X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2FbasicTypes%2FMkId.lhs;h=75060e99dfb234dc66f87d31935c54341f650fa1;hb=c85373c7dd8034f427c010490f15590deb589490;hp=9da068ab3d53ee98f6d1fb1eb3d475d4cacb8ee5;hpb=30b5ebe424ebae69b162ac3fc547eb14d898535f;p=ghc-hetmet.git diff --git a/ghc/compiler/basicTypes/MkId.lhs b/ghc/compiler/basicTypes/MkId.lhs index 9da068a..75060e9 100644 --- a/ghc/compiler/basicTypes/MkId.lhs +++ b/ghc/compiler/basicTypes/MkId.lhs @@ -13,20 +13,17 @@ have a standard form, namely: \begin{code} module MkId ( - mkSpecPragmaId, mkWorkerId, - mkDictFunId, mkDefaultMethodId, mkDictSelId, - mkDataConId, - mkRecordSelId, - mkNewTySelId, - mkPrimitiveId, + mkDataConId, mkDataConWrapId, + mkRecordSelId, rebuildConArgs, + mkPrimOpId, mkFCallId, -- And some particular Ids; see below for why they are wired in wiredInIds, - unsafeCoerceId, realWorldPrimId, - eRROR_ID, rEC_SEL_ERROR_ID, pAT_ERROR_ID, rEC_CON_ERROR_ID, + unsafeCoerceId, realWorldPrimId, nullAddrId, + eRROR_ID, eRROR_CSTRING_ID, rEC_SEL_ERROR_ID, pAT_ERROR_ID, rEC_CON_ERROR_ID, rEC_UPD_ERROR_ID, iRREFUT_PAT_ERROR_ID, nON_EXHAUSTIVE_GUARDS_ERROR_ID, nO_METHOD_BINDING_ERROR_ID, aBSENT_ERROR_ID, pAR_ERROR_ID ) where @@ -34,60 +31,68 @@ module MkId ( #include "HsVersions.h" -import TysPrim ( openAlphaTyVars, alphaTyVar, alphaTy, - intPrimTy, realWorldStatePrimTy +import BasicTypes ( Arity, StrictnessMark(..), isMarkedUnboxed, isMarkedStrict ) +import TysPrim ( openAlphaTyVars, alphaTyVar, alphaTy, betaTyVar, betaTy, + intPrimTy, realWorldStatePrimTy, addrPrimTy ) -import TysWiredIn ( boolTy, charTy, mkListTy ) -import PrelMods ( pREL_ERR, pREL_GHC ) -import Type ( Type, ThetaType, - mkDictTy, mkTyConApp, mkTyVarTys, mkFunTys, mkFunTy, mkSigmaTy, - isUnLiftedType, mkForAllTys, mkTyVarTy, tyVarsOfTypes, - splitSigmaTy, splitFunTy_maybe, splitAlgTyConApp, - splitFunTys, splitForAllTys, unUsgTy, - mkUsgTy, UsageAnn(..) +import TysWiredIn ( charTy, mkListTy ) +import PrelRules ( primOpRules ) +import Rules ( addRule ) +import TcType ( Type, ThetaType, mkDictTy, mkPredTys, mkTyConApp, + mkTyVarTys, mkClassPred, tcEqPred, + mkFunTys, mkFunTy, mkSigmaTy, tcSplitSigmaTy, + isUnLiftedType, mkForAllTys, mkTyVarTy, tyVarsOfType, + tcSplitFunTys, tcSplitForAllTys, mkPredTy ) import Module ( Module ) -import CoreUnfold ( mkTopUnfolding, mkCompulsoryUnfolding ) -import Subst ( mkTopTyVarSubst, substTheta ) -import TyCon ( TyCon, isNewTyCon, tyConDataCons, isDataTyCon ) -import Class ( Class, classBigSig, classTyCon ) +import CoreUtils ( mkInlineMe ) +import CoreUnfold ( mkTopUnfolding, mkCompulsoryUnfolding, mkOtherCon ) +import Literal ( Literal(..), nullAddrLit ) +import TyCon ( TyCon, isNewTyCon, tyConTyVars, tyConDataCons, + tyConTheta, isProductTyCon, isDataTyCon, isRecursiveTyCon ) +import Class ( Class, classTyCon, classTyVars, classSelIds ) import Var ( Id, TyVar ) import VarSet ( isEmptyVarSet ) -import Const ( Con(..) ) -import Name ( mkDerivedName, mkWiredInIdName, mkLocalName, - mkWorkerOcc, mkSuperDictSelOcc, - Name, NamedThing(..), - ) -import OccName ( mkSrcVarOcc ) +import Name ( mkWiredInName, mkFCallName, Name ) +import OccName ( mkVarOcc ) import PrimOp ( PrimOp(DataToTagOp), primOpSig, mkPrimOpIdName ) -import Demand ( wwStrict ) -import DataCon ( DataCon, StrictnessMark(..), dataConStrictMarks, dataConFieldLabels, - dataConArgTys, dataConSig, dataConRawArgTys +import ForeignCall ( ForeignCall ) +import DataCon ( DataCon, + dataConFieldLabels, dataConRepArity, dataConTyCon, + dataConArgTys, dataConRepType, + dataConInstOrigArgTys, + dataConName, dataConTheta, + dataConSig, dataConStrictMarks, dataConId, + splitProductType ) -import Id ( idType, mkId, - mkVanillaId, mkTemplateLocals, - mkTemplateLocal, setInlinePragma +import Id ( idType, mkGlobalId, mkVanillaGlobal, mkSysLocal, + mkTemplateLocals, mkTemplateLocalsNum, + mkTemplateLocal, idNewStrictness, idName ) -import IdInfo ( vanillaIdInfo, mkIdInfo, - exactArity, setUnfoldingInfo, setCafInfo, - setArityInfo, setInlinePragInfo, - mkStrictnessInfo, setStrictnessInfo, - IdFlavour(..), InlinePragInfo(..), CafInfo(..), IdInfo +import IdInfo ( IdInfo, noCafNoTyGenIdInfo, + setUnfoldingInfo, + setArityInfo, setSpecInfo, setCgInfo, setCafInfo, + mkNewStrictnessInfo, setNewStrictnessInfo, + GlobalIdDetails(..), CafInfo(..), CprInfo(..), + CgInfo ) -import FieldLabel ( FieldLabel, FieldLabelTag, mkFieldLabel, fieldLabelName, - firstFieldLabelTag, allFieldLabelTags +import NewDemand ( mkStrictSig, strictSigResInfo, DmdResult(..), + mkTopDmdType, topDmd, evalDmd, Demand(..), Keepity(..) ) +import FieldLabel ( mkFieldLabel, fieldLabelName, + firstFieldLabelTag, allFieldLabelTags, fieldLabelType ) +import DmdAnal ( dmdAnalTopRhs ) import CoreSyn +import Unique ( mkBuiltinUnique ) import Maybes -import