X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=compiler%2Fvectorise%2FVectorise.hs;h=aad5144b6bc824db51966add25887d70cdb406ff;hb=02c988e586dedff6d252ef59ef487dd4a8f567aa;hp=fb76430f8bb45bee7860a5ed6dae2a1c18ba41fb;hpb=47bf456431d8074c146eeb8b7c06bf1d6a975b74;p=ghc-hetmet.git diff --git a/compiler/vectorise/Vectorise.hs b/compiler/vectorise/Vectorise.hs index fb76430..aad5144 100644 --- a/compiler/vectorise/Vectorise.hs +++ b/compiler/vectorise/Vectorise.hs @@ -1,22 +1,24 @@ +{-# OPTIONS -fno-warn-missing-signatures #-} module Vectorise( vectorise ) where import VectMonad import VectUtils +import VectVar import VectType -import VectCore +import Vectorise.Vect +import Vectorise.Env -import DynFlags import HscTypes hiding ( MonadThings(..) ) -import Module ( dphSeqPackageId, dphParPackageId ) -import CoreLint ( showPass, endPass ) +import Module ( PackageId ) import CoreSyn import CoreUtils +import CoreUnfold ( mkInlineRule ) +import MkCore ( mkWildCase ) import CoreFVs -import SimplMonad ( SimplCount, zeroSimplCount ) -import Rules ( RuleBase ) +import CoreMonad ( CoreM, getHscEnv ) import DataCon import TyCon import Type @@ -26,66 +28,133 @@ import VarEnv import VarSet import Id import OccName +import BasicTypes ( isLoopBreaker ) -import DsMonad - -import Literal ( Literal, mkMachInt ) +import Literal import TysWiredIn +import TysPrim ( intPrimTy ) import Outputable import FastString -import Control.Monad ( liftM, liftM2, zipWithM ) +import Util ( zipLazy ) +import Control.Monad import Data.List ( sortBy, unzip4 ) -vectorise :: DPHBackend -> HscEnv -> UniqSupply -> RuleBase -> ModGuts - -> IO (SimplCount, ModGuts) -vectorise backend hsc_env _ _ guts - = do - showPass dflags "Vectorisation" + +debug = False +dtrace s x = if debug then pprTrace "Vectorise" s x else x + +-- | Vectorise a single module. +-- Takes the package containing the DPH backend we're using. Eg either dph-par or dph-seq. +vectorise :: PackageId -> ModGuts -> CoreM ModGuts +vectorise backend guts + = do hsc_env <- getHscEnv + liftIO $ vectoriseIO backend hsc_env guts + + +-- | Vectorise a single monad, given its HscEnv (code gen environment). +vectoriseIO :: PackageId -> HscEnv -> ModGuts -> IO ModGuts +vectoriseIO backend hsc_env guts + = do -- Get information about currently loaded external packages. eps <- hscEPS hsc_env + + -- Combine vectorisation info from the current module, and external ones. let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps - Just (info', guts') <- initV (backendPackage backend) hsc_env guts info - (vectModule guts) - endPass dflags "Vectorisation" Opt_D_dump_vect (mg_binds guts') - return (zeroSimplCount dflags, guts' { mg_vect_info = info' }) - where - dflags = hsc_dflags hsc_env - backendPackage DPHSeq = dphSeqPackageId - backendPackage DPHPar = dphParPackageId + -- Run the main VM computation. + Just (info', guts') <- initV backend hsc_env guts info (vectModule guts) + return (guts' { mg_vect_info = info' }) + +-- | Vectorise a single module, in the VM