoreExpr -replicateP expr len - = do - pa <- paOfType ty - rep <- builtin replicatePAVar - return $ mkApps (Var rep) [Type ty, pa, expr, len] - where - ty = exprType expr + -- Combine vectorisation info from the current module, and external ones. + ; let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps -capply :: (CoreExpr, CoreExpr) -> (CoreExpr, CoreExpr) -> VM (CoreExpr, CoreExpr) -capply (vfn, lfn) (varg, larg) - = do - apply <- builtin applyClosureVar - applyP <- builtin applyClosurePVar - return (mkApps (Var apply) [Type arg_ty, Type res_ty, vfn, varg], - mkApps (Var applyP) [Type arg_ty, Type res_ty, lfn, larg]) - where - fn_ty = exprType vfn - (arg_ty, res_ty) = splitClosureTy fn_ty + -- Run the main VM computation. + ; Just (info', guts') <- initV hsc_env guts info (vectModule guts) + ; return (guts' { mg_vect_info = info' }) + } -vectVar :: CoreExpr -> Var -> VM (CoreExpr, CoreExpr) -vectVar lc v = local v `orElseV` global v +-- | Vectorise a single module, in the VM monad. +-- +vectModule :: ModGuts -> VM ModGuts +vectModule guts@(ModGuts { mg_types = types + , mg_binds = binds + , mg_fam_insts = fam_insts + }) + = do { dumpOptVt Opt_D_dump_vt_trace "Before vectorisation" $ + pprCoreBindings binds + + -- Vectorise the type environment. + -- This may add new TyCons and DataCons. + ; (types', new_fam_insts, tc_binds) <- vectTypeEnv types + + ; (_, fam_inst_env) <- readGEnv global_fam_inst_env + + -- dicts <- mapM buildPADict pa_insts + -- workers <- mapM vectDataConWorkers pa_insts + + -- Vectorise all the top level bindings. + ; binds' <- mapM vectTopBind binds + + ; return $ guts { mg_types = types' + , mg_binds = Rec tc_binds : binds' + , mg_fam_inst_env = fam_inst_env + , mg_fam_insts = fam_insts ++ new_fam_insts + } + } + +-- | Try to vectorise a top-level binding. +-- If it doesn't vectorise then return it unharmed. +-- +-- For example, for the binding +-- +-- @ +-- foo :: Int -> Int +-- foo = \x -> x + x +-- @ +-- +-- we get +-- @ +-- foo :: Int -> Int +-- foo = \x -> vfoo $: x +-- +-- v_foo :: Closure void vfoo lfoo +-- v_foo = closure vfoo lfoo void +-- +-- vfoo :: Void -> Int -> Int +-- vfoo = ... +-- +-- lfoo :: PData Void -> PData Int -> PData Int +-- lfoo = ... +-- @ +-- +-- @vfoo@ is the "vectorised", or scalar, version that does the same as the original +-- function foo, but takes an explicit environment. +-- +-- @lfoo@ is the "lifted" version that works on arrays. +-- +-- @v_foo@ combines both of these into a `Closure` that also contains the +-- environment. +-- +-- The original binding @foo@ is rewritten to call the vectorised version +-- present in the closure. +-- +vectTopBind :: CoreBind -> VM CoreBind +vectTopBind b@(NonRec var expr) + = do { -- Vectorise the right-hand side, create an appropriate top-level binding and add it to + -- the vectorisation map. + ; (inline, isScalar, expr') <- vectTopRhs [] var expr + ; var' <- vectTopBinder var inline expr' + ; when isScalar $ + addGlobalScalar var + + -- We replace the original top-level binding by a value projected from the vectorised + -- closure and add any newly created hoisted top-level bindings. + ; cexpr <- tryConvert var var' expr + ; hs <- takeHoisted + ; return . Rec $ (var, cexpr) : (var', expr') : hs + } + `orElseV` + return b +vectTopBind b@(Rec bs) + = let (vars, exprs) = unzip bs + in + do { (vars', _, exprs', hs) <- fixV $ + \ ~(_, inlines, rhss, _) -> + do { -- Vectorise the right-hand sides, create an appropriate top-level bindings and + -- add them to the vectorisation map. + ; vars' <- sequence [vectTopBinder var inline rhs + | (var, ~(inline, rhs)) <- zipLazy vars (zip inlines rhss)] + ; (inlines, areScalars, exprs') <- mapAndUnzip3M (uncurry $ vectTopRhs vars) bs + ; hs <- takeHoisted + ; if and areScalars + then -- (1) Entire recursive group is scalar + -- => add all variables to the global set of scalars + do { mapM addGlobalScalar vars + ; return (vars', inlines, exprs', hs) + } + else -- (2) At least one binding is not scalar + -- => vectorise again with empty set of local scalars + do { (inlines, _, exprs') <- mapAndUnzip3M (uncurry $ vectTopRhs []) bs + ; hs <- takeHoisted + ; return (vars', inlines, exprs', hs) + } + } + + -- Replace the original top-level bindings by a values projected from the vectorised + -- closures and add any newly created hoisted top-level bindings to the group. + ; cexprs <- sequence $ zipWith3 tryConvert vars vars' exprs + ; return . Rec $ zip vars cexprs ++ zip vars' exprs' ++ hs + } + `orElseV` + return b + +-- | Make the vectorised version of this top level binder, and add the mapping +-- between it and the original to the state. For some binder @foo@ the vectorised +-- version is @$v_foo@ +-- +-- NOTE: vectTopBinder *MUST* be lazy in inline and expr because of how it is +-- used inside of fixV in vectTopBind +-- +vectTopBinder :: Var -- ^ Name of the binding. + -> Inline -- ^ Whether it should be inlined, used to annotate it. + -> CoreExpr -- ^ RHS of binding, used to set the 'Unfolding' of the returned 'Var'. + -> VM Var -- ^ Name of the vectorised binding. +vectTopBinder var inline expr + = do { -- Vectorise the type attached to the var. + ; vty <- vectType (idType var) + + -- If there is a vectorisation declartion for this binding, make sure that its type + -- matches + ; vectDecl <- lookupVectDecl var + ; case vectDecl of + Nothing -> return () + Just (vdty, _) + | eqType vty vdty -> return () + | otherwise -> + cantVectorise ("Type mismatch in vectorisation pragma for " ++ show var) $ + (text "Expected type" <+> ppr vty) + $$ + (text "Inferred type" <+> ppr vdty) + + -- Make the vectorised version of binding's name, and set the unfolding used for inlining + ; var' <- liftM (`setIdUnfoldingLazily` unfolding) + $ cloneId mkVectOcc var vty + + -- Add the mapping between the plain and vectorised name to the state. + ; defGlobalVar var var' + + ; return var' + } where - local v = maybeV (readLEnv $ \env -> lookupVarEnv (local_vars env) v) - global v = do - vexpr <- maybeV (readGEnv $ \env -> lookupVarEnv (global_vars env) v) - lexpr <- replicateP vexpr lc - return (vexpr, lexpr) - -vectExpr :: CoreExpr -> CoreExprWithFVs -> VM (CoreExpr, CoreExpr) -vectExpr lc (_, AnnType ty) - = do - vty <- vectType ty - return (Type vty, Type vty) -vectExpr lc (_, AnnVar v) = vectVar lc v -vectExpr lc (_, AnnLit lit) - = do - let vexpr = Lit lit - lexpr <- replicateP vexpr lc - return (vexpr, lexpr) -vectExpr lc (_, AnnNote note expr) - = do - (vexpr, lexpr) <- vectExpr lc expr - return (Note note vexpr, Note note lexpr) -vectExpr lc (_, AnnApp fn arg) - = do - fn' <- vectExpr lc fn - arg' <- vectExpr lc arg - capply fn' arg' -vectExpr lc (_, AnnCase expr bndr ty alts) - = panic "vectExpr: case" -vectExpr lc (_, AnnLet (AnnNonRec bndr rhs) body) - = do - (vrhs, lrhs) <- vectExpr lc rhs - (vbndr, lbndr, (vbody, lbody)) <- vectBndrIn bndr (vectExpr lc body) - return (Let (NonRec vbndr vrhs) vbody, - Let (NonRec lbndr lrhs) lbody) -vectExpr lc (_, AnnLet (AnnRec prs) body) - = do - (vbndrs, lbndrs, (vrhss, vbody, lrhss, lbody)) <- vectBndrsIn bndrs vect - return (Let (Rec (zip vbndrs vrhss)) vbody, - Let (Rec (zip lbndrs lrhss)) lbody) + unfolding = case inline of + Inline arity -> mkInlineUnfolding (Just arity) expr + DontInline -> noUnfolding + +-- | Vectorise the RHS of a top-level binding, in an empty local environment. +-- +-- We need to distinguish three cases: +-- +-- (1) We have a (non-scalar) vectorisation declaration for the variable (which explicitly provides +-- vectorised code implemented by the user) +-- => no automatic vectorisation & instead use the user-supplied code +-- +-- (2) We have a scalar vectorisation declaration for the variable +-- => generate vectorised code that uses a scalar 'map'/'zipWith' to lift the computation +-- +-- (3) There is no vectorisation declaration for the variable +-- => perform automatic vectorisation of the RHS +-- +vectTopRhs :: [Var] -- ^ Names of all functions in the rec block + -> Var -- ^ Name of the binding. + -> CoreExpr -- ^ Body of the binding. + -> VM ( Inline -- (1) inline specification for the binding + , Bool -- (2) whether the right-hand side is a scalar computation + , CoreExpr) -- (3) the vectorised right-hand side +vectTopRhs recFs var expr + = closedV + $ do { traceVt ("vectTopRhs of " ++ show var) $ ppr expr + + ; globalScalar <- isGlobalScalar var + ; vectDecl <- lookupVectDecl var + ; rhs globalScalar vectDecl + } where - (bndrs, rhss) = unzip prs - - vect = do - (vrhss, lrhss) <- mapAndUnzipM (vectExpr lc) rhss - (vbody, lbody) <- vectExpr lc body - return (vrhss, vbody, lrhss, lbody) -vectExpr lc (_, AnnLam bndr body) - | isTyVar bndr - = do - pa_ty <- paArgType' (TyVarTy bndr) (tyVarKind bndr) - pa_var <- newLocalVar FSLIT("dPA") pa_ty - (vbody, lbody) <- localV - $ do - extendTyVarPA bndr (Var pa_var) - -- FIXME: what about shadowing here (bndr in lc)? - vectExpr lc body - return (mkLams [bndr, pa_var] vbody, - mkLams [bndr, pa_var] lbody) - --- ---------------------------------------------------------------------------- --- PA dictionaries - -paArgType :: Type -> Kind -> VM (Maybe Type) -paArgType ty k - | Just k' <- kindView k = paArgType ty k' - --- Here, we assume that for a kind (k1 -> k2) to be valid, k1 and k2 can only --- be made up of * and (->), i.e., they can't be coercion kinds or #. -paArgType ty (FunTy k1 k2) - = do - tv <- newTyVar FSLIT("a") k1 - ty1 <- paArgType' (TyVarTy tv) k1 - ty2 <- paArgType' (AppTy ty (TyVarTy tv)) k2 - return . Just $ ForAllTy tv (FunTy ty1 ty2) - -paArgType ty k - | isLiftedTypeKind k - = do - tc <- builtin paDictTyCon - return . Just $ TyConApp tc [ty] - - | otherwise - = return Nothing - -paArgType' :: Type -> Kind -> VM Type -paArgType' ty k - = do - r <- paArgType ty