BasicTypes ( Arity ) -import Unique +import PrelNames import Maybe ( isJust ) import Outputable -import Util ( assoc ) -import List ( nub ) +import ListSetOps ( assoc, assocMaybe ) +import UnicodeUtil ( stringToUtf8 ) +import Char ( ord ) \end{code} - %************************************************************************ %* * \subsection{Wired in Ids} @@ -101,11 +106,13 @@ wiredInIds -- is 'open'; that is can be unified with an unboxed type -- -- [The interface file format now carry such information, but there's - -- no way yet of expressing at the definition site for these error-reporting - -- functions that they have an 'open' result type. -- sof 1/99] + -- no way yet of expressing at the definition site for these + -- error-reporting + -- functions that they have an 'open' result type. -- sof 1/99] aBSENT_ERROR_ID , eRROR_ID + , eRROR_CSTRING_ID , iRREFUT_PAT_ERROR_ID , nON_EXHAUSTIVE_GUARDS_ERROR_ID , nO_METHOD_BINDING_ERROR_ID @@ -114,50 +121,77 @@ wiredInIds , rEC_CON_ERROR_ID , rEC_UPD_ERROR_ID - -- These two can't be defined in Haskell + -- These can't be defined in Haskell, but they have + -- perfectly reasonable unfoldings in Core , realWorldPrimId , unsafeCoerceId + , nullAddrId , getTagId + , seqId ] \end{code} %************************************************************************ %* * -\subsection{Easy ones} -%* * -%************************************************************************ - -\begin{code} -mkSpecPragmaId occ uniq ty loc - = mkId (mkLocalName uniq occ loc) ty (mkIdInfo SpecPragmaId) - -- Maybe a SysLocal? But then we'd lose the location - -mkDefaultMethodId dm_name rec_c ty - = mkVanillaId dm_name ty - -mkWorkerId uniq unwrkr ty - = mkVanillaId (mkDerivedName mkWorkerOcc (getName unwrkr) uniq) ty -\end{code} - -%************************************************************************ -%* * \subsection{Data constructors} %* * %************************************************************************ \begin{code} -mkDataConId :: DataCon -> Id -mkDataConId data_con - = mkId (getName data_con) - id_ty - (dataConInfo data_con) +mkDataConId :: Name -> DataCon -> Id + -- Makes the *worker* for the data constructor; that is, the function + -- that takes the reprsentation arguments and builds the constructor. +mkDataConId work_name data_con + = mkGlobalId (DataConId data_con) work_name (dataConRepType data_con) info where - (tyvars, theta, ex_tyvars, ex_theta, arg_tys, tycon) = dataConSig data_con - id_ty = mkSigmaTy (tyvars ++ ex_tyvars) - (theta ++ ex_theta) - (mkFunTys arg_tys (mkTyConApp tycon (mkTyVarTys tyvars))) + info = noCafNoTyGenIdInfo + `setArityInfo` arity + `setNewStrictnessInfo` Just strict_sig + + arity = dataConRepArity data_con + + strict_sig = mkStrictSig (mkTopDmdType (replicate arity topDmd) cpr_info) + -- Notice that we do *not* say the worker is strict + -- even if the data constructor is declared strict + -- e.g. data T = MkT !(Int,Int) + -- Why? Because the *wrapper* is strict (and its unfolding has case + -- expresssions that do the evals) but the *worker* itself is not. + -- If we pretend it is strict then when we see + -- case x of y -> $wMkT y + -- the simplifier thinks that y is "sure to be evaluated" (because + -- $wMkT is strict) and drops the case. No, $wMkT is not strict. + -- + -- When the simplifer sees a pattern + -- case e of MkT x -> ... + -- it uses the dataConRepStrictness of MkT to mark x as evaluated; + -- but that's fine... dataConRepStrictness comes from the data con + -- not from the worker Id. + + tycon = dataConTyCon data_con + cpr_info | isProductTyCon tycon && + isDataTyCon tycon && + arity > 0 && + arity <= mAX_CPR_SIZE = RetCPR + | otherwise = TopRes + -- RetCPR is only true for products that are real data types; + -- that is, not unboxed tuples or [non-recursive] newtypes + +mAX_CPR_SIZE :: Arity +mAX_CPR_SIZE = 10 +-- We do not treat very big tuples as CPR-ish: +-- a) for a start we get into trouble because there aren't +-- "enough" unboxed tuple types (a tiresome restriction, +-- but hard to fix), +-- b) more importantly, big unboxed tuples get returned mainly +-- on the stack, and are often then allocated in the heap +-- by the caller. So doing CPR for them may in fact make +-- things worse. \end{code} +The wrapper for a constructor is an ordinary top-level binding that evaluates +any strict args, unboxes any args that are going to be flattened, and calls +the worker. + We're going to build a constructor that looks like: data (Data a, C b) => T a b = T1 !a !Int b @@ -192,61 +226,90 @@ Notice that it in the (common) case where the constructor arg is already evaluated. \begin{code} -dataConInfo :: DataCon -> IdInfo - -dataConInfo data_con - = mkIdInfo (ConstantId (DataCon data_con)) - `setArityInfo` exactArity (n_dicts + n_ex_dicts + n_id_args) - `setUnfoldingInfo` unfolding +mkDataConWrapId data_con + = mkGlobalId (DataConWrapId data_con) (dataConName data_con) wrap_ty info where - unfolding = mkTopUnfolding (Note InlineMe con_rhs) - -- The dictionary constructors of a class don't get a binding, - -- but they are always saturated, so they should always be inlined. - - (tyvars, theta, ex_tyvars, ex_theta, orig_arg_tys, tycon) - = dataConSig data_con - rep_arg_tys = dataConRawArgTys data_con - all_tyvars = tyvars ++ ex_tyvars - - dict_tys = [mkDictTy clas tys | (clas,tys) <- theta] - ex_dict_tys = [mkDictTy clas tys | (clas,tys) <- ex_theta] - - n_dicts = length dict_tys - n_ex_dicts = length ex_dict_tys - n_id_args = length orig_arg_tys - n_rep_args = length rep_arg_tys - - result_ty = mkTyConApp tycon (mkTyVarTys tyvars) - - mkLocals i n tys = (zipWith mkTemplateLocal [i..i+n-1] tys, i+n) - (dict_args, i1) = mkLocals 1 n_dicts dict_tys - (ex_dict_args,i2) = mkLocals i1 n_ex_dicts ex_dict_tys - (id_args,i3) = mkLocals i2 n_id_args orig_arg_tys - - (id_arg1:_) = id_args -- Used for newtype only - strict_marks = dataConStrictMarks data_con - - con_app i rep_ids - | isNewTyCon tycon - = ASSERT( length orig_arg_tys == 1 ) - Note (Coerce result_ty (head orig_arg_tys)) (Var id_arg1) - | otherwise - = mkConApp data_con - (map Type (mkTyVarTys all_tyvars) ++ - map Var (reverse rep_ids)) - - con_rhs = mkLams all_tyvars $ mkLams dict_args $ - mkLams ex_dict_args $ mkLams id_args $ - foldr mk_case con_app + work_id = dataConId data_con + + info = noCafNoTyGenIdInfo + `setUnfoldingInfo` mkTopUnfolding (mkInlineMe wrap_rhs) + -- The NoCaf-ness is set by noCafNoTyGenIdInfo + `setArityInfo` arity + -- It's important to specify the arity, so that partial + -- applications are treated as values + `setNewStrictnessInfo` Just wrap_sig + + wrap_ty = mkForAllTys all_tyvars (mkFunTys all_arg_tys result_ty) + + res_info = strictSigResInfo (idNewStrictness work_id) + wrap_sig = mkStrictSig (mkTopDmdType (replicate arity topDmd) res_info) + -- The Cpr info can be important inside INLINE rhss, where the + -- wrapper constructor isn't inlined + -- But we are sloppy about the argument demands, because we expect + -- to inline the constructor very vigorously. + + wrap_rhs | isNewTyCon tycon + = ASSERT( null ex_tyvars && null ex_dict_args && length orig_arg_tys == 1 ) + -- No existentials on a newtype, but it can have a context + -- e.g. newtype Eq a => T a = MkT (...) + mkLams tyvars $ mkLams dict_args $ Lam id_arg1 $ + mkNewTypeBody tycon result_ty id_arg1 + + | null dict_args && not (any isMarkedStrict strict_marks) + = Var work_id -- The common case. Not only is this efficient, + -- but it also ensures that the wrapper is replaced + -- by the worker even when there are no args. + -- f (:) x + -- becomes + -- f $w: x + -- This is really important in rule matching, + -- (We could match on the wrappers, + -- but that makes it less likely that rules will match + -- when we bring bits of unfoldings together.) + -- + -- NB: because of this special case, (map (:) ys) turns into + -- (map $w: ys), and thence into (map (\x xs. $w: x xs) ys) + -- in core-to-stg. The top-level defn for (:) is never used. + -- This is somewhat of a bore, but I'm currently leaving it + -- as is, so that there still is a top level curried (:) for + -- the interpreter to call. + + | otherwise + = mkLams all_tyvars $ mkLams dict_args $ + mkLams ex_dict_args $ mkLams id_args $ + foldr mk_case con_app (zip (ex_dict_args++id_args) strict_marks) i3 [] - mk_case - :: (Id, StrictnessMark) -- arg, strictness - -> (Int -> [Id] -> CoreExpr) -- body - -> Int -- next rep arg id - -> [Id] -- rep args so far + con_app i rep_ids = mkApps (Var work_id) + (map varToCoreExpr (all_tyvars ++ reverse rep_ids)) + + (tyvars, theta, ex_tyvars, ex_theta, orig_arg_tys, tycon) = dataConSig data_con + all_tyvars = tyvars ++ ex_tyvars + + dict_tys = mkPredTys theta + ex_dict_tys = mkPredTys ex_theta + all_arg_tys = dict_tys ++ ex_dict_tys ++ orig_arg_tys + result_ty = mkTyConApp tycon (mkTyVarTys tyvars) + + mkLocals i tys = (zipWith mkTemplateLocal [i..i+n-1] tys, i+n) + where + n = length tys + + (dict_args, i1) = mkLocals 1 dict_tys + (ex_dict_args,i2) = mkLocals i1 ex_dict_tys + (id_args,i3) = mkLocals i2 orig_arg_tys + arity = i3-1 + (id_arg1:_) = id_args -- Used for newtype only + + strict_marks = dataConStrictMarks data_con + + mk_case + :: (Id, StrictnessMark) -- Arg, strictness + -> (Int -> [Id] -> CoreExpr) -- Body + -> Int -- Next rep arg id + -> [Id] -- Rep args so far, reversed -> CoreExpr - mk_case (arg,strict) body i rep_args + mk_case (arg,strict) body i rep_args = case strict of NotMarkedStrict -> body i (arg:rep_args) MarkedStrict @@ -254,11 +317,13 @@ dataConInfo data_con | otherwise -> Case (Var arg) arg [(DEFAULT,[], body i (arg:rep_args))] - MarkedUnboxed con tys -> - Case (Var arg) arg [(DataCon con, con_args, - body i' (reverse con_args++rep_args))] - where n_tys = length tys - (con_args,i') = mkLocals i (length tys) tys + MarkedUnboxed + -> case splitProductType "do_unbox" (idType arg) of + (tycon, tycon_args, con, tys) -> + Case (Var arg) arg [(DataAlt con, con_args, + body i' (reverse con_args ++ rep_args))] + where + (con_args, i') = mkLocals i tys \end{code} @@ -279,83 +344,200 @@ We're going to build a record selector unfolding that looks like this: T2 ... x ... -> x other -> error "..." -\begin{code} -mkRecordSelId field_label selector_ty - = ASSERT( null theta && isDataTyCon tycon ) - sel_id - where - sel_id = mkId (fieldLabelName field_label) selector_ty info - - info = mkIdInfo (RecordSelId field_label) - `setArityInfo` exactArity 1 - `setUnfoldingInfo` unfolding - - -- ToDo: consider adding further IdInfo +Similarly for newtypes - unfolding = mkTopUnfolding sel_rhs + newtype N a = MkN { unN :: a->a } - (tyvars, theta, tau) = splitSigmaTy selector_ty - (data_ty,rhs_ty) = expectJust "StdIdInfoRec" (splitFunTy_maybe tau) - -- tau is of form (T a b c -> field-type) - (tycon, _, data_cons) = splitAlgTyConApp data_ty - tyvar_tys = mkTyVarTys tyvars + unN :: N a -> a -> a + unN n = coerce (a->a) n - [data_id] = mkTemplateLocals [data_ty] +We need to take a little care if the field has a polymorphic type: + + data R = R { f :: forall a. a->a } + +Then we want + + f :: forall a. R -> a -> a + f = /\ a \ r = case r of + R f -> f a + +(not f :: R -> forall a. a->a, which gives the type inference mechanism +problems at call sites) + +Similarly for newtypes + + newtype N = MkN { unN :: forall a. a->a } + + unN :: forall a. N -> a -> a + unN = /\a -> \n:N -> coerce (a->a) n + +\begin{code} +mkRecordSelId tycon field_label unpack_id unpackUtf8_id + -- Assumes that all fields with the same field label have the same type + -- + -- Annoyingly, we have to pass in the unpackCString# Id, because + -- we can't conjure it up out of thin air + = sel_id + where + sel_id = mkGlobalId (RecordSelId field_label) (fieldLabelName field_label) selector_ty info + field_ty = fieldLabelType field_label + data_cons = tyConDataCons tycon + tyvars = tyConTyVars tycon -- These scope over the types in + -- the FieldLabels of constructors of this type + data_ty = mkTyConApp tycon tyvar_tys + tyvar_tys = mkTyVarTys tyvars + + tycon_theta = tyConTheta tycon -- The context on the data decl + -- eg data (Eq a, Ord b) => T a b = ... + dict_tys = [mkPredTy pred | pred <- tycon_theta, + needed_dict pred] + needed_dict pred = or [ tcEqPred pred p + | (DataAlt dc, _, _) <- the_alts, p <- dataConTheta dc] + n_dict_tys = length dict_tys + + (field_tyvars,field_theta,field_tau) = tcSplitSigmaTy field_ty + field_dict_tys = map mkPredTy field_theta + n_field_dict_tys = length field_dict_tys + -- If the field has a universally quantified type we have to + -- be a bit careful. Suppose we have + -- data R = R { op :: forall a. Foo a => a -> a } + -- Then we can't give op the type + -- op :: R -> forall a. Foo a => a -> a + -- because the typechecker doesn't understand foralls to the + -- right of an arrow. The "right" type to give it is + -- op :: forall a. Foo a => R -> a -> a + -- But then we must generate the right unfolding too: + -- op = /\a -> \dfoo -> \ r -> + -- case r of + -- R op -> op a dfoo + -- Note that this is exactly the type we'd infer from a user defn + -- op (R op) = op + + -- Very tiresomely, the selectors are (unnecessarily!) overloaded over + -- just the dictionaries in the types of the constructors that contain + -- the relevant field. Urgh. + -- NB: this code relies on the fact that DataCons are quantified over + -- the identical type variables as their parent TyCon + + selector_ty :: Type + selector_ty = mkForAllTys tyvars $ mkForAllTys field_tyvars $ + mkFunTys dict_tys $ mkFunTys field_dict_tys $ + mkFunTy data_ty field_tau + + arity = 1 + n_dict_tys + n_field_dict_tys + + (strict_sig, rhs_w_str) = dmdAnalTopRhs sel_rhs + -- Use the demand analyser to work out strictness. + -- With all this unpackery it's not easy! + + info = noCafNoTyGenIdInfo + `setCafInfo` caf_info + `setArityInfo` arity + `setUnfoldingInfo` mkTopUnfolding rhs_w_str + `setNewStrictnessInfo` Just strict_sig + + -- Allocate Ids. We do it a funny way round because field_dict_tys is + -- almost always empty. Also note that we use length_tycon_theta + -- rather than n_dict_tys, because the latter gives an infinite loop: + -- n_dict tys depends on the_alts, which depens on arg_ids, which depends + -- on arity, which depends on n_dict tys. Sigh! Mega sigh! + field_dict_base = length tycon_theta + 1 + dict_id_base = field_dict_base + n_field_dict_tys + field_base = dict_id_base + 1 + dict_ids = mkTemplateLocalsNum 1 dict_tys + field_dict_ids = mkTemplateLocalsNum field_dict_base field_dict_tys + data_id = mkTemplateLocal dict_id_base data_ty + alts = map mk_maybe_alt data_cons the_alts = catMaybes alts - default_alt | all isJust alts = [] -- No default needed - | otherwise = [(DEFAULT, [], error_expr)] - sel_rhs = mkLams tyvars $ Lam data_id $ - Case (Var data_id) data_id (the_alts ++ default_alt) + no_default = all isJust alts -- No default needed + default_alt | no_default = [] + | otherwise = [(DEFAULT, [], error_expr)] + + -- the default branch may have CAF refs, because it calls recSelError etc. + caf_info | no_default = NoCafRefs + | otherwise = MayHaveCafRefs + + sel_rhs = mkLams tyvars $ mkLams field_tyvars $ + mkLams dict_ids $ mkLams field_dict_ids $ + Lam data_id $ sel_body + + sel_body | isNewTyCon tycon = mkNewTypeBody tycon field_tau data_id + | otherwise = Case (Var data_id) data_id (default_alt ++ the_alts) mk_maybe_alt data_con = case maybe_the_arg_id of Nothing -> Nothing - Just the_arg_id -> Just (DataCon data_con, arg_ids, Var the_arg_id) - where - arg_ids = mkTemplateLocals (dataConArgTys data_con tyvar_tys) - -- The first one will shadow data_id, but who cares - field_lbls = dataConFieldLabels data_con - maybe_the_arg_id = assocMaybe (field_lbls `zip` arg_ids) field_label - - error_expr = mkApps (Var rEC_SEL_ERROR_ID) [Type (unUsgTy rhs_ty), mkStringLit full_msg] - -- preserves invariant that type args are *not* usage-annotated on top. KSW 1999-04. + Just the_arg_id -> Just (DataAlt data_con, real_args, mkLets binds body) + where + body = mkVarApps (mkVarApps (Var the_arg_id) field_tyvars) field_dict_ids + strict_marks = dataConStrictMarks data_con + (binds, real_args) = rebuildConArgs arg_ids strict_marks + (map mkBuiltinUnique [unpack_base..]) + where + arg_ids = mkTemplateLocalsNum field_base (dataConInstOrigArgTys data_con tyvar_tys) + + unpack_base = field_base + length arg_ids + + -- arity+1 avoids all shadowing + maybe_the_arg_id = assocMaybe (field_lbls `zip` arg_ids) field_label + field_lbls = dataConFieldLabels data_con + + error_expr = mkApps (Var rEC_SEL_ERROR_ID) [Type field_tau, err_string] + err_string + | all safeChar full_msg + = App (Var unpack_id) (Lit (MachStr (_PK_ full_msg))) + | otherwise + = App (Var unpackUtf8_id) (Lit (MachStr (_PK_ (stringToUtf8 (map ord full_msg))))) + where + safeChar c = c >= '\1' && c <= '\xFF' + -- TODO: Putting this Unicode stuff here is ugly. Find a better + -- generic place to make string literals. This logic is repeated + -- in DsUtils. full_msg = showSDoc (sep [text "No match in record selector", ppr sel_id]) -\end{code} -%************************************************************************ -%* * -\subsection{Newtype field selectors} -%* * -%************************************************************************ +-- This rather ugly function converts the unpacked data con +-- arguments back into their packed form. -Possibly overkill to do it this way: +rebuildConArgs + :: [Id] -- Source-level args + -> [StrictnessMark] -- Strictness annotations (per-arg) + -> [Unique] -- Uniques for the new Ids + -> ([CoreBind], [Id]) -- A binding for each source-level arg, plus + -- a list of the representation-level arguments +-- e.g. data T = MkT Int !Int +-- +-- rebuild [x::Int, y::Int] [Not, Unbox] +-- = ([ y = I# t ], [x,t]) -\begin{code} -mkNewTySelId field_label selector_ty = sel_id - where - sel_id = mkId (fieldLabelName field_label) selector_ty info - +rebuildConArgs [] stricts us = ([], []) - info = mkIdInfo (RecordSelId field_label) - `setArityInfo` exactArity 1 - `setUnfoldingInfo` unfolding - - -- ToDo: consider adding further IdInfo +-- Type variable case +rebuildConArgs (arg:args) stricts us + | isTyVar arg + = let (binds, args') = rebuildConArgs args stricts us + in (binds, arg:args') - unfolding = mkTopUnfolding sel_rhs +-- Term variable case +rebuildConArgs (arg:args) (str:stricts) us + | isMarkedUnboxed str + = let + arg_ty = idType arg - (tyvars, theta, tau) = splitSigmaTy selector_ty - (data_ty,rhs_ty) = expectJust "StdIdInfoRec" (splitFunTy_maybe tau) - -- tau is of form (T a b c -> field-type) - (tycon, _, data_cons) = splitAlgTyConApp data_ty - tyvar_tys = mkTyVarTys tyvars - - [data_id] = mkTemplateLocals [data_ty] - sel_rhs = mkLams tyvars $ Lam data_id $ - Note (Coerce (unUsgTy rhs_ty) (unUsgTy data_ty)) (Var data_id) + (_, tycon_args, pack_con, con_arg_tys) + = splitProductType "rebuildConArgs" arg_ty + + unpacked_args = zipWith (mkSysLocal SLIT("rb")) us con_arg_tys + (binds, args') = rebuildConArgs args stricts (drop (length con_arg_tys) us) + con_app = mkConApp pack_con (map Type tycon_args ++ map Var unpacked_args) + in + (NonRec arg con_app : binds, unpacked_args ++ args') + + | otherwise + = let (binds, args') = rebuildConArgs args stricts us + in (binds, arg:args') \end{code} @@ -366,25 +548,43 @@ mkNewTySelId field_label selector_ty = sel_id %************************************************************************ Selecting a field for a dictionary. If there is just one field, then -there's nothing to do. +there's nothing to do. + +ToDo: unify with mkRecordSelId. \begin{code} -mkDictSelId name clas ty - = sel_id +mkDictSelId :: Name -> Class -> Id +mkDictSelId name clas + = mkGlobalId (RecordSelId field_lbl) name sel_ty info where - sel_id = mkId name ty info - field_lbl = mkFieldLabel name ty tag - tag = assoc "MkId.mkDictSelId" ((sc_sel_ids ++ op_sel_ids) `zip` allFieldLabelTags) sel_id + sel_ty = mkForAllTys tyvars (mkFunTy (idType dict_id) (idType the_arg_id)) + -- We can't just say (exprType rhs), because that would give a type + -- C a -> C a + -- for a single-op class (after all, the selector is the identity) + -- But it's type must expose the representation of the dictionary + -- to gat (say) C a -> (a -> a) + + field_lbl = mkFieldLabel name tycon sel_ty tag + tag = assoc "MkId.mkDictSelId" (map idName (classSelIds clas) `zip` allFieldLabelTags) name + + info = noCafNoTyGenIdInfo + `setArityInfo` 1 + `setUnfoldingInfo` mkTopUnfolding rhs + `setNewStrictnessInfo` Just strict_sig - info = mkIdInfo (RecordSelId field_lbl) - `setUnfoldingInfo` unfolding - -- We no longer use 'must-inline' on record selectors. They'll -- inline like crazy if they scrutinise a constructor - unfolding = mkTopUnfolding rhs + -- The strictness signature is of the form U(AAAVAAAA) -> T + -- where the V depends on which item we are selecting + -- It's worth giving one, so that absence info etc is generated + -- even if the selector isn't inlined + strict_sig = mkStrictSig (mkTopDmdType [arg_dmd] TopRes) + arg_dmd | isNewTyCon tycon = Eval + | otherwise = Seq Drop [ if the_arg_id == id then Eval else Abs + | id <- arg_ids ] - (tyvars, _, sc_sel_ids, op_sel_ids, defms) = classBigSig clas + tyvars = classTyVars clas tycon = classTyCon clas [data_con] = tyConDataCons tycon @@ -392,14 +592,20 @@ mkDictSelId name clas ty arg_tys = dataConArgTys data_con tyvar_tys the_arg_id = arg_ids !! (tag - firstFieldLabelTag) - dict_ty = mkDictTy clas tyvar_tys - (dict_id:arg_ids) = mkTemplateLocals (dict_ty : arg_tys) + pred = mkClassPred clas tyvar_tys + (dict_id:arg_ids) = mkTemplateLocals (mkPredTy pred : arg_tys) - rhs | isNewTyCon tycon = mkLams tyvars $ Lam dict_id $ - Note (Coerce (head arg_tys) dict_ty) (Var dict_id) + rhs | isNewTyCon tycon = mkLams tyvars $ Lam dict_id $ + mkNewTypeBody tycon (head arg_tys) dict_id | otherwise = mkLams tyvars $ Lam dict_id $ Case (Var dict_id) dict_id - [(DataCon data_con, arg_ids, Var the_arg_id)] + [(DataAlt data_con, arg_ids, Var the_arg_id)] + +mkNewTypeBody tycon result_ty result_id + | isRecursiveTyCon tycon -- Recursive case; use a coerce + = Note (Coerce result_ty (idType result_id)) (Var result_id) + | otherwise -- Normal case + = Var result_id \end{code} @@ -410,36 +616,92 @@ mkDictSelId name clas ty %************************************************************************ \begin{code} -mkPrimitiveId :: PrimOp -> Id -mkPrimitiveId prim_op +mkPrimOpId :: PrimOp -> Id +mkPrimOpId prim_op = id where - (tyvars,arg_tys,res_ty) = primOpSig prim_op + (tyvars,arg_tys,res_ty, arity, strict_info) = primOpSig prim_op ty = mkForAllTys tyvars (mkFunTys arg_tys res_ty) - name = mkPrimOpIdName prim_op id - id = mkId name ty info + name = mkPrimOpIdName prim_op + id = mkGlobalId (PrimOpId prim_op) name ty info - info = mkIdInfo (ConstantId (PrimOp prim_op)) - `setUnfoldingInfo` unfolding + info = noCafNoTyGenIdInfo + `setSpecInfo` rules + `setArityInfo` arity + `setNewStrictnessInfo` Just (mkNewStrictnessInfo id arity strict_info NoCPRInfo) + -- Until we modify the primop generation code + + rules = foldl (addRule id) emptyCoreRules (primOpRules prim_op) + + +-- For each ccall we manufacture a separate CCallOpId, giving it +-- a fresh unique, a type that is correct for this particular ccall, +-- and a CCall structure that gives the correct details about calling +-- convention etc. +-- +-- The *name* of this Id is a local name whose OccName gives the full +-- details of the ccall, type and all. This means that the interface +-- file reader can reconstruct a suitable Id + +mkFCallId :: Unique -> ForeignCall -> Type -> Id +mkFCallId uniq fcall ty + = ASSERT( isEmptyVarSet (tyVarsOfType ty) ) + -- A CCallOpId should have no free type variables; + -- when doing substitutions won't substitute over it + mkGlobalId (FCallId fcall) name ty info + where + occ_str = showSDocIface (braces (ppr fcall <+> ppr ty)) + -- The "occurrence name" of a ccall is the full info about the + -- ccall; it is encoded, but may