monad. vectModule :: ModGuts -> VM ModGuts vectModule guts - = do + = do -- Vectorise the type environment. + -- This may add new TyCons and DataCons. + -- TODO: What new binds do we get back here? (types', fam_insts, tc_binds) <- vectTypeEnv (mg_types guts) + -- TODO: What is this? let fam_inst_env' = extendFamInstEnvList (mg_fam_inst_env guts) fam_insts updGEnv (setFamInstEnv fam_inst_env') -- dicts <- mapM buildPADict pa_insts -- workers <- mapM vectDataConWorkers pa_insts + + -- Vectorise all the top level bindings. binds' <- mapM vectTopBind (mg_binds guts) + return $ guts { mg_types = types' , mg_binds = Rec tc_binds : binds' , mg_fam_inst_env = fam_inst_env' , mg_fam_insts = mg_fam_insts guts ++ fam_insts } + +-- | Try to vectorise a top-level binding. +-- If it doesn't vectorise then return it unharmed. +-- +-- For example, for the binding +-- +-- @ +-- foo :: Int -> Int +-- foo = \x -> x + x +-- @ +-- +-- we get +-- @ +-- foo :: Int -> Int +-- foo = \x -> vfoo $: x +-- +-- v_foo :: Closure void vfoo lfoo +-- v_foo = closure vfoo lfoo void +-- +-- vfoo :: Void -> Int -> Int +-- vfoo = ... +-- +-- lfoo :: PData Void -> PData Int -> PData Int +-- lfoo = ... +-- @ +-- +-- @vfoo@ is the "vectorised", or scalar, version that does the same as the original +-- function foo, but takes an explicit environment. +-- +-- @lfoo@ is the "lifted" version that works on arrays. +-- +-- @v_foo@ combines both of these into a `Closure` that also contains the +-- environment. +-- +-- The original binding @foo@ is rewritten to call the vectorised version +-- present in the closure. +-- vectTopBind :: CoreBind -> VM CoreBind vectTopBind b@(NonRec var expr) - = do - var' <- vectTopBinder var - expr' <- vectTopRhs var expr - hs <- takeHoisted - cexpr <- tryConvert var var' expr + = do + (inline, expr') <- vectTopRhs var expr + var' <- vectTopBinder var inline expr' + + -- Vectorising the body may create other top-level bindings. + hs <- takeHoisted + + -- To get the same functionality as the original body we project + -- out its vectorised version from the closure. + cexpr <- tryConvert var var' expr + return . Rec $ (var, cexpr) : (var', expr') : hs `orElseV` return b vectTopBind b@(Rec bs) - = do - vars' <- mapM vectTopBinder vars - exprs' <- zipWithM vectTopRhs vars exprs + = do + (vars', _, exprs') + <- fixV $ \ ~(_, inlines, rhss) -> + do vars' <- sequence [vectTopBinder var inline rhs + | (var, ~(inline, rhs)) <- zipLazy vars (zip inlines rhss)] + (inlines', exprs') + <- mapAndUnzipM (uncurry vectTopRhs) bs + + return (vars', inlines', exprs') + hs <- takeHoisted cexprs <- sequence $ zipWith3 tryConvert vars vars' exprs return . Rec $ zip vars cexprs ++ zip vars' exprs' ++ hs @@ -94,124 +163,103 @@ vectTopBind b@(Rec bs) where (vars, exprs) = unzip bs -vectTopBinder :: Var -> VM Var -vectTopBinder var - = do + +-- | Make the vectorised version of this top level binder, and add the mapping +-- between it and the original to the state. For some binder @foo@ the vectorised +-- version is @$v_foo@ +-- +-- NOTE: vectTopBinder *MUST* be lazy in inline and expr because of how it is +-- used inside of fixV in vectTopBind +vectTopBinder + :: Var -- ^ Name of the binding. + -> Inline -- ^ Whether it should be inlined, used to annotate it. + -> CoreExpr -- ^ RHS of the binding, used to set the `Unfolding` of the returned `Var`. + -> VM Var -- ^ Name of the vectorised binding. + +vectTopBinder var inline expr + = do + -- Vectorise the type attached to the var. vty <- vectType (idType var) - var' <- cloneId mkVectOcc var vty + + -- Make the vectorised version of binding's name, and set the unfolding used for inlining. + var' <- liftM (`setIdUnfolding` unfolding) + $ cloneId mkVectOcc var vty + + -- Add the mapping between the plain and vectorised name to the state. defGlobalVar var var' + return var' + where + unfolding = case inline of + Inline arity -> mkInlineRule expr (Just arity) + DontInline -> noUnfolding + + +-- | Vectorise the RHS of a top-level binding, in an empty local environment. +vectTopRhs + :: Var -- ^ Name of the binding. + -> CoreExpr -- ^ Body of the binding. + -> VM (Inline, CoreExpr) -vectTopRhs :: Var -> CoreExpr -> VM CoreExpr vectTopRhs var expr - = do - closedV . liftM vectorised - . inBind var - $ vectPolyExpr (freeVars expr) + = dtrace (vcat [text "vectTopRhs", ppr expr]) + $ closedV + $ do (inline, vexpr) <- inBind var + $ vectPolyExpr (isLoopBreaker $ idOccInfo var) + (freeVars expr) + return (inline, vectorised vexpr) + + +-- | Project out the vectorised version of a binding from some closure, +-- or return the original body if that doesn't work. +tryConvert + :: Var -- ^ Name of the original binding (eg @foo@) + -> Var -- ^ Name of vectorised version of binding (eg @$vfoo@) + -> CoreExpr -- ^ The original body of the binding. + -> VM CoreExpr -tryConvert :: Var -> Var -> CoreExpr -> VM CoreExpr tryConvert var vect_var rhs = fromVect (idType var) (Var vect_var) `orElseV` return rhs + -- ---------------------------------------------------------------------------- --- Bindings +-- Expressions -vectBndr :: Var -> VM VVar -vectBndr v - = do - (vty, lty) <- vectAndLiftType (idType v) - let vv = v `Id.setIdType` vty - lv = v `Id.setIdType` lty - updLEnv (mapTo vv lv) - return (vv, lv) - where - mapTo vv lv env = env { local_vars = extendVarEnv (local_vars env) v (vv, lv) } -vectBndrNew :: Var -> FastString -> VM VVar -vectBndrNew v fs - = do - vty <- vectType (idType v) - vv <- newLocalVVar fs vty - updLEnv (upd vv) - return vv - where - upd vv env = env { local_vars = extendVarEnv (local_vars env) v vv } - -vectBndrIn :: Var -> VM a -> VM (VVar, a) -vectBndrIn v p - = localV - $ do - vv <- vectBndr v - x <- p - return (vv, x) - -vectBndrNewIn :: Var -> FastString -> VM a -> VM (VVar, a) -vectBndrNewIn v fs p - = localV - $ do - vv <- vectBndrNew v fs - x <- p - return (vv, x) - -vectBndrsIn :: [Var] -> VM a -> VM ([VVar], a) -vectBndrsIn vs p - = localV - $ do - vvs <- mapM vectBndr vs - x <- p - return (vvs, x) +-- | Vectorise a polymorphic