X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=docs%2Fusers_guide%2Fglasgow_exts.xml;h=6f54d1e0c2f09bb7f17f0bc134cf593e0d3e8a55;hb=646ca6ffb55b1a9ee4c71e8573d87629dc7a4989;hp=de115ab82a0bad3623f096752ff0127d4b7233fd;hpb=64c630df5bf31f882dbbc62ec8ff75b6480a5f4d;p=ghc-hetmet.git diff --git a/docs/users_guide/glasgow_exts.xml b/docs/users_guide/glasgow_exts.xml index de115ab..6f54d1e 100644 --- a/docs/users_guide/glasgow_exts.xml +++ b/docs/users_guide/glasgow_exts.xml @@ -106,9 +106,7 @@ documentation describes all the libraries that come with GHC. This option enables the language extension defined in the - Haskell 98 Foreign Function Interface Addendum plus deprecated - syntax of previous versions of the FFI for backwards - compatibility. + Haskell 98 Foreign Function Interface Addendum. New reserved words: foreign. @@ -116,10 +114,10 @@ documentation describes all the libraries that come with GHC. - ,: + ,: - These two flags control how generalisation is done in + These two flags control how generalisation is done. See . @@ -905,6 +903,38 @@ fromInteger :: Integer -> Bool -> Bool you should be all right. + + +Postfix operators + + +GHC allows a small extension to the syntax of left operator sections, which +allows you to define postfix operators. The extension is this: the left section + + (e !) + +is equivalent (from the point of view of both type checking and execution) to the expression + + ((!) e) + +(for any expression e and operator (!). +The strict Haskell 98 interpretation is that the section is equivalent to + + (\y -> (!) e y) + +That is, the operator must be a function of two arguments. GHC allows it to +take only one argument, and that in turn allows you to write the function +postfix. + +Since this extension goes beyond Haskell 98, it should really be enabled +by a flag; but in fact it is enabled all the time. (No Haskell 98 programs +change their behaviour, of course.) + +The extension does not extend to the left-hand side of function +definitions; you must define such a function in prefix form. + + + @@ -1279,7 +1309,7 @@ universal quantification earlier. - + Record Constructors @@ -1331,20 +1361,6 @@ main = do display (inc (inc counterB)) -- prints "##" -In GADT declarations (see ), the explicit -forall may be omitted. For example, we can express -the same Counter a using GADT: - - -data Counter a where - NewCounter { _this :: self - , _inc :: self -> self - , _display :: self -> IO () - , tag :: a - } - :: Counter a - - At the moment, record update syntax is only supported for Haskell 98 data types, so the following function does not work: @@ -1485,7 +1501,7 @@ are convincing reasons to change it. You can't use deriving to define instances of a data type with existentially quantified data constructors. -Reason: in most cases it would not make sense. For example:# +Reason: in most cases it would not make sense. For example:; data T = forall a. MkT [a] deriving( Eq ) @@ -1513,6 +1529,315 @@ declarations. Define your own instances! + + + +Declaring data types with explicit constructor signatures + +GHC allows you to declare an algebraic data type by +giving the type signatures of constructors explicitly. For example: + + data Maybe a where + Nothing :: Maybe a + Just :: a -> Maybe a + +The form is called a "GADT-style declaration" +because Generalised Algebraic Data Types, described in , +can only be declared using this form. +Notice that GADT-style syntax generalises existential types (). +For example, these two declarations are equivalent: + + data Foo = forall a. MkFoo a (a -> Bool) + data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' } + + +Any data type that can be declared in standard Haskell-98 syntax +can also be declared using GADT-style syntax. +The choice is largely stylistic, but GADT-style declarations differ in one important respect: +they treat class constraints on the data constructors differently. +Specifically, if the constructor is given a type-class context, that +context is made available by pattern matching. For example: + + data Set a where + MkSet :: Eq a => [a] -> Set a + + makeSet :: Eq a => [a] -> Set a + makeSet xs = MkSet (nub xs) + + insert :: a -> Set a -> Set a + insert a (MkSet as) | a `elem` as = MkSet as + | otherwise = MkSet (a:as) + +A use of MkSet as a constructor (e.g. in the definition of makeSet) +gives rise to a (Eq a) +constraint, as you would expect. The new feature is that pattern-matching on MkSet +(as in the definition of insert) makes available an (Eq a) +context. In implementation