X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2FdeSugar%2FDsExpr.lhs;h=58a3cddd04ce08519a1d86ca69be828966af79fd;hb=a3e01707ebc2e7180840b5ab3534f818b43c2873;hp=afdf16641fce541874577f8242ae1e0289bf3d5c;hpb=3160f854580e6d8df412c8cd34d93bae27175d67;p=ghc-hetmet.git diff --git a/ghc/compiler/deSugar/DsExpr.lhs b/ghc/compiler/deSugar/DsExpr.lhs index afdf166..58a3cdd 100644 --- a/ghc/compiler/deSugar/DsExpr.lhs +++ b/ghc/compiler/deSugar/DsExpr.lhs @@ -4,53 +4,58 @@ \section[DsExpr]{Matching expressions (Exprs)} \begin{code} -module DsExpr ( dsExpr, dsLet ) where +module DsExpr ( dsExpr, dsLExpr, dsLet, dsLit ) where #include "HsVersions.h" -import HsSyn ( failureFreePat, - HsExpr(..), OutPat(..), HsLit(..), ArithSeqInfo(..), - Stmt(..), StmtCtxt(..), Match(..), HsBinds(..), MonoBinds(..), - mkSimpleMatch - ) -import TcHsSyn ( TypecheckedHsExpr, TypecheckedHsBinds, - TypecheckedStmt, - maybeBoxedPrimType +import Match ( matchWrapper, matchSimply ) +import MatchLit ( dsLit ) +import DsBinds ( dsHsNestedBinds ) +import DsGRHSs ( dsGuarded ) +import DsListComp ( dsListComp, dsPArrComp ) +import DsUtils ( mkErrorAppDs, mkStringExpr, mkConsExpr, mkNilExpr, + mkCoreTupTy, selectSimpleMatchVarL, + dsReboundNames, lookupReboundName ) +import DsArrows ( dsProcExpr ) +import DsMonad - ) -import CoreSyn +#ifdef GHCI + -- Template Haskell stuff iff bootstrapped +import DsMeta ( dsBracket ) +#endif -import DsMonad -import DsBinds ( dsMonoBinds ) -import DsGRHSs ( dsGuarded ) -import DsCCall ( dsCCall ) -import DsListComp ( dsListComp ) -import DsUtils ( mkErrorAppDs ) -import Match ( matchWrapper, matchSimply ) +import HsSyn +import TcHsSyn ( hsPatType ) + +-- NB: The desugarer, which straddles the source and Core worlds, sometimes +-- needs to see source types (newtypes etc), and sometimes not +-- So WATCH OUT; check each use of split*Ty functions. +-- Sigh. This is a pain. + +import TcType ( tcSplitAppTy, tcSplitFunTys, tcTyConAppTyCon, tcTyConAppArgs, + tcTyConAppArgs, isUnLiftedType, Type, mkAppTy ) +import Type ( mkFunTys, funArgTy, splitFunTys, isUnboxedTupleType, mkFunTy ) +import CoreSyn +import CoreUtils ( exprType, mkIfThenElse, bindNonRec ) -import CoreUtils ( coreExprType ) import CostCentre ( mkUserCC ) -import FieldLabel ( FieldLabel ) -import Id ( Id, idType, recordSelectorFieldLabel ) -import Const ( Con(..) ) -import DataCon ( DataCon, dataConId, dataConTyCon, dataConArgTys, dataConFieldLabels ) -import Const ( mkMachInt, Literal(..), mkStrLit ) -import PrelVals ( rEC_CON_ERROR_ID, rEC_UPD_ERROR_ID, iRREFUT_PAT_ERROR_ID ) -import TyCon ( isNewTyCon ) -import DataCon ( isExistentialDataCon ) -import Type ( splitFunTys, mkTyConApp, - splitAlgTyConApp, splitTyConApp_maybe, - splitAppTy, isUnLiftedType, Type - ) -import TysWiredIn ( tupleCon, unboxedTupleCon, - consDataCon, listTyCon, mkListTy, - charDataCon, charTy, stringTy - ) -import BasicTypes ( RecFlag(..) ) -import Maybes ( maybeToBool ) +import Id ( Id, idType, idName ) +import PrelInfo ( rEC_CON_ERROR_ID, iRREFUT_PAT_ERROR_ID ) +import DataCon ( DataCon, dataConWrapId, dataConFieldLabels, dataConInstOrigArgTys ) +import DataCon ( isVanillaDataCon ) +import Name ( Name ) +import TyCon ( FieldLabel, tyConDataCons ) +import TysWiredIn ( tupleCon ) +import BasicTypes ( RecFlag(..), Boxity(..), ipNameName ) +import PrelNames ( toPName, + returnMName, bindMName, thenMName, failMName, + mfixName ) +import SrcLoc ( Located(..), unLoc, getLoc, noLoc ) import Util ( zipEqual, zipWithEqual ) +import Bag ( bagToList ) import Outputable +import FastString \end{code} @@ -60,181 +65,110 @@ import Outputable %* * %************************************************************************ -@dsLet@ is a match-result transformer, taking the MatchResult for the body +@dsLet@ is a match-result transformer, taking the @MatchResult@ for the body and transforming it into one for the let-bindings enclosing the body. This may seem a bit odd, but (source) let bindings can contain unboxed binds like - +\begin{verbatim} C x# = e - +\end{verbatim} This must be transformed to a case expression and, if the type has more than one constructor, may fail. \begin{code} -dsLet :: TypecheckedHsBinds -> CoreExpr -> DsM CoreExpr +dsLet :: [HsBindGroup Id] -> CoreExpr -> DsM CoreExpr +dsLet groups body = foldlDs dsBindGroup body (reverse groups) -dsLet EmptyBinds body - = returnDs body +dsBindGroup :: CoreExpr -> HsBindGroup Id -> DsM CoreExpr +dsBindGroup body (HsIPBinds binds) + = foldlDs dsIPBind body binds + where + dsIPBind body (L _ (IPBind n e)) + = dsLExpr e `thenDs` \ e' -> + returnDs (Let (NonRec (ipNameName n) e') body) -dsLet (ThenBinds b1 b2) body - = dsLet b2 body `thenDs` \ body' -> - dsLet b1 body' - -- Special case for bindings which bind unlifted variables -dsLet (MonoBind (AbsBinds [] [] binder_triples (PatMonoBind pat grhss loc)) sigs is_rec) body - | or [isUnLiftedType (idType g) | (_, g, l) <- binder_triples] +-- We need to do a case right away, rather than building +-- a tuple and doing selections. +-- Silently ignore INLINE pragmas... +dsBindGroup body bind@(HsBindGroup hsbinds sigs is_rec) + | [L _ (AbsBinds [] [] exports inlines binds)] <- bagToList hsbinds, + or [isUnLiftedType (idType g) | (_, g, l) <- exports] = ASSERT (case is_rec of {NonRecursive -> True; other -> False}) - putSrcLocDs loc $ - dsGuarded grhss `thenDs` \ rhs -> + -- Unlifted bindings are always non-recursive + -- and are always a Fun or Pat monobind + -- + -- ToDo: in some bizarre case it's conceivable that there + -- could be dict binds in the 'binds'. (See the notes + -- below. Then pattern-match would fail. Urk.) let - body' = foldr bind body binder_triples - bind (tyvars, g, l) body = ASSERT( null tyvars ) - bindNonRec g (Var l) body + body_w_exports = foldr bind_export body exports + bind_export (tvs, g, l) body = ASSERT( null tvs ) + bindNonRec g (Var l) body + + mk_error_app pat = mkErrorAppDs iRREFUT_PAT_ERROR_ID + (exprType body) + (showSDoc (ppr pat)) in - mkErrorAppDs iRREFUT_PAT_ERROR_ID result_ty (showSDoc (ppr pat)) `thenDs` \ error_expr -> - matchSimply rhs PatBindMatch pat body' error_expr - where - result_ty = coreExprType body + case bagToList binds of + [L loc (FunBind (L _ fun) _ matches)] + -> putSrcSpanDs loc $ + matchWrapper (FunRhs (idName fun)) matches `thenDs` \ (args, rhs) -> + ASSERT( null args ) -- Functions aren't lifted + returnDs (bindNonRec fun rhs body_w_exports) --- Ordinary case for bindings -dsLet (MonoBind binds sigs is_rec) body - = dsMonoBinds False binds [] `thenDs` \ prs -> - case is_rec of - Recursive -> returnDs (Let (Rec prs) body) - NonRecursive -> returnDs (foldr mk_let body prs) - where - mk_let (bndr,rhs) body = Let (NonRec bndr rhs) body -\end{code} + [L loc (PatBind pat grhss ty)] + -> putSrcSpanDs loc $ + dsGuarded grhss ty `thenDs` \ rhs -> + mk_error_app pat `thenDs` \ error_expr -> + matchSimply rhs PatBindRhs pat body_w_exports error_expr -%************************************************************************ -%* * -\subsection[DsExpr-vars-and-cons]{Variables and constructors} -%* * -%************************************************************************ + other -> pprPanic "dsLet: unlifted" (ppr bind $$ ppr body) -\begin{code} -dsExpr :: TypecheckedHsExpr -> DsM CoreExpr - -dsExpr e@(HsVar var) = returnDs (Var var) -\end{code} +-- Ordinary case for bindings +dsBindGroup body (HsBindGroup binds sigs is_rec) + = dsHsNestedBinds binds `thenDs` \ prs -> + returnDs (Let (Rec prs) body) + -- Use a Rec regardless of is_rec. + -- Why? Because it allows the binds to be all + -- mixed up, which is what happens in one rare case + -- Namely, for an AbsBind with no tyvars and no dicts, + -- but which does have dictionary bindings. + -- See notes with TcSimplify.inferLoop [NO TYVARS] + -- It turned out that wrapping a Rec here was the easiest solution + -- + -- NB The previous case dealt with unlifted bindings, so we + -- only have to deal with lifted ones now; so Rec is ok +\end{code} %************************************************************************ %* * -\subsection[DsExpr-literals]{Literals} +\subsection[DsExpr-vars-and-cons]{Variables, constructors, literals} %* * %************************************************************************ -We give int/float literals type Integer and Rational, respectively. -The typechecker will (presumably) have put \tr{from{Integer,Rational}s} -around them. - -ToDo: put in range checks for when converting "i" -(or should that be in the typechecker?) - -For numeric literals, we try to detect there use at a standard type -(Int, Float, etc.) are directly put in the right constructor. -[NB: down with the @App@ conversion.] -Otherwise, we punt, putting in a "NoRep" Core literal (where the -representation decisions are delayed)... - -See also below where we look for @DictApps@ for \tr{plusInt}, etc. - \begin{code} -dsExpr (HsLitOut (HsString s) _) - | _NULL_ s - = returnDs (mkNilExpr charTy) - - | _LENGTH_ s == 1 - = let - the_char = mkConApp charDataCon [mkLit (MachChar (_HEAD_ s))] - the_nil = mkNilExpr charTy - the_cons = mkConApp consDataCon [Type charTy, the_char, the_nil] - in - returnDs the_cons - - --- "_" => build (\ c n -> c 'c' n) -- LATER - --- "str" ==> build (\ c n -> foldr charTy T c n "str") - -{- LATER: -dsExpr (HsLitOut (HsString str) _) - = newTyVarsDs [alphaTyVar] `thenDs` \ [new_tyvar] -> - let - new_ty = mkTyVarTy new_tyvar - in - newSysLocalsDs [ - charTy `mkFunTy` (new_ty `mkFunTy` new_ty), - new_ty, - mkForallTy [alphaTyVar] - ((charTy `mkFunTy` (alphaTy `mkFunTy` alphaTy)) - `mkFunTy` (alphaTy `mkFunTy` alphaTy)) - ] `thenDs` \ [c,n,g] -> - returnDs (mkBuild charTy new_tyvar c n g ( - foldl App - (CoTyApp (CoTyApp (Var foldrId) charTy) new_ty) *** ensure non-prim type *** - [VarArg c,VarArg n,LitArg (NoRepStr str)])) --} - --- otherwise, leave it as a NoRepStr; --- the Core-to-STG