X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=docs%2Fusers_guide%2Fglasgow_exts.xml;h=588dfef2677143dc7c8783113e1d6f4ba4e18493;hb=6da4233da131954bbc1d9922104d7bd01edc5c56;hp=9c1b2c7a789e9524afdf68ac03cbe9e0226deb74;hpb=d5019cfeeaa33967d19146e235722b953e1d800f;p=ghc-hetmet.git diff --git a/docs/users_guide/glasgow_exts.xml b/docs/users_guide/glasgow_exts.xml index 9c1b2c7..588dfef 100644 --- a/docs/users_guide/glasgow_exts.xml +++ b/docs/users_guide/glasgow_exts.xml @@ -116,11 +116,22 @@ documentation describes all the libraries that come with GHC. - : - + ,: - Switch off the Haskell 98 monomorphism restriction. + These two flags control how generalisation is done in + See . + + + + + + + : + + + + Use GHCi's extended default rules in a regular module (). Independent of the flag. @@ -140,7 +151,7 @@ documentation describes all the libraries that come with GHC. - + @@ -2022,6 +2033,11 @@ something more specific does not: op = ... -- Default +You can find lots of background material about the reason for these +restrictions in the paper +Understanding functional dependencies via Constraint Handling Rules. + @@ -2090,7 +2106,7 @@ option, you can use arbitrary types in both an instance context and instance head. Termination is ensured by having a fixed-depth recursion stack. If you exceed the stack depth you get a sort of backtrace, and the opportunity to increase the stack depth -with N. +with N. @@ -2466,7 +2482,7 @@ function that called it. For example, our sort function might to pick out the least value in a list: least :: (?cmp :: a -> a -> Bool) => [a] -> a - least xs = fst (sort xs) + least xs = head (sort xs) Without lifting a finger, the ?cmp parameter is propagated to become a parameter of least as well. With explicit @@ -4772,6 +4788,150 @@ Because the preprocessor targets Haskell (rather than Core), + + + +Bang patterns +<indexterm><primary>Bang patterns</primary></indexterm> + +GHC supports an extension of pattern matching called bang +patterns. Bang patterns are under consideration for Haskell Prime. +The the +Haskell prime feature description contains more discussion and examples +than the material below. + + +Bang patterns are enabled by the flag . + + + +Informal description of bang patterns + + +The main idea is to add a single new production to the syntax of patterns: + + pat ::= !pat + +Matching an expression e against a pattern !p is done by first +evaluating e (to WHNF) and then matching the result against p. +Example: + +f1 !x = True + +This definition makes f1 is strict in x, +whereas without the bang it would be lazy. +Bang patterns can be nested of course: + +f2 (!x, y) = [x,y] + +Here, f2 is strict in x but not in +y. +A bang only really has an effect if it precedes a variable or wild-card pattern: + +f3 !(x,y) = [x,y] +f4 (x,y) = [x,y] + +Here, f3 and f4 are identical; putting a bang before a pattern that +forces evaluation anyway does nothing. + +Bang patterns work in case expressions too, of course: + +g5 x = let y = f x in body +g6 x = case f x of { y -> body } +g7 x = case f x of { !y -> body } + +The functions g5 and g6 mean exactly the same thing. +But g7 evalutes (f x), binds y to the +result, and then evaluates body. + +Bang patterns work in let and where +definitions too. For example: + +let ![x,y] = e in b + +is a strict pattern: operationally, it evaluates e, matches +it against the pattern [x,y], and then evaluates b +The "!" should not be regarded as part of the pattern; after all, +in a function argument ![x,y] means the +same as [x,y]. Rather, the "!" +is part of the syntax of let bindings. + + + + + +Syntax and semantics + + + +We add a single new production to the syntax of patterns: + + pat ::= !pat + +There is one problem with syntactic ambiguity. Consider: + +f !x = 3 + +Is this a definition of the infix function "(!)", +or of the "f" with a bang pattern? GHC resolves this +ambiguity inf favour of the latter. If you want to define +(!) with bang-patterns enabled, you have to do so using +prefix notation: + +(!) f x = 3 + +The semantics of Haskell pattern matching is described in +Section 3.17.2 of the Haskell Report. To this description add +one extra item 10, saying: +Matching +the pattern !pat against a value v behaves as follows: +if v is bottom, the match diverges + otherwise, pat is matched against + v + + +Similarly, in Figure 4 of +Section 3.17.3, add a new case (t): + +case v of { !pat -> e; _ -> e' } + = v `seq` case v of { pat -> e; _ -> e' } + + +That leaves let expressions, whose translation is given in +Section +3.12 +of the Haskell Report. +In the translation box, first apply +the following transformation: for each pattern pi that is of +form !qi = ei, transform it to (xi,!qi) = ((),ei), and and replace e0 +by (xi `seq` e0). Then, when none of the left-hand-side patterns +have a bang at the top, apply the rules in the existing box. + +The effect of the let rule is to force complete matching of the pattern +qi before evaluation of the body is begun. The bang is +retained in the translated form in case qi is a variable, +thus: + + let !y = f x in b + + + + +The let-binding can be recursive. However, it is much more common for +the let-binding to be non-recursive, in which case the following law holds: +(let !p = rhs in body) + is equivalent to +(case rhs of !p -> body) + + +A pattern with a bang at the outermost level is not allowed at the top level of +a module. + + + + @@ -6072,7 +6232,7 @@ shortcoming is something that could be fixed, with some kind of pragma.) - The <literal>inline</literal> function + The <literal>lazy</literal> function The lazy function restrains strictness analysis a little: @@ -6097,6 +6257,21 @@ look strict in y which would defeat the whole purpose of par. + + The <literal>unsafeCoerce#</literal> function + +The function unsafeCoerce# allows you to side-step the +typechecker entirely. It has type + + unsafeCoerce# :: a -> b + +That is, it allows you to coerce any type into any other type. If you use this +function, you had better get it right, otherwise segmentation faults await. +It is generally used when you want to write a program that you know is +well-typed, but where Haskell's type system is not expressive enough to prove +that it is well typed. + + @@ -6356,6 +6531,51 @@ Just to finish with, here's another example I rather like: + +Control over monomorphism + +GHC supports two flags that control the way in which generalisation is +carried out at let and where bindings. + + + +Switching off the dreaded Monomorphism Restriction + + +Haskell's monomorphism restriction (see +Section +4.5.5 +of the Haskell Report) +can be completely switched off by +. + + + + +Monomorphic patteern bindings + + + + As an experimental change, we are exploring the possibility of + making pattern bindings monomorphic; that is, not generalised at all. + A pattern binding is a binding whose LHS has no function arguments, + and is not a simple variable. For example: + + f x = x -- Not a pattern binding + f = \x -> x -- Not a pattern binding + f :: Int -> Int = \x -> x -- Not a pattern binding + + (g,h) = e -- A pattern binding + (f) = e -- A pattern binding + [x] = e -- A pattern binding + +Experimentally, GHC now makes pattern bindings monomorphic by +default. Use to recover the +standard behaviour. + + + +