terms, the MkSet constructor has a hidden field that stores +the (Eq a) dictionary that is passed to MkSet; so +when pattern-matching that dictionary becomes available for the right-hand side of the match. +In the example, the equality dictionary is used to satisfy the equality constraint +generated by the call to elem, so that the type of +insert itself has no Eq constraint. + +This behaviour contrasts with Haskell 98's peculiar treament of +contexts on a data type declaration (Section 4.2.1 of the Haskell 98 Report). +In Haskell 98 the defintion + + data Eq a => Set' a = MkSet' [a] + +gives MkSet' the same type as MkSet above. But instead of +making available an (Eq a) constraint, pattern-matching +on MkSet' requires an (Eq a) constraint! +GHC faithfully implements this behaviour, odd though it is. But for GADT-style declarations, +GHC's behaviour is much more useful, as well as much more intuitive. + +For example, a possible application of GHC's behaviour is to reify dictionaries: + + data NumInst a where + MkNumInst :: Num a => NumInst a + + intInst :: NumInst Int + intInst = MkNumInst + + plus :: NumInst a -> a -> a -> a + plus MkNumInst p q = p + q + +Here, a value of type NumInst a is equivalent +to an explicit (Num a) dictionary. + + + +The rest of this section gives further details about GADT-style data +type declarations. + + + +The result type of each data constructor must begin with the type constructor being defined. +If the result type of all constructors +has the form T a1 ... an, where a1 ... an +are distinct type variables, then the data type is ordinary; +otherwise is a generalised data type (). + + + +The type signature of +each constructor is independent, and is implicitly universally quantified as usual. +Different constructors may have different universally-quantified type variables +and different type-class constraints. +For example, this is fine: + + data T a where + T1 :: Eq b => b -> T b + T2 :: (Show c, Ix c) => c -> [c] -> T c + + + + +Unlike a Haskell-98-style +data type declaration, the type variable(s) in the "data Set a where" header +have no scope. Indeed, one can write a kind signature instead: + + data Set :: * -> * where ... + +or even a mixture of the two: + + data Foo a :: (* -> *) -> * where ... + +The type variables (if given) may be explicitly kinded, so we could also write the header for Foo +like this: + + data Foo a (b :: * -> *) where ... + + + + + +You can use strictness annotations, in the obvious places +in the constructor type: + + data Term a where + Lit :: !Int -> Term Int + If :: Term Bool -> !(Term a) -> !(Term a) -> Term a + Pair :: Term a -> Term b -> Term (a,b) + + + + +You can use a deriving clause on a GADT-style data type +declaration. For example, these two declarations are equivalent + + data Maybe1 a where { + Nothing1 :: Maybe1 a ; + Just1 :: a -> Maybe1 a + } deriving( Eq, Ord ) + + data Maybe2 a = Nothing2 | Just2 a + deriving( Eq, Ord ) + + + + +You can use record syntax on a GADT-style data type declaration: + + + data Person where + Adult { name :: String, children :: [Person] } :: Person + Child { name :: String } :: Person + +As usual, for every constructor that has a field f, the type of +field f must be the same (modulo alpha conversion). + + +At the moment, record updates are not yet possible with GADT-style declarations, +so support is limited to record construction, selection and pattern matching. +For exmaple + + aPerson = Adult { name = "Fred", children = [] } + + shortName :: Person -> Bool + hasChildren (Adult { children = kids }) = not (null kids) + hasChildren (Child {}) = False + + + + +As in the case of existentials declared using the Haskell-98-like record syntax +(), +record-selector functions are generated only for those fields that have well-typed +selectors. +Here is the example of that section, in GADT-style syntax: + +data Counter a where + NewCounter { _this :: self + , _inc :: self -> self + , _display :: self -> IO () + , tag :: a + } + :: Counter a + +As before, only one selector function is generated here, that for tag. +Nevertheless, you can still use all the field names in pattern matching and record construction. + + + + + +Generalised Algebraic Data Types (GADTs) + +Generalised Algebraic Data Types generalise ordinary algebraic data types +by allowing constructors to have richer return types. Here is an example: + + data Term a where + Lit :: Int -> Term Int + Succ :: Term Int -> Term Int + IsZero :: Term Int -> Term Bool + If :: Term Bool -> Term a -> Term