expression +vectPolyExpr + :: Bool -- ^ When vectorising the RHS of a binding, whether that + -- binding is a loop breaker. + -> CoreExprWithFVs + -> VM (Inline, VExpr) --- ---------------------------------------------------------------------------- --- Expressions +vectPolyExpr loop_breaker (_, AnnNote note expr) + = do (inline, expr') <- vectPolyExpr loop_breaker expr + return (inline, vNote note expr') -vectVar :: Var -> VM VExpr -vectVar v - = do - r <- lookupVar v - case r of - Local (vv,lv) -> return (Var vv, Var lv) - Global vv -> do - let vexpr = Var vv - lexpr <- liftPA vexpr - return (vexpr, lexpr) - -vectPolyVar :: Var -> [Type] -> VM VExpr -vectPolyVar v tys - = do - vtys <- mapM vectType tys - r <- lookupVar v - case r of - Local (vv, lv) -> liftM2 (,) (polyApply (Var vv) vtys) - (polyApply (Var lv) vtys) - Global poly -> do - vexpr <- polyApply (Var poly) vtys - lexpr <- liftPA vexpr - return (vexpr, lexpr) - -vectLiteral :: Literal -> VM VExpr -vectLiteral lit - = do - lexpr <- liftPA (Lit lit) - return (Lit lit, lexpr) - -vectPolyExpr :: CoreExprWithFVs -> VM VExpr -vectPolyExpr (_, AnnNote note expr) - = liftM (vNote note) $ vectPolyExpr expr -vectPolyExpr expr - = polyAbstract tvs $ \abstract -> - do - mono' <- vectExpr mono - return $ mapVect abstract mono' +vectPolyExpr loop_breaker expr + = dtrace (vcat [text "vectPolyExpr", ppr (deAnnotate expr)]) + $ do + arity <- polyArity tvs + polyAbstract tvs $ \args -> + do + (inline, mono') <- vectFnExpr False loop_breaker mono + return (addInlineArity inline arity, + mapVect (mkLams $ tvs ++ args) mono') where (tvs, mono) = collectAnnTypeBinders expr + +-- | Vectorise a core expression. vectExpr :: CoreExprWithFVs -> VM VExpr vectExpr (_, AnnType ty) = liftM vType (vectType ty) -vectExpr (_, AnnVar v) = vectVar v +vectExpr (_, AnnVar v) + = vectVar v -vectExpr (_, AnnLit lit) = vectLiteral lit +vectExpr (_, AnnLit lit) + = vectLiteral lit vectExpr (_, AnnNote note expr) = liftM (vNote note) (vectExpr expr) @@ -227,18 +275,33 @@ vectExpr (_, AnnApp (_, AnnVar v) (_, AnnLit lit)) , is_special_con con = do let vexpr = App (Var v) (Lit lit) - lexpr <- liftPA vexpr + lexpr <- liftPD vexpr return (vexpr, lexpr) where is_special_con con = con `elem` [intDataCon, floatDataCon, doubleDataCon] +-- TODO: Avoid using closure application for dictionaries. +-- vectExpr (_, AnnApp fn arg) +-- | if is application of dictionary +-- just use regular app instead of closure app. + +-- for lifted version. +-- do liftPD (sub a dNumber) +-- lift the result of the selection, not sub and dNumber seprately. + vectExpr (_, AnnApp fn arg) - = do + = dtrace (text "AnnApp" <+> ppr (deAnnotate fn) <+> ppr (deAnnotate arg)) + $ do arg_ty' <- vectType arg_ty res_ty' <- vectType res_ty + + dtrace (text "vectorising fn " <> ppr (deAnnotate fn)) $ return () fn' <- vectExpr fn + dtrace (text "fn' = " <> ppr fn') $ return () + arg' <- vectExpr arg + mkClosureApp arg_ty' res_ty' fn' arg' where (arg_ty, res_ty) = splitFunTy . exprType $ deAnnotate