k - case r of - Just ty' -> return ty' - Nothing -> pprPanic "paArgType'" (ppr ty) - -paOfTyCon :: TyCon -> VM CoreExpr --- FIXME: just for now -paOfTyCon tc = maybeV (readGEnv $ \env -> lookupNameEnv (global_tycon_pa env) (tyConName tc)) - -paOfType :: Type -> VM CoreExpr -paOfType ty | Just ty' <- coreView ty = paOfType ty' - -paOfType (TyVarTy tv) = maybeV (readLEnv $ \env -> lookupVarEnv (local_tyvar_pa env) tv) -paOfType (AppTy ty1 ty2) - = do - e1 <- paOfType ty1 - e2 <- paOfType ty2 - return $ mkApps e1 [Type ty2, e2] -paOfType (TyConApp tc tys) - = do - e <- paOfTyCon tc - es <- mapM paOfType tys - return $ mkApps e [arg | (t,e) <- zip tys es, arg <- [Type t, e]] -paOfType (FunTy ty1 ty2) = paOfType (TyConApp funTyCon [ty1,ty2]) -paOfType t@(ForAllTy tv ty) = pprPanic "paOfType:" (ppr t) -paOfType ty = pprPanic "paOfType:" (ppr ty) - - - --- ---------------------------------------------------------------------------- --- Types - -vectTyCon :: TyCon -> VM TyCon -vectTyCon tc - | isFunTyCon tc = builtin closureTyCon - | isBoxedTupleTyCon tc = return tc - | isUnLiftedTyCon tc = return tc - | otherwise = do - r <- lookupTyCon tc - case r of - Just tc' -> return tc' - - -- FIXME: just for now - Nothing -> pprTrace "ccTyCon:" (ppr tc) $ return tc - -vectType :: Type -> VM Type -vectType ty | Just ty' <- coreView ty = vectType ty -vectType (TyVarTy tv) = return $ TyVarTy tv -vectType (AppTy ty1 ty2) = liftM2 AppTy (vectType ty1) (vectType ty2) -vectType (TyConApp tc tys) = liftM2 TyConApp (vectTyCon tc) (mapM vectType tys) -vectType (FunTy ty1 ty2) = liftM2 TyConApp (builtin closureTyCon) - (mapM vectType [ty1,ty2]) -vectType (ForAllTy tv ty) - = do - r <- paArgType (TyVarTy tv) (tyVarKind tv) - ty' <- vectType ty - return . ForAllTy tv $ case r of { Just paty -> FunTy paty ty'; Nothing -> ty' } - -vectType ty = pprPanic "vectType:" (ppr ty) - -isClosureTyCon :: TyCon -> Bool -isClosureTyCon tc = tyConUnique tc == closureTyConKey - -splitClosureTy :: Type -> (Type, Type) -splitClosureTy ty - | Just (tc, [arg_ty, res_ty]) <- splitTyConApp_maybe ty - , isClosureTyCon tc - = (arg_ty, res_ty) - - | otherwise = pprPanic "splitClosureTy" (ppr ty) - -mkPArrayTy :: Type -> VM Type -mkPArrayTy ty = do - tc <- builtin parrayTyCon - return $ TyConApp tc [ty] - + rhs _globalScalar (Just (_, expr')) -- Case (1) + = return (inlineMe, False, expr') + rhs True Nothing -- Case (2) + = do { expr' <- vectScalarFun True recFs expr + ; return (inlineMe, True, vectorised expr') + } + rhs False Nothing -- Case (3) + = do { let fvs = freeVars expr + ; (inline, isScalar, vexpr) <- inBind var $ + vectPolyExpr (isLoopBreaker $ idOccInfo var) recFs fvs + ; return (inline, isScalar, vectorised vexpr) + } + +-- | Project out the vectorised version of a binding from some closure, +-- or return the original body if that doesn't work or the binding is scalar. +-- +tryConvert :: Var -- ^ Name of the original binding (eg @foo@) + -> Var -- ^ Name of vectorised version of binding (eg @$vfoo@) + -> CoreExpr -- ^ The original body of the binding. + -> VM CoreExpr +tryConvert var vect_var rhs + = do { globalScalar <- isGlobalScalar var + ; if globalScalar + then + return rhs + else + fromVect (idType var) (Var vect_var) `orElseV` return rhs + }