a -> Term a + Pair :: Term a -> Term b -> Term (a,b) + +Notice that the return type of the constructors is not always Term a, as is the +case with ordinary data types. This generality allows us to +write a well-typed eval function +for these Terms: + + eval :: Term a -> a + eval (Lit i) = i + eval (Succ t) = 1 + eval t + eval (IsZero t) = eval t == 0 + eval (If b e1 e2) = if eval b then eval e1 else eval e2 + eval (Pair e1 e2) = (eval e1, eval e2) + +The key point about GADTs is that pattern matching causes type refinement. +For example, in the right hand side of the equation + + eval :: Term a -> a + eval (Lit i) = ... + +the type a is refined to Int. That's the whole point! +A precise specification of the type rules is beyond what this user manual aspires to, +but the design closely follows that described in +the paper Simple +unification-based type inference for GADTs, +(ICFP 2006). +The general principle is this: type refinement is only carried out +based on user-supplied type annotations. +So if no type signature is supplied for eval, no type refinement happens, +and lots of obscure error messages will +occur. However, the refinement is quite general. For example, if we had: + + eval :: Term a -> a -> a + eval (Lit i) j = i+j + +the pattern match causes the type a to be refined to Int (because of the type +of the constructor Lit), and that refinement also applies to the type of j, and +the result type of the case expression. Hence the addition i+j is legal. + + +These and many other examples are given in papers by Hongwei Xi, and +Tim Sheard. There is a longer introduction +on the wiki, +and Ralf Hinze's +Fun with phantom types also has a number of examples. Note that papers +may use different notation to that implemented in GHC. + + +The rest of this section outlines the extensions to GHC that support GADTs. + + +A GADT can only be declared using GADT-style syntax (); +the old Haskell-98 syntax for data declarations always declares an ordinary data type. +The result type of each constructor must begin with the type constructor being defined, +but for a GADT the arguments to the type constructor can be arbitrary monotypes. +For example, in the Term data +type above, the type of each constructor must end with Term ty, but +the ty may not be a type variable (e.g. the Lit +constructor). + + + +You cannot use a deriving clause for a GADT; only for +an ordianary data type. + + + +As mentioned in , record syntax is supported. +For example: + + data Term a where + Lit { val :: Int } :: Term Int + Succ { num :: Term Int } :: Term Int + Pred { num :: Term Int } :: Term Int + IsZero { arg :: Term Int } :: Term Bool + Pair { arg1 :: Term a + , arg2 :: Term b + } :: Term (a,b) + If { cnd :: Term Bool + , tru :: Term a + , fls :: Term a + } :: Term a + +However, for GADTs there is the following additional constraint: +every constructor that has a field f must have +the same result type (modulo alpha conversion) +Hence, in the above example, we cannot merge the num +and arg fields above into a +single name. Although their field types are both Term Int, +their selector functions actually have different types: + + + num :: Term Int -> Term Int + arg :: Term Bool -> Term Int + + + + + + + + + + + @@ -2194,8 +2519,20 @@ some other constraint. But if the instance declaration was compiled with check for that declaration. -All this makes it possible for a library author to design a library that relies on -overlapping instances without the library client having to know. +These rules make it possible for a library author to design a library that relies on +overlapping instances without the library client having to know. + + +If an instance declaration is compiled without +, +then that instance can never be overlapped. This could perhaps be +inconvenient. Perhaps the rule should instead say that the +overlapping instance declaration should be compiled in +this way, rather than the overlapped one. Perhaps overlap +at a usage site should be permitted regardless of how the instance declarations +are compiled, if the flag is +used at the usage site. (Mind you, the exact usage site can occasionally be +hard to pin down.) We are interested to receive feedback on these points. The flag implies the flag, but not vice versa. @@ -3186,228 +3523,103 @@ for rank-2 types. - + +Impredicative polymorphism + +GHC supports impredicative polymorphism. This means +that you can call a polymorphic function at a polymorphic type, and +parameterise data structures over polymorphic types. For example: + + f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char]) + f (Just g) = Just (g [3], g "hello") + f Nothing = Nothing + +Notice here that the Maybe type is parameterised by the +polymorphic type (forall a. [a] -> +[a]). + +The technical details of this extension are described in the paper +Boxy types: +type inference for higher-rank types and impredicativity, +which appeared at ICFP 2006. + + -Scoped type variables +<title>Lexically scoped type variables -A lexically scoped type variable can be bound by: - -A declaration type signature () -A pattern type signature () -A result type signature () - -For example: +GHC supports lexically scoped type variables, without +which some type signatures are simply impossible to write. For example: -f (xs::[a]) = ys ++ ys - where - ys :: [a] - ys = reverse xs +f :: forall a. [a] -> [a] +f xs = ys ++ ys + where + ys :: [a] + ys = reverse xs -The pattern (xs::[a]) includes a type signature for xs. -This brings the type variable a into scope; it scopes over -all the patterns and right hand sides for this equation for f. -In particular, it is in scope at the type signature for y. - - - -At ordinary type signatures, such as that for ys, any type variables -mentioned in the type signature that are not in scope are -implicitly universally quantified. (If there are no type variables in -scope, all type variables mentioned in the signature are universally -quantified, which is just as in Haskell 98.) In this case, since a -is in scope, it is not universally quantified, so the type of ys is -the same as that of xs. In Haskell 98 it is not possible to declare +The type signature for f brings the type variable a into scope; it scopes over +the entire definition of f. +In particular, it is in scope at the type signature for ys. +In Haskell 98 it is not possible to declare a type for ys; a major benefit of scoped type variables is that it becomes possible to do so. - - -Scoped type variables are implemented in both GHC and Hugs. Where the -implementations differ from the specification below, those differences -are noted. - - - -So much for the basic idea. Here are the details. +Lexically-scoped type variables are enabled by +. +Note: GHC 6.6 contains substantial changes to the way that scoped type +variables work, compared to earlier releases. Read this section +carefully! -What a scoped type variable means - -A lexically-scoped type variable is simply -the name for a type. The restriction it expresses is that all occurrences -of the same name mean the same type. For example: - - f :: [Int] -> Int -> Int - f (xs::[a]) (y::a) = (head xs + y) :: a - -The pattern type signatures on the left hand side of -f express the fact that xs -must be a list of things of some type a; and that y -must have this same type. The type signature on the expression (head xs) -specifies that this expression must have the same type a. -There is no requirement that the type named by "a" is -in fact a type variable. Indeed, in this case, the type named by "a" is -Int. (This is a slight liberalisation from the original rather complex -rules, which specified that a pattern-bound type variable should be universally quantified.) -For example, all of these are legal: - - - t (x::a) (y::a) = x+y*2 - - f (x::a) (y::b) = [x,y] -- a unifies with b - - g (x::a) = x + 1::Int -- a unifies with Int - - h x = let k (y::a) = [x,y] -- a is free in the - in k x -- environment - - k (x::a) True = ... -- a unifies with Int - k (x::Int) False = ... - - w :: [b] -> [b] - w (x::a) = x -- a unifies with [b] - - - - - -Scope and implicit quantification - - +Overview +The design follows the following principles - - - -All the type variables mentioned in a pattern, -that are not already in scope, -are brought into scope by the pattern. We describe this set as -the type variables bound by the pattern. -For example: - - f (x::a) = let g (y::(a,b)) = fst y - in - g (x,True) - -The pattern (x::a) brings the type variable -a into scope, as well as the term -variable x. The pattern (y::(a,b)) -contains an occurrence of the already-in-scope type variable a, -and brings into scope the type variable b. - - - - - -The type variable(s) bound by the pattern have the same scope -as the term variable(s) bound by the pattern. For example: - - let - f (x::a) = <...rhs of f...> - (p::b, q::b) = (1,2) - in <...body of let...