pass will wrap it in an application of "unpackCStringId". - -dsExpr (HsLitOut (HsString str) _) - = returnDs (mkLit (NoRepStr str stringTy)) - -dsExpr (HsLitOut (HsLitLit str) ty) - = returnDs ( mkConApp data_con [mkLit (MachLitLit str prim_ty)] ) - where - (data_con, prim_ty) - = case (maybeBoxedPrimType ty) of - Just (boxing_data_con, prim_ty) -> (boxing_data_con, prim_ty) - Nothing - -> pprPanic "ERROR: ``literal-literal'' not a single-constructor type: " - (hcat [ptext str, text "; type: ", ppr ty]) - -dsExpr (HsLitOut (HsInt i) ty) - = returnDs (mkLit (NoRepInteger i ty)) - -dsExpr (HsLitOut (HsFrac r) ty) - = returnDs (mkLit (NoRepRational r ty)) - --- others where we know what to do: +dsLExpr :: LHsExpr Id -> DsM CoreExpr +dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e -dsExpr (HsLitOut (HsIntPrim i) _) - | (i >= toInteger minInt && i <= toInteger maxInt) - = returnDs (mkLit (mkMachInt i)) - | otherwise - = error ("ERROR: Int constant " ++ show i ++ out_of_range_msg) +dsExpr :: HsExpr Id -> DsM CoreExpr -dsExpr (HsLitOut (HsFloatPrim f) _) - = returnDs (mkLit (MachFloat f)) - -- ToDo: range checking needed! - -dsExpr (HsLitOut (HsDoublePrim d) _) - = returnDs (mkLit (MachDouble d)) - -- ToDo: range checking needed! - -dsExpr (HsLitOut (HsChar c) _) - = returnDs ( mkConApp charDataCon [mkLit (MachChar c)] ) - -dsExpr (HsLitOut (HsCharPrim c) _) - = returnDs (mkLit (MachChar c)) - -dsExpr (HsLitOut (HsStringPrim s) _) - = returnDs (mkLit (MachStr s)) - --- end of literals magic. -- +dsExpr (HsPar e) = dsLExpr e +dsExpr (ExprWithTySigOut e _) = dsLExpr e +dsExpr (HsVar var) = returnDs (Var var) +dsExpr (HsIPVar ip) = returnDs (Var (ipNameName ip)) +dsExpr (HsLit lit) = dsLit lit +-- HsOverLit has been gotten rid of by the type checker dsExpr expr@(HsLam a_Match) - = matchWrapper LambdaMatch [a_Match] "lambda" `thenDs` \ (binders, matching_code) -> + = matchWrapper LambdaExpr a_Match `thenDs` \ (binders, matching_code) -> returnDs (mkLams binders matching_code) dsExpr expr@(HsApp fun arg) - = dsExpr fun `thenDs` \ core_fun -> - dsExpr arg `thenDs` \ core_arg -> + = dsLExpr fun `thenDs` \ core_fun -> + dsLExpr arg `thenDs` \ core_arg -> returnDs (core_fun `App` core_arg) - \end{code} Operator sections. At first it looks as if we can convert @@ -260,217 +194,244 @@ will sort it out. \begin{code} dsExpr (OpApp e1 op _ e2) - = dsExpr op `thenDs` \ core_op -> + = dsLExpr op `thenDs` \ core_op -> -- for the type of y, we need the type of op's 2nd argument - let - (x_ty:y_ty:_, _) = splitFunTys (coreExprType core_op) - in - dsExpr e1 `thenDs` \ x_core -> - dsExpr e2 `thenDs` \ y_core -> + dsLExpr e1 `thenDs` \ x_core -> + dsLExpr e2 `thenDs` \ y_core -> returnDs (mkApps core_op [x_core, y_core]) dsExpr (SectionL expr op) - = dsExpr op `thenDs` \ core_op -> + = dsLExpr op `thenDs` \ core_op -> -- for the type of y, we need the type of op's 2nd argument let - (x_ty:y_ty:_, _) = splitFunTys (coreExprType core_op) + (x_ty:y_ty:_, _) = splitFunTys (exprType core_op) + -- Must look through an implicit-parameter type; + -- newtype impossible; hence Type.splitFunTys in - dsExpr expr `thenDs` \ x_core -> + dsLExpr expr `thenDs` \ x_core -> newSysLocalDs x_ty `thenDs` \ x_id -> newSysLocalDs y_ty `thenDs` \ y_id -> returnDs (bindNonRec x_id