fn @@ -250,12 +313,9 @@ vectExpr (_, AnnCase scrut bndr ty alts) where scrut_ty = exprType (deAnnotate scrut) -vectExpr (_, AnnCase _ _ _ _) - = panic "vectExpr: case" - vectExpr (_, AnnLet (AnnNonRec bndr rhs) body) = do - vrhs <- localV . inBind bndr $ vectPolyExpr rhs + vrhs <- localV . inBind bndr . liftM snd $ vectPolyExpr False rhs (vbndr, vbody) <- vectBndrIn bndr (vectExpr body) return $ vLet (vNonRec vbndr vrhs) vbody @@ -264,45 +324,151 @@ vectExpr (_, AnnLet (AnnRec bs) body) (vbndrs, (vrhss, vbody)) <- vectBndrsIn bndrs $ liftM2 (,) (zipWithM vect_rhs bndrs rhss) - (vectPolyExpr body) + (vectExpr body) return $ vLet (vRec vbndrs vrhss) vbody where (bndrs, rhss) = unzip bs vect_rhs bndr rhs = localV . inBind bndr - $ vectExpr rhs + . liftM snd + $ vectPolyExpr (isLoopBreaker $ idOccInfo bndr) rhs + +vectExpr e@(_, AnnLam bndr _) + | isId bndr = liftM snd $ vectFnExpr True False e +{- +onlyIfV (isEmptyVarSet fvs) (vectScalarLam bs $ deAnnotate body) + `orElseV` vectLam True fvs bs body + where + (bs,body) = collectAnnValBinders e +-} + +vectExpr e = cantVectorise "Can't vectorise expression" (ppr $ deAnnotate e) + + +-- | Vectorise an expression with an outer lambda abstraction. +vectFnExpr + :: Bool -- ^ When the RHS of a binding, whether that binding should be inlined. + -> Bool -- ^ Whether the binding is a loop breaker. + -> CoreExprWithFVs -- ^ Expression to vectorise. Must have an outer `AnnLam`. + -> VM (Inline, VExpr) -vectExpr e@(fvs, AnnLam bndr _) - | not (isId bndr) = pprPanic "vectExpr" (ppr $ deAnnotate e) - | otherwise = vectLam fvs bs body +vectFnExpr inline loop_breaker e@(fvs, AnnLam bndr _) + | isId bndr = onlyIfV (isEmptyVarSet fvs) + (mark DontInline . vectScalarLam bs $ deAnnotate body) + `orElseV` mark inlineMe (vectLam inline loop_breaker fvs bs body) where (bs,body) = collectAnnValBinders e -vectExpr e = pprPanic "vectExpr" (ppr $ deAnnotate e) +vectFnExpr _ _ e = mark DontInline $ vectExpr e -vectLam :: VarSet -> [Var] -> CoreExprWithFVs -> VM VExpr -vectLam fvs bs body - = do - tyvars <- localTyVars +mark :: Inline -> VM a -> VM (Inline, a) +mark b p = do { x <- p; return (b,x) } + + +-- | Vectorise a function where are the args have scalar type, that is Int, Float or Double. +vectScalarLam + :: [Var] -- ^ Bound variables of function. + -> CoreExpr -- ^ Function body. + -> VM VExpr +vectScalarLam args body + = dtrace (vcat [text "vectScalarLam ", ppr args, ppr body]) + $ do scalars <- globalScalars + onlyIfV (all is_scalar_ty arg_tys + && is_scalar_ty res_ty + && is_scalar (extendVarSetList scalars args) body + && uses scalars body) + $ do + fn_var <- hoistExpr (fsLit "fn") (mkLams args body) DontInline + zipf <- zipScalars arg_tys res_ty + clo <- scalarClosure arg_tys res_ty (Var fn_var) + (zipf `App` Var fn_var) + clo_var <- hoistExpr (fsLit "clo") clo DontInline + lclo <- liftPD (Var clo_var) + return (Var clo_var, lclo) + where + arg_tys = map idType args + res_ty = exprType body + + is_scalar_ty ty + | Just (tycon, []) <- splitTyConApp_maybe