> - -Here, the type variable a scopes over the right hand side of f, -just like x does; while the type variable b scopes over the -body of the let, and all the other definitions in the let, -just like p and q do. -Indeed, the newly bound type variables also scope over any ordinary, separate -type signatures in the let group. - - - - - - -The type variables bound by the pattern may be -mentioned in ordinary type signatures or pattern -type signatures anywhere within their scope. - - - - - - - In ordinary type signatures, any type variable mentioned in the -signature that is in scope is not universally quantified. - - - - - - - - Ordinary type signatures do not bring any new type variables -into scope (except in the type signature itself!). So this is illegal: - - - f :: a -> a - f x = x::a - - -It's illegal because a is not in scope in the body of f, -so the ordinary signature x::a is equivalent to x::forall a.a; -and that is an incorrect typing. - +A scoped type variable stands for a type variable, and not for +a type. (This is a change from GHC's earlier +design.) +Furthermore, distinct lexical type variables stand for distinct +type variables. This means that every programmer-written type signature +(includin one that contains free scoped type variables) denotes a +rigid type; that is, the type is fully known to the type +checker, and no inference is involved. +Lexical type variables may be alpha-renamed freely, without +changing the program. + - - - -The pattern type signature is a monotype: - - +A lexically scoped type variable can be bound by: - -A pattern type signature cannot contain any explicit forall quantification. - - - -The type variables bound by a pattern type signature can only be instantiated to monotypes, -not to type schemes. - - - -There is no implicit universal quantification on pattern type signatures (in contrast to -ordinary type signatures). - - +A declaration type signature () +An expression type signature () +A pattern type signature () +Class and instance declarations () - - - - + - -The type variables in the head of a class or instance declaration -scope over the methods defined in the where part. For example: - - +In Haskell, a programmer-written type signature is implicitly quantifed over +its free type variables (Section +4.1.2 +of the Haskel Report). +Lexically scoped type variables affect this implicit quantification rules +as follows: any type variable that is in scope is not universally +quantified. For example, if type variable a is in scope, +then - class C a where - op :: [a] -> a - - op xs = let ys::[a] - ys = reverse xs - in - head ys + (e :: a -> a) means (e :: a -> a) + (e :: b -> b) means (e :: forall b. b->b) + (e :: a -> b) means (e :: forall b. a->b) - - -(Not implemented in Hugs yet, Dec 98). - - - - + Declaration type signatures A declaration type signature that has explicit @@ -3419,195 +3631,160 @@ type variables, in the definition of the named function(s). For example: f (x:xs) = xs ++ [ x :: a ] The "forall a" brings "a" into scope in -the definition of "f". - -This only happens if the quantification in f's type -signature is explicit. For example: - - g :: [a] -> [a] - g (x:xs) = xs ++ [ x :: a ] - -This program will be rejected, because "a" does not scope -over the definition of "f", so "x::a" -means "x::forall a. a" by Haskell's usual implicit -quantification rules. - - - - -Where a pattern type signature can occur - - -A pattern type signature can occur in any pattern. For example: - - - - -A pattern type signature can be on an arbitrary sub-pattern, not -just on a variable: - - - - f ((x,y)::(a,b)) = (y,x) :: (b,a) - - - - - - - - - Pattern type signatures, including the result part, can be used -in lambda abstractions: - +the definition of "f". + +This only happens if the quantification in f's type +signature is explicit. For example: - (\ (x::a, y) :: a -> x) + g :: [a] -> [a] + g (x:xs) = xs ++ [ x :: a ] +This program will be rejected, because "a" does not scope +over the definition of "f", so "x::a" +means "x::forall a. a" by Haskell's usual implicit +quantification rules. - - + - - Pattern type signatures, including the result part, can be used -in case expressions: + +Expression type signatures +An expression type signature that has explicit +quantification (using forall) brings into scope the +explicitly-quantified +type variables, in the annotated expression. For example: - case e of { ((x::a, y) :: (a,b)) -> x } + f = runST ( (op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool ) - -Note that the -> symbol in a case alternative -leads to difficulties when parsing a type signature in the pattern: in -the absence of the extra parentheses in the example