X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=docs%2Fusers_guide%2Fglasgow_exts.xml;h=285785879f6f57d6dfc334a87bf00df998082daf;hb=18928fea8c5ab8fadeacec48890baf558c64f8c8;hp=44203bd46715e515cebcc36011eccf05d1cc37e2;hpb=fdd372f92ee59d474f7073ba8d8b8d41956a952b;p=ghc-hetmet.git diff --git a/docs/users_guide/glasgow_exts.xml b/docs/users_guide/glasgow_exts.xml index 44203bd..2857858 100644 --- a/docs/users_guide/glasgow_exts.xml +++ b/docs/users_guide/glasgow_exts.xml @@ -717,9 +717,11 @@ qualifier list has just one element, a boolean expression. The recursive do-notation (also known as mdo-notation) is implemented as described in -"A recursive do for Haskell", -Levent Erkok, John Launchbury", +A recursive do for Haskell, +by Levent Erkok, John Launchbury, Haskell Workshop 2002, pages: 29-37. Pittsburgh, Pennsylvania. +This paper is essential reading for anyone making non-trivial use of mdo-notation, +and we do not repeat it here. The do-notation of Haskell does not allow recursive bindings, @@ -750,11 +752,18 @@ class Monad m => MonadFix m where The function mfix -dictates how the required recursion operation should be performed. If recursive bindings are required for a monad, -then that monad must be declared an instance of the MonadFix class. -For details, see the above mentioned reference. +dictates how the required recursion operation should be performed. For example, +justOnes desugars as follows: + +justOnes = mfix (\xs' -> do { xs <- Just (1:xs'); return xs } + +For full details of the way in which mdo is typechecked and desugared, see +the paper A recursive do for Haskell. +In particular, GHC implements the segmentation technique described in Section 3.2 of the paper. +If recursive bindings are required for a monad, +then that monad must be declared an instance of the MonadFix class. The following instances of MonadFix are automatically provided: List, Maybe, IO. Furthermore, the Control.Monad.ST and Control.Monad.ST.Lazy modules provide the instances of the MonadFix class for Haskell's internal state monad (strict and lazy, respectively). @@ -6371,112 +6380,10 @@ r) -> Special built-in functions -GHC has a few built-in funcions with special behaviour, -described in this section. All are exported by -GHC.Exts. - - The <literal>seq</literal> function - -The function seq is as described in the Haskell98 Report. - - seq :: a -> b -> b - -It evaluates its first argument to head normal form, and then returns its -second argument as the result. The reason that it is documented here is -that, despite seq's polymorphism, its -second argument can have an unboxed type, or -can be an unboxed tuple; for example (seq x 4#) -or (seq x (# p,q #)). This requires b -to be instantiated to an unboxed type, which is not usually allowed. - - - - The <literal>inline</literal> function - -The inline function is somewhat experimental. - - inline :: a -> a - -The call (inline f) arranges that f -is inlined, regardless of its size. More precisely, the call -(inline f) rewrites to the right-hand side of f's -definition. -This allows the programmer to control inlining from -a particular call site -rather than the definition site of the function -(c.f. INLINE pragmas ). - - -This inlining occurs regardless of the argument to the call -or the size of f's definition; it is unconditional. -The main caveat is that f's definition must be -visible to the compiler. That is, f must be -let-bound in the current scope. -If no inlining takes place, the inline function -expands to the identity function in Phase zero; so its use imposes -no overhead. - - If the function is defined in another -module, GHC only exposes its inlining in the interface file if the -function is sufficiently small that it might be -inlined by the automatic mechanism. There is currently no way to tell -GHC to expose arbitrarily-large functions in the interface file. (This -shortcoming is something that could be fixed, with some kind of pragma.) - - - - The <literal>lazy</literal> function - -The lazy function restrains strictness analysis a little: - - lazy :: a -> a - -The call (lazy e) means the same as e, -but lazy has a magical property so far as strictness -analysis is concerned: it is lazy in its first argument, -even though its semantics is strict. After strictness analysis has run, -calls to lazy are inlined to be the identity function. - - -This behaviour is occasionally useful when controlling evaluation order. -Notably, lazy is used in the library definition of -Control.Parallel.par: - - par :: a -> b -> b - par x y = case (par# x) of { _ -> lazy y } - -If lazy were not lazy, par would -look strict in y which would defeat the whole -purpose of par. - - -Like seq, the argument of lazy can have -an unboxed type. - - - - - The <literal>unsafeCoerce#</literal> function - -The function unsafeCoerce# allows you to side-step the -typechecker entirely. It has type - - unsafeCoerce# :: a -> b - -That is, it allows you to coerce any type into any other type. If you use this -function, you had better get it right, otherwise segmentation faults await. -It is generally used when you want to write a program that you know is -well-typed, but where Haskell's type system is not expressive enough to prove -that it is well typed. - - -The argument to unsafeCoerce# can have unboxed types, -although extremely bad things will happen if you coerce a boxed type -to an unboxed type. - - - - +GHC has a few built-in funcions with special behaviour. These +are now described in the module GHC.Prim +in the library documentation.