ty + = tycon == intTyCon + || tycon == floatTyCon + || tycon == doubleTyCon + + | otherwise = False + + is_scalar vs (Var v) = v `elemVarSet` vs + is_scalar _ e@(Lit _) = is_scalar_ty $ exprType e + is_scalar vs (App e1 e2) = is_scalar vs e1 && is_scalar vs e2 + is_scalar _ _ = False + + -- A scalar function has to actually compute something. Without the check, + -- we would treat (\(x :: Int) -> x) as a scalar function and lift it to + -- (map (\x -> x)) which is very bad. Normal lifting transforms it to + -- (\n# x -> x) which is what we want. + uses funs (Var v) = v `elemVarSet` funs + uses funs (App e1 e2) = uses funs e1 || uses funs e2 + uses _ _ = False + + +vectLam + :: Bool -- ^ When the RHS of a binding, whether that binding should be inlined. + -> Bool -- ^ Whether the binding is a loop breaker. + -> VarSet -- ^ The free variables in the body. + -> [Var] -- + -> CoreExprWithFVs + -> VM VExpr + +vectLam inline loop_breaker fvs bs body + = dtrace (vcat [ text "vectLam " + , text "free vars = " <> ppr fvs + , text "binding vars = " <> ppr bs + , text "body = " <> ppr (deAnnotate body)]) + + $ do tyvars <- localTyVars (vs, vvs) <- readLEnv $ \env -> unzip [(var, vv) | var <- varSetElems fvs , Just vv <- [lookupVarEnv (local_vars env) var]] - arg_tys <- mapM (vectType . idType) bs - res_ty <- vectType (exprType $ deAnnotate body) + arg_tys <- mapM (vectType . idType) bs + + dtrace (text "arg_tys = " <> ppr arg_tys) $ return () + + res_ty <- vectType (exprType $ deAnnotate body) + + dtrace (text "res_ty = " <> ppr res_ty) $ return () buildClosures tyvars vvs arg_tys res_ty - . hoistPolyVExpr tyvars + . hoistPolyVExpr tyvars (maybe_inline (length vs + length bs)) $ do - lc <- builtin liftingContext - (vbndrs, vbody) <- vectBndrsIn (vs ++ bs) - (vectExpr body) - return $ vLams lc vbndrs vbody + lc <- builtin liftingContext + (vbndrs, vbody) <- vectBndrsIn (vs ++ bs) (vectExpr body) + + dtrace (text "vbody = " <> ppr vbody) $ return () + + vbody' <- break_loop lc res_ty vbody + return $ vLams lc vbndrs vbody' + where + maybe_inline n | inline = Inline n + | otherwise = DontInline + + break_loop lc ty (ve, le) + | loop_breaker + = do + empty <- emptyPD ty + lty <- mkPDataType ty + return (ve, mkWildCase (Var lc) intPrimTy lty + [(DEFAULT, [], le), + (LitAlt (mkMachInt 0), [], empty)]) + + | otherwise = return (ve, le) + vectTyAppExpr :: CoreExprWithFVs -> [Type] -> VM VExpr vectTyAppExpr (_, AnnVar v) tys = vectPolyVar v tys -vectTyAppExpr e _ = pprPanic "vectTyAppExpr" (ppr $ deAnnotate e) +vectTyAppExpr e tys = cantVectorise "Can't vectorise expression" + (ppr $ deAnnotate e `mkTyApps` tys) -- We convert -- @@ -336,50 +502,59 @@ vectAlgCase _tycon _ty_args scrut bndr ty [(DataAlt _, [], body)] (vbndr, vbody) <- vectBndrIn bndr (vectExpr body) return $ vCaseDEFAULT vscrut vbndr vty lty vbody -vectAlgCase tycon _ty_args scrut bndr ty [(DataAlt dc, bndrs, body)] +vectAlgCase _tycon _ty_args scrut bndr ty [(DataAlt dc, bndrs, body)] = do - vect_tc <- maybeV (lookupTyCon tycon) (vty, lty) <- vectAndLiftType ty vexpr <- vectExpr scrut - (vbndr, (vbndrs, vbody)) <- vect_scrut_bndr - . vectBndrsIn bndrs - $ vectExpr body - - (vscrut, arr_tc, _arg_tys) <- mkVScrut (vVar vbndr) + (vbndr, (vbndrs, (vect_body, lift_body))) + <- vect_scrut_bndr + . vectBndrsIn bndrs + $ vectExpr body + let (vect_bndrs, lift_bndrs) = unzip vbndrs + (vscrut, lscrut, pdata_tc, _arg_tys) <- mkVScrut (vVar vbndr) vect_dc <- maybeV (lookupDataCon dc) - let [arr_dc] = tyConDataCons arr_tc - repr <- mkRepr vect_tc - shape_bndrs <- arrShapeVars repr - return . vLet (vNonRec vbndr vexpr) - $ vCaseProd vscrut vty lty vect_dc arr_dc shape_bndrs vbndrs vbody + let [pdata_dc] = tyConDataCons pdata_tc + + let vcase = mk_wild_case vscrut vty vect_dc vect_bndrs vect_body + lcase = mk_wild_case lscrut lty pdata_dc lift_bndrs lift_body + + return $ vLet (vNonRec vbndr vexpr) (vcase, lcase) where vect_scrut_bndr | isDeadBinder bndr = vectBndrNewIn bndr (fsLit "scrut") | otherwise = vectBndrIn bndr + mk_wild_case expr ty dc bndrs body + = mkWildCase expr (exprType expr) ty [(DataAlt dc, bndrs, body)] + vectAlgCase tycon _ty_args scrut bndr ty alts = do vect_tc <- maybeV (lookupTyCon tycon) (vty, lty) <- vectAndLiftType ty - repr <- mkRepr vect_tc - shape_bndrs <- arrShapeVars repr - (len, sel, indices) <- arrSelector repr (map Var shape_bndrs) - (vbndr, valts) <- vect_scrut_bndr $ mapM (proc_alt sel vty lty) alts' + let arity = length (tyConDataCons vect_tc) + sel_ty <- builtin (selTy arity) + sel_bndr <- newLocalVar (fsLit "sel") sel_ty + let sel = Var sel_bndr + + (vbndr, valts) <- vect_scrut_bndr + $ mapM (proc_alt arity sel vty lty) alts' let (vect_dcs, vect_bndrss, lift_bndrss, vbodies) = unzip4 valts vexpr <- vectExpr scrut - (vscrut, arr_tc, _arg_tys) <- mkVScrut (vVar vbndr) - let [arr_dc] = tyConDataCons arr_tc + (vect_scrut, lift_scrut, pdata_tc, _arg_tys) <- mkVScrut (vVar vbndr) + let [pdata_dc] = tyConDataCons pdata_tc - let (vect_scrut, lift_scrut) = vscrut - (vect_bodies, lift_bodies) = unzip vbodies + let (vect_bodies, lift_bodies) = unzip vbodies - let vect_case = Case vect_scrut (mkWildId (exprType vect_scrut)) vty + vdummy <- newDummyVar (exprType vect_scrut) + ldummy <- newDummyVar (exprType lift_scrut) + let vect_case = Case vect_scrut vdummy vty (zipWith3 mk_vect_alt vect_dcs vect_bndrss vect_bodies) - lbody <- combinePA vty len sel indices lift_bodies - let lift_case = Case lift_scrut (mkWildId (exprType lift_scrut)) lty - [(DataAlt arr_dc, shape_bndrs ++ concat lift_bndrss, + lc <- builtin liftingContext + lbody <- combinePD vty (Var lc) sel lift_bodies + let lift_case = Case lift_scrut ldummy lty + [(DataAlt pdata_dc, sel_bndr : concat lift_bndrss, lbody)] return . vLet (vNonRec vbndr vexpr) @@ -396,75 +571,50 @@ vectAlgCase tycon _ty_args scrut bndr ty alts cmp _ DEFAULT = GT cmp _ _ = panic "vectAlgCase/cmp" - proc_alt sel vty lty (DataAlt dc, bndrs, body) + proc_alt arity sel _ lty (DataAlt dc, bndrs, body) = do vect_dc <- maybeV (lookupDataCon