above, the parser -would try to interpret the -> as a function -arrow and give a parse error later. - +Here, the type signature forall a. ST s Bool brings the +type variable s into scope, in the annotated expression +(op >>= \(x :: STRef s Int) -> g x). - + - + +Pattern type signatures -To avoid ambiguity, the type after the “::” in a result -pattern signature on a lambda or case must be atomic (i.e. a single -token or a parenthesised type of some sort). To see why, -consider how one would parse this: - - +A type signature may occur in any pattern; this is a pattern type +signature. +For example: - \ x :: a -> b -> x + -- f and g assume that 'a' is already in scope + f = \(x::Int, y::a) -> x + g (x::a) = x + h ((x,y) :: (Int,Bool)) = (y,x) - - +In the case where all the type variables in the pattern type sigature are +already in scope (i.e. bound by the enclosing context), matters are simple: the +signature simply constrains the type of the pattern in the obvious way. - - - - - Pattern type signatures can bind existential type variables. -For example: - - +There is only one situation in which you can write a pattern type signature that +mentions a type variable that is not already in scope, namely in pattern match +of an existential data constructor. For example: data T = forall a. MkT [a] - f :: T -> T - f (MkT [t::a]) = MkT t3 + k :: T -> T + k (MkT [t::a]) = MkT t3 where t3::[a] = [t,t,t] - - +Here, the pattern type signature (t::a) mentions a lexical type +variable that is not already in scope. Indeed, it cannot already be in scope, +because it is bound by the pattern match. GHC's rule is that in this situation +(and only then), a pattern type signature can mention a type variable that is +not already in scope; the effect is to bring it into scope, standing for the +existentially-bound type variable. - - - - - -Pattern type signatures -can be used in pattern bindings: - - - f x = let (y, z::a) = x in ... - f1 x = let (y, z::Int) = x in ... - f2 (x::(Int,a)) = let (y, z::a) = x in ... - f3 :: (b->b) = \x -> x - - -In all such cases, the binding is not generalised over the pattern-bound -type variables. Thus f3 is monomorphic; f3 -has type b -> b for some type b, -and not forall b. b -> b. -In contrast, the binding - - f4 :: b->b - f4 = \x -> x - -makes a polymorphic function, but b is not in scope anywhere -in f4's scope. - +If this seems a little odd, we think so too. But we must have +some way to bring such type variables into scope, else we +could not name existentially-bound type variables in subequent type signatures. - - + +This is (now) the only situation in which a pattern type +signature is allowed to mention a lexical variable that is not already in +scope. +For example, both f and g would be +illegal if a was not already in scope. -Pattern type signatures are completely orthogonal to ordinary, separate -type signatures. The two can be used independently or together. + + + + +Class and instance declarations -Result type signatures are not yet implemented in Hugs. - +The type variables in the head of a class or instance declaration +scope over the methods defined in the where part. For example: + + + + class C a where + op :: [a] -> a + + op xs = let ys::[a] + ys = reverse xs + in + head ys + + @@ -3774,16 +3951,19 @@ declaration (after expansion of any type synonyms) where - The type t is an arbitrary type + The ci are partial applications of + classes of the form C t1'...tj', where the arity of C + is exactly j+1. That is, C lacks exactly one type argument. - The vk+1...vn are type variables which do not occur in - t, and + The k is chosen so that ci (T v1...vk) is well-kinded. - The ci are partial applications of - classes of the form C t1'...tj', where the arity of C - is exactly j+1. That is, C lacks exactly one type argument. + The type t is an arbitrary type. + + + The type variables vk+1...vn do not occur in t, + nor in the ci, and None of the ci is Read, Show, @@ -3796,13 +3976,8 @@ where Then, for each ci, the derived instance declaration is: - instance ci (t vk+1...v) => ci (T v1...vp) + instance ci t => ci (T v1...vk) -where p is chosen so that T v1...vp is of the -right kind for the last parameter of class Ci. - - - As an example which does not work, consider newtype NonMonad m s = NonMonad (State s m s) deriving Monad @@ -3845,6 +4020,33 @@ the standard method is used or the one described here.) + +Stand-alone deriving declarations + + +GHC now allows stand-alone deriving declarations: + + + + data Foo = Bar Int | Baz String + + deriving Eq for Foo + + +Deriving instances of multi-parameter type classes for newtypes is +also allowed: + + + newtype Foo a = MkFoo (State Int a) + + deriving (MonadState Int) for Foo + + + + + + + Generalised typing of mutually recursive bindings @@ -3911,190 +4113,31 @@ pattern binding must have the same context. For example, this is fine: - - - -Generalised Algebraic Data Types - -Generalised Algebraic Data Types (GADTs) generalise ordinary algebraic data types by allowing you -to give the type signatures of constructors explicitly. For example: - - data Term a where - Lit :: Int -> Term Int - Succ :: Term Int -> Term Int - IsZero :: Term Int -> Term Bool - If :: Term Bool -> Term a -> Term a -> Term a - Pair :: Term a -> Term b -> Term (a,b) - -Notice that the return type of the constructors is not always Term a, as is the -case with ordinary vanilla data types. Now we can write a well-typed eval function -for these Terms: - - eval :: Term a -> a - eval (Lit i) = i - eval (Succ t) = 1 + eval t - eval (IsZero t) = eval t == 0 - eval (If b e1 e2) = if eval b then eval e1 else eval e2 - eval (Pair e1 e2) = (eval e1, eval e2) - -These and many other examples are given in papers by Hongwei Xi, and Tim Sheard. - - The extensions to GHC are these: - - - Data type declarations have a 'where' form, as exemplified above. The type signature of -each constructor is independent, and is implicitly universally quantified as usual. Unlike a normal -Haskell data type declaration, the type variable(s) in the "data Term a where" header -have no scope. Indeed, one can write a kind signature instead: - - data Term :: * -> * where ... - -or even a mixture of the two: - - data Foo a :: (* -> *) -> * where ... - -The type variables (if given) may be explicitly kinded, so we could also write the header for Foo -like this: - - data Foo a (b :: * -> *) where ... - - - - -There are no restrictions on the type of the data constructor, except that the result -type must begin with the type constructor being defined. For example, in the Term data -type above, the type of each constructor must end with ... -> Term .... - - - -You can use record syntax on a GADT-style data type declaration: - - - data Term a where - Lit { val :: Int } :: Term Int - Succ { num :: Term Int } :: Term Int - Pred { num :: Term Int } :: Term Int - IsZero { arg :: Term Int } :: Term Bool - Pair { arg1 :: Term a - , arg2 :: Term b - } :: Term (a,b) - If { cnd :: Term Bool - , tru :: Term a - , fls :: Term a - } :: Term a - -For every constructor that has a field f, (a) the type of -field f must be the same; and (b) the -result type of the constructor must be the same; both modulo alpha conversion. -Hence, in our example, we cannot merge the num and arg -fields above into a -single name. Although their field types are both Term Int, -their selector functions actually have different types: - - - num :: Term Int -> Term Int - arg :: Term Bool -> Term Int - - -At the moment, record updates are not yet possible with GADT, so support is -limited to record construction, selection and pattern matching: - - - someTerm :: Term Bool - someTerm = IsZero { arg = Succ { num = Lit { val = 0 } } } - - eval :: Term a -> a - eval Lit { val = i } = i - eval Succ { num = t } = eval t + 1 - eval Pred { num = t } = eval t - 1 - eval IsZero { arg = t } = eval t == 0 - eval Pair { arg1 = t1, arg2 = t2 } = (eval t1, eval t2) - eval t@If{} = if eval (cnd t) then eval (tru t) else eval (fls t) - - - - - -You can use strictness annotations, in the obvious places -in the constructor type: - - data Term a where - Lit :: !Int -> Term Int - If :: Term Bool -> !(Term a) -> !(Term a) -> Term a - Pair :: Term a -> Term b -> Term (a,b) - - - - -You can use a deriving clause on a GADT-style data type -declaration, but only if the data type could also have been declared in -Haskell-98 syntax. For example, these two declarations are equivalent - - data Maybe1 a where { - Nothing1 :: Maybe a ; - Just1 :: a -> Maybe a - } deriving( Eq, Ord ) - - data Maybe2 a = Nothing2 | Just2 a - deriving( Eq, Ord ) - -This simply allows you to declare a vanilla Haskell-98 data type using the -where form without losing the deriving clause. - - - -Pattern matching causes type refinement. For example, in the right hand side of the equation - - eval :: Term a -> a - eval (Lit i) = ... - -the type a is refined to Int. (That's the whole point!) -A precise specification of the type rules is beyond what this user manual aspires to, but there is a paper -about the ideas: "Wobbly types: practical type inference for generalised algebraic data types", on Simon PJ's home page. - - The general principle is this: type refinement is only carried out based on user-supplied type annotations. -So if no type signature is supplied for eval, no type refinement happens, and lots of obscure error messages will -occur. However, the refinement is quite general. For example, if we had: - - eval :: Term a -> a -> a - eval (Lit i) j = i+j - -the pattern match causes the type a to be refined to Int (because of the type -of the constructor Lit, and that refinement also applies to the type of j, and -the result type of the case expression. Hence the addition i+j is legal. - - - - - -Notice that GADTs generalise existential types. For example, these two declarations are equivalent: - - data T a = forall b. MkT b (b->a) - data T' a where { MKT :: b -> (b->a) -> T' a } - - - - - - Template Haskell -Template Haskell allows you to do compile-time meta-programming in Haskell. There is a "home page" for -Template Haskell at -http://www.haskell.org/th/, while -the background to +Template Haskell allows you to do compile-time meta-programming in +Haskell. +The background to the main technical innovations is discussed in " Template Meta-programming for Haskell" (Proc Haskell Workshop 2002). -The details of the Template Haskell design are still in flux. Make sure you -consult the online library reference material + + +There is a Wiki page about +Template Haskell at +http://www.haskell.org/th/, and that is the best place to look for +further details. +You may also +consult the online +Haskell library reference material (search for the type ExpQ). [Temporary: many changes to the original design are described in "http://research.microsoft.com/~simonpj/tmp/notes2.ps". -Not all of these changes are in GHC 6.2.] +Not all of these changes are in GHC 6.6.] The first example from that paper is set out below as a worked example to help get you started. @@ -4804,8 +4847,8 @@ Because the preprocessor targets Haskell (rather than Core), GHC supports an extension of pattern matching called bang patterns. Bang patterns are under consideration for Haskell Prime. The the -Haskell prime feature description contains more discussion and examples +url="http://hackage.haskell.org/trac/haskell-prime/wiki/BangPatterns">Haskell +prime feature description contains more discussion and examples than the material below. @@ -4882,7 +4925,7 @@ f !x = 3 Is this a definition of the infix function "(!)", or of the "f" with a bang pattern? GHC resolves this -ambiguity inf favour of the latter. If you want to define +ambiguity in favour of the latter. If you want to define (!) with bang-patterns enabled, you have to do so using prefix notation: @@ -6183,7 +6226,7 @@ r) GHCziBase.ZMZN GHCziBase.Char -> GHCziBase.ZMZN GHCziBase.Cha r) -> tpl2}) - (%note "foo" + (%note "bar" eta); @@ -6205,6 +6248,22 @@ r) -> described in this section. All are exported by GHC.Exts. + The <literal>seq</literal> function + +The function seq is as described in the Haskell98 Report. + + seq :: a -> b -> b + +It evaluates its first argument to head normal form, and then returns its +second argument as the result. The reason that it is documented here is +that, despite seq's polymorphism, its +second argument can have an unboxed type, or +can be an unboxed tuple; for example (seq x 4#) +or (seq x (# p,q #)). This requires b +to be instantiated to an unboxed type, which is not usually allowed. + + + The <literal>inline</literal> function The inline function is somewhat experimental. @@ -6263,6 +6322,11 @@ If lazy were not lazy, par would look strict in y which would defeat the whole purpose of par. + +Like seq, the argument of lazy can have +an unboxed type. + + The <literal>unsafeCoerce#</literal> function @@ -6278,16 +6342,20 @@ It is generally used when you want to write a program that you know is well-typed, but where Haskell's type system is not expressive enough to prove that it is well typed. + +The argument to unsafeCoerce# can have unboxed types, +although extremely bad things will happen if you coerce a boxed type +to an unboxed type. + + + Generic classes - (Note: support for generic classes is currently broken in - GHC 5.02). - The ideas behind this extension are described in detail in "Derivable type classes", Ralf Hinze and Simon Peyton Jones, Haskell Workshop, Montreal Sept 2000, pp94-105. @@ -6559,7 +6627,7 @@ can be completely switched off by -Monomorphic patteern bindings +Monomorphic pattern bindings