have embedded spaces etc! - unfolding = mkCompulsoryUnfolding rhs - -- The mkCompulsoryUnfolding says that this Id absolutely - -- must be inlined. It's only used for primitives, - -- because we don't want to make a closure for each of them. + name = mkFCallName uniq occ_str - args = mkTemplateLocals arg_tys - rhs = mkLams tyvars $ mkLams args $ - mkPrimApp prim_op (map Type (mkTyVarTys tyvars) ++ map Var args) + info = noCafNoTyGenIdInfo + `setArityInfo` arity + `setNewStrictnessInfo` Just strict_sig + + (_, tau) = tcSplitForAllTys ty + (arg_tys, _) = tcSplitFunTys tau + arity = length arg_tys + strict_sig = mkStrictSig (mkTopDmdType (replicate arity evalDmd) TopRes) \end{code} %************************************************************************ %* * -\subsection{DictFuns} +\subsection{DictFuns and default methods} %* * %************************************************************************ +Important notes about dict funs and default methods +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Dict funs and default methods are *not* ImplicitIds. Their definition +involves user-written code, so we can't figure out their strictness etc +based on fixed info, as we can for constructors and record selectors (say). + +We build them as GlobalIds, but when in the module where they are +bound, we turn the Id at the *binding site* into an exported LocalId. +This ensures that they are taken to account by free-variable finding +and dependency analysis (e.g. CoreFVs.exprFreeVars). The simplifier +will propagate the LocalId to all occurrence sites. + +Why shouldn't they be bound as GlobalIds? Because, in particular, if +they are globals, the specialiser floats dict uses above their defns, +which prevents good simplifications happening. Also the strictness +analyser treats a occurrence of a GlobalId as imported and assumes it +contains strictness in its IdInfo, which isn't true if the thing is +bound in the same module as the occurrence. + +It's OK for dfuns to be LocalIds, because we form the instance-env to +pass on to the next module (md_insts) in CoreTidy, afer tidying +and globalising the top-level Ids. + +BUT make sure they are *exported* LocalIds (setIdLocalExported) so +that they aren't discarded by the occurrence analyser. + \begin{code} +mkDefaultMethodId dm_name ty = mkVanillaGlobal dm_name ty noCafNoTyGenIdInfo + mkDictFunId :: Name -- Name to use for the dict fun; -> Class -> [TyVar] @@ -447,12 +709,18 @@ mkDictFunId :: Name -- Name to use for the dict fun; -> ThetaType -> Id -mkDictFunId dfun_name clas inst_tyvars inst_tys inst_decl_theta - = mkVanillaId dfun_name dfun_ty +mkDictFunId dfun_name clas inst_tyvars inst_tys dfun_theta + = mkVanillaGlobal dfun_name dfun_ty noCafNoTyGenIdInfo where - (class_tyvars, sc_theta, _, _, _) = classBigSig clas - sc_theta' = substTheta (mkTopTyVarSubst class_tyvars inst_tys) sc_theta + dfun_ty = mkSigmaTy inst_tyvars dfun_theta (mkDictTy clas inst_tys) +{- 1 dec 99: disable the Mark Jones optimisation for the sake + of compatibility with Hugs. + See `types/InstEnv' for a discussion related to this. + + (class_tyvars, sc_theta, _, _) = classBigSig clas + not_const (clas, tys) = not (isEmptyVarSet (tyVarsOfTypes tys)) + sc_theta' = substClasses (mkTopTyVarSubst class_tyvars inst_tys) sc_theta dfun_theta = case inst_decl_theta of [] -> [] -- If inst_decl_theta is empty, then we don't -- want to have any dict arguments, so that we can @@ -472,10 +740,7 @@ mkDictFunId dfun_name clas inst_tyvars inst_tys inst_decl_theta -- class Foo a => Baz a b where ... -- instance Wob b => Baz T b where.. -- Now sc_theta' has Foo T - - dfun_ty = mkSigmaTy inst_tyvars dfun_theta (mkDictTy clas inst_tys) - - not_const (clas, tys) = not (isEmptyVarSet (tyVarsOfTypes tys)) +-} \end{code} @@ -485,7 +750,12 @@ mkDictFunId dfun_name clas inst_tyvars inst_tys inst_decl_theta %* * %************************************************************************ -These two can't be defined in Haskell. +These Ids can't be defined in Haskell. They could be defined in +unfoldings in PrelGHC.hi-boot, but we'd have to ensure that they +were definitely, definitely inlined, because there is no curried +identifier for them. That's what mkCompulsoryUnfolding does. +If we had a way to get a compulsory unfolding from an interface file, +we could do that, but we don't right now. unsafeCoerce# isn't so much a PrimOp as a phantom identifier, that just gets expanded into a type coercion wherever it occurs. Hence we @@ -496,11 +766,11 @@ they can unify with both unlifted and lifted types. Hence we provide another gun with which to shoot yourself in the foot. \begin{code} +-- unsafeCoerce# :: forall a b. a -> b unsafeCoerceId = pcMiscPrelId unsafeCoerceIdKey pREL_GHC SLIT("unsafeCoerce#") ty info where - info = vanillaIdInfo - `setUnfoldingInfo` mkCompulsoryUnfolding rhs + info = noCafNoTyGenIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs ty = mkForAllTys [openAlphaTyVar,openBetaTyVar] @@ -508,8 +778,27 @@ unsafeCoerceId [x] = mkTemplateLocals [openAlphaTy] rhs = mkLams [openAlphaTyVar,openBetaTyVar,x] $ Note (Coerce openBetaTy openAlphaTy) (Var x) -\end{code} +-- nullAddr# :: Addr# +-- The reason is is here is because we don't provide +-- a way to write this literal in Haskell. +nullAddrId + = pcMiscPrelId nullAddrIdKey pREL_GHC SLIT("nullAddr#") addrPrimTy info + where + info = noCafNoTyGenIdInfo `setUnfoldingInfo` + mkCompulsoryUnfolding (Lit nullAddrLit) + +seqId + = pcMiscPrelId seqIdKey pREL_GHC SLIT("seq") ty info + where + info = noCafNoTyGenIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs + + + ty = mkForAllTys [alphaTyVar,betaTyVar] + (mkFunTy alphaTy (mkFunTy betaTy betaTy)) + [x,y] = mkTemplateLocals [alphaTy, betaTy] + rhs = mkLams [alphaTyVar,betaTyVar,x,y] (Case (Var x) x [(DEFAULT, [], Var y)]) +\end{code} @getTag#@ is another function which can't be defined in Haskell. It needs to evaluate its argument and call the dataToTag# primitive. @@ -518,15 +807,15 @@ evaluate its argument and call the dataToTag# primitive. getTagId = pcMiscPrelId getTagIdKey pREL_GHC SLIT("getTag#") ty info where - info = vanillaIdInfo - `setUnfoldingInfo` mkCompulsoryUnfolding rhs + info = noCafNoTyGenIdInfo `setUnfoldingInfo` mkCompulsoryUnfolding rhs -- We don't provide a defn for this; you must inline it ty = mkForAllTys [alphaTyVar] (mkFunTy alphaTy intPrimTy) [x,y] = mkTemplateLocals [alphaTy,alphaTy] rhs = mkLams [alphaTyVar,x] $ - Case (Var x) y [ (DEFAULT, [], - Con (PrimOp DataToTagOp) [Type alphaTy, Var y]) ] + Case (Var x) y [ (DEFAULT, [], mkApps (Var dataToTagId) [Type alphaTy, Var y]) ] + +dataToTagId = mkPrimOpId DataToTagOp \end{code} @realWorld#@ used to be a magic literal, \tr{void#}. If things get @@ -536,7 +825,11 @@ nasty as-is, change it back to a literal (@Literal@). realWorldPrimId -- :: State# RealWorld = pcMiscPrelId realWorldPrimIdKey pREL_GHC SLIT("realWorld#") realWorldStatePrimTy - noCafIdInfo + (noCafNoTyGenIdInfo `setUnfoldingInfo` mkOtherCon []) + -- The mkOtherCon makes it look that realWorld# is evaluated + -- which in turn makes Simplify.interestingArg return True, + -- which in turn makes INLINE things applied to realWorld# likely + -- to be inlined \end{code} @@ -564,10 +857,13 @@ templates, but we don't ever expect to generate code for it. \begin{code} eRROR_ID = pc_bottoming_Id errorIdKey pREL_ERR SLIT("error") errorTy -rEC_SEL_ERROR_ID - = generic_ERROR_ID recSelErrIdKey SLIT("patError") +eRROR_CSTRING_ID + = pc_bottoming_Id errorCStringIdKey pREL_ERR SLIT("errorCString") + (mkSigmaTy [openAlphaTyVar] [] (mkFunTy addrPrimTy openAlphaTy)) pAT_ERROR_ID = generic_ERROR_ID patErrorIdKey SLIT("patError") +rEC_SEL_ERROR_ID + = generic_ERROR_ID recSelErrIdKey SLIT("recSelError") rEC_CON_ERROR_ID = generic_ERROR_ID recConErrorIdKey SLIT("recConError") rEC_UPD_ERROR_ID @@ -585,8 +881,7 @@ aBSENT_ERROR_ID pAR_ERROR_ID = pcMiscPrelId parErrorIdKey pREL_ERR SLIT("parError") - (mkSigmaTy [openAlphaTyVar] [] openAlphaTy) noCafIdInfo - + (mkSigmaTy [openAlphaTyVar] [] openAlphaTy) noCafNoTyGenIdInfo \end{code} @@ -600,8 +895,8 @@ pAR_ERROR_ID pcMiscPrelId :: Unique{-IdKey-} -> Module -> FAST_STRING -> Type -> IdInfo -> Id pcMiscPrelId key mod str ty info = let - name = mkWiredInIdName key mod (mkSrcVarOcc str) imp - imp = mkId name ty info -- the usual case... + name = mkWiredInName mod (mkVarOcc str) key + imp = mkVanillaGlobal name ty info -- the usual case... in imp -- We lie and say the thing is imported; otherwise, we get into @@ -613,24 +908,19 @@ pcMiscPrelId key mod str ty info pc_bottoming_Id key mod name ty = pcMiscPrelId key mod name ty bottoming_info where - bottoming_info = noCafIdInfo - `setStrictnessInfo` mkStrictnessInfo ([wwStrict], True) - + strict_sig = mkStrictSig (mkTopDmdType [evalDmd] BotRes) + bottoming_info = noCafNoTyGenIdInfo `setNewStrictnessInfo` Just strict_sig -- these "bottom" out, no matter what their arguments generic_ERROR_ID u n = pc_bottoming_Id u pREL_ERR n errorTy --- Very useful... -noCafIdInfo = vanillaIdInfo `setCafInfo` NoCafRefs - (openAlphaTyVar:openBetaTyVar:_) = openAlphaTyVars openAlphaTy = mkTyVarTy openAlphaTyVar openBetaTy = mkTyVarTy openBetaTyVar errorTy :: Type -errorTy = mkUsgTy UsMany $ - mkSigmaTy [openAlphaTyVar] [] (mkFunTys [mkUsgTy UsOnce (mkListTy charTy)] - (mkUsgTy UsMany openAlphaTy)) +errorTy = mkSigmaTy [openAlphaTyVar] [] (mkFunTys [mkListTy charTy] + openAlphaTy) -- Notice the openAlphaTyVar. It says that "error" can be applied -- to unboxed as well as boxed types. This is OK because it never -- returns, so the return type is irrelevant.