dc) - let tag = mkDataConTag vect_dc - fvs = freeVarsOf body `delVarSetList` bndrs - (vect_bndrs, lift_bndrs, vbody) - <- vect_alt_bndrs bndrs - $ \len -> packLiftingContext len sel tag fvs vty lty - $ vectExpr body - + let ntag = dataConTagZ vect_dc + tag = mkDataConTag vect_dc + fvs = freeVarsOf body `delVarSetList` bndrs + + sel_tags <- liftM (`App` sel) (builtin (selTags arity)) + lc <- builtin liftingContext + elems <- builtin (selElements arity ntag) + + (vbndrs, vbody) + <- vectBndrsIn bndrs + . localV + $ do + binds <- mapM (pack_var (Var lc) sel_tags tag) + . filter isLocalId + $ varSetElems fvs + (ve, le) <- vectExpr body + return (ve, Case (elems `App` sel) lc lty + [(DEFAULT, [], (mkLets (concat binds) le))]) + -- empty <- emptyPD vty + -- return (ve, Case (elems `App` sel) lc lty + -- [(DEFAULT, [], Let (NonRec flags_var flags_expr) + -- $ mkLets (concat binds) le), + -- (LitAlt (mkMachInt 0), [], empty)]) + let (vect_bndrs, lift_bndrs) = unzip vbndrs return (vect_dc, vect_bndrs, lift_bndrs, vbody) - proc_alt _ _ _ _ = panic "vectAlgCase/proc_alt" - vect_alt_bndrs [] p - = do - void_tc <- builtin voidTyCon - let void_ty = mkTyConApp void_tc [] - arr_ty <- mkPArrayType void_ty - bndr <- newLocalVar (fsLit "voids") arr_ty - len <- lengthPA void_ty (Var bndr) - e <- p len - return ([], [bndr], e) - - vect_alt_bndrs bndrs p - = localV - $ do - vbndrs <- mapM vectBndr bndrs - let (vect_bndrs, lift_bndrs) = unzip vbndrs - vv : _ = vect_bndrs - lv : _ = lift_bndrs - len <- lengthPA (idType vv) (Var lv) - e <- p len - return (vect_bndrs, lift_bndrs, e) + proc_alt _ _ _ _ _ = panic "vectAlgCase/proc_alt" mk_vect_alt vect_dc bndrs body = (DataAlt vect_dc, bndrs, body) -packLiftingContext :: CoreExpr -> CoreExpr -> CoreExpr -> VarSet - -> Type -> Type -> VM VExpr -> VM VExpr -packLiftingContext len shape tag fvs vty lty p - = do - select <- builtin selectPAIntPrimVar - let sel_expr = mkApps (Var select) [shape, tag] - sel_var <- newLocalVar (fsLit "sel#") (exprType sel_expr) - lc_var <- builtin liftingContext - localV $ - do - bnds <- mapM (packFreeVar (Var lc_var) (Var sel_var)) - . filter isLocalId - $ varSetElems fvs - (vexpr, lexpr) <- p - empty <- emptyPA vty - return (vexpr, Let (NonRec sel_var sel_expr) - $ Case len lc_var lty - [(DEFAULT, [], mkLets (concat bnds) lexpr), - (LitAlt (mkMachInt 0), [], empty)]) - -packFreeVar :: CoreExpr -> CoreExpr -> Var -> VM [CoreBind] -packFreeVar len sel v - = do - r <- lookupVar v - case r of - Local (vv,lv) -> - do - lv' <- cloneVar lv - expr <- packPA (idType vv) (Var lv) len sel - updLEnv (upd vv lv') - return [(NonRec lv' expr)] - - _ -> return [] - where - upd vv lv' env = env { local_vars = extendVarEnv (local_vars env) v (vv, lv') } + pack_var len tags t v + = do + r <- lookupVar v + case r of + Local (vv, lv) -> + do + lv' <- cloneVar lv + expr <- packByTagPD (idType vv) (Var lv) len tags t + updLEnv (\env -> env { local_vars = extendVarEnv + (local_vars env) v (vv, lv') }) + return [(NonRec lv' expr)] + + _ -> return []