x_core $ Lam y_id (mkApps core_op [Var x_id, Var y_id])) --- dsExpr (SectionR op expr) -- \ x -> op x expr +-- dsLExpr (SectionR op expr) -- \ x -> op x expr dsExpr (SectionR op expr) - = dsExpr op `thenDs` \ core_op -> + = dsLExpr op `thenDs` \ core_op -> -- for the type of x, we need the type of op's 2nd argument let - (x_ty:y_ty:_, _) = splitFunTys (coreExprType core_op) + (x_ty:y_ty:_, _) = splitFunTys (exprType core_op) + -- See comment with SectionL in - dsExpr expr `thenDs` \ y_core -> + dsLExpr expr `thenDs` \ y_core -> newSysLocalDs x_ty `thenDs` \ x_id -> newSysLocalDs y_ty `thenDs` \ y_id -> returnDs (bindNonRec y_id y_core $ Lam x_id (mkApps core_op [Var x_id, Var y_id])) -dsExpr (CCall label args may_gc is_asm result_ty) - = mapDs dsExpr args `thenDs` \ core_args -> - dsCCall label core_args may_gc is_asm result_ty - -- dsCCall does all the unboxification, etc. - dsExpr (HsSCC cc expr) - = dsExpr expr `thenDs` \ core_expr -> - getModuleAndGroupDs `thenDs` \ (mod_name, group_name) -> - returnDs (Note (SCC (mkUserCC cc mod_name group_name)) core_expr) + = dsLExpr expr `thenDs` \ core_expr -> + getModuleDs `thenDs` \ mod_name -> + returnDs (Note (SCC (mkUserCC cc mod_name)) core_expr) + + +-- hdaume: core annotation --- special case to handle unboxed tuple patterns +dsExpr (HsCoreAnn fs expr) + = dsLExpr expr `thenDs` \ core_expr -> + returnDs (Note (CoreNote $ unpackFS fs) core_expr) -dsExpr (HsCase discrim matches@[Match _ [TuplePat ps boxed] _ _] src_loc) - | all var_pat ps - = putSrcLocDs src_loc $ - dsExpr discrim `thenDs` \ core_discrim -> - matchWrapper CaseMatch matches "case" `thenDs` \ ([discrim_var], matching_code) -> +-- Special case to handle unboxed tuple patterns; they can't appear nested +dsExpr (HsCase discrim matches@(MatchGroup _ ty)) + | isUnboxedTupleType (funArgTy ty) + = dsLExpr discrim `thenDs` \ core_discrim -> + matchWrapper CaseAlt matches `thenDs` \ ([discrim_var], matching_code) -> case matching_code of - Case (Var x) bndr alts | x == discrim_var -> - returnDs (Case core_discrim bndr alts) - _ -> panic ("dsExpr: tuple pattern:\n" ++ showSDoc (ppr matching_code)) - -dsExpr (HsCase discrim matches src_loc) - = putSrcLocDs src_loc $ - dsExpr discrim `thenDs` \ core_discrim -> - matchWrapper CaseMatch matches "case" `thenDs` \ ([discrim_var], matching_code) -> + Case (Var x) bndr ty alts | x == discrim_var -> + returnDs (Case core_discrim bndr ty alts) + _ -> panic ("dsLExpr: tuple pattern:\n" ++ showSDoc (ppr matching_code)) + +dsExpr (HsCase discrim matches) + = dsLExpr discrim `thenDs` \ core_discrim -> + matchWrapper CaseAlt matches `thenDs` \ ([discrim_var], matching_code) -> returnDs (bindNonRec discrim_var core_discrim matching_code) dsExpr (HsLet binds body) - = dsExpr body `thenDs` \ body' -> + = dsLExpr body `thenDs` \ body' -> dsLet binds body' - -dsExpr (HsDoOut do_or_lc stmts return_id then_id fail_id result_ty src_loc) - | maybeToBool maybe_list_comp + +-- We need the `ListComp' form to use `deListComp' (rather than the "do" form) +-- because the interpretation of `stmts' depends on what sort of thing it is. +-- +dsExpr (HsDo ListComp stmts _ result_ty) = -- Special case for list comprehensions - putSrcLocDs src_loc $ dsListComp stmts elt_ty + where + [elt_ty] = tcTyConAppArgs result_ty + +dsExpr (HsDo do_or_lc stmts ids result_ty) + | isDoExpr do_or_lc + = dsDo do_or_lc stmts ids result_ty - | otherwise - = putSrcLocDs src_loc $ - dsDo do_or_lc stmts return_id then_id fail_id result_ty +dsExpr (HsDo PArrComp stmts _ result_ty) + = -- Special case for array comprehensions + dsPArrComp (map unLoc stmts) elt_ty where - maybe_list_comp - = case (do_or_lc, splitTyConApp_maybe result_ty) of - (ListComp, Just (tycon, [elt_ty])) - | tycon == listTyCon - -> Just elt_ty - other -> Nothing - -- We need the ListComp form to use deListComp (rather than the "do" form) - -- because the "return" in a do block is a call to "PrelBase.return", and - -- not a ReturnStmt. Only the ListComp form has ReturnStmts - - Just elt_ty = maybe_list_comp - -dsExpr (HsIf guard_expr then_expr else_expr src_loc) - = putSrcLocDs src_loc $ - dsExpr guard_expr `thenDs` \ core_guard -> - dsExpr then_expr `thenDs` \ core_then -> - dsExpr else_expr `thenDs` \ core_else -> + [elt_ty] = tcTyConAppArgs result_ty + +dsExpr (HsIf guard_expr then_expr else_expr) + = dsLExpr guard_expr `thenDs` \ core_guard -> + dsLExpr then_expr `thenDs` \ core_then -> + dsLExpr else_expr `thenDs` \ core_else -> returnDs (mkIfThenElse core_guard core_then core_else) \end{code} -Type lambda and application -~~~~~~~~~~~~~~~~~~~~~~~~~~~ +\noindent +\underline{\bf Type lambda and application} +% ~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} dsExpr (TyLam tyvars expr) - = dsExpr expr `thenDs` \ core_expr -> + = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkLams tyvars core_expr) dsExpr (TyApp expr tys) - = dsExpr expr `thenDs` \ core_expr -> + = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkTyApps core_expr tys) \end{code} -Various data construction things -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +\noindent +\underline{\bf Various data construction things} +% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \begin{code} -dsExpr (ExplicitListOut ty xs) +dsExpr (ExplicitList ty xs) = go xs where - list_ty = mkListTy ty - go [] = returnDs (mkNilExpr ty) - go (x:xs) = dsExpr x `thenDs` \ core_x -> + go (x:xs) = dsLExpr x `thenDs` \ core_x -> go xs `thenDs` \ core_xs -> - returnDs (mkConApp consDataCon [Type ty, core_x, core_xs]) - -dsExpr (ExplicitTuple expr_list boxed) - = mapDs dsExpr expr_list `thenDs` \ core_exprs -> - returnDs (mkConApp ((if boxed - then tupleCon - else unboxedTupleCon) (length expr_list)) - (map (Type . coreExprType) core_exprs ++ core_exprs)) - -dsExpr (HsCon con_id [ty] [arg]) - | isNewTyCon tycon - = dsExpr arg `thenDs` \ arg' -> - returnDs (Note (Coerce result_ty (coreExprType arg')) arg') - where - result_ty = mkTyConApp tycon [ty] - tycon = dataConTyCon con_id - -dsExpr (HsCon con_id tys args) - = mapDs dsExpr args `thenDs` \ args2 -> - returnDs (mkConApp con_id (map Type tys ++ args2)) + returnDs (mkConsExpr ty core_x core_xs) + +-- we create a list from the array elements and convert them into a list using +-- `PrelPArr.toP' +-- +-- * the main disadvantage to this scheme is that `toP' traverses the list +-- twice: once to determine the length and a second time to put to elements +-- into the array; this inefficiency could be avoided by exposing some of +-- the innards of `PrelPArr' to the compiler (ie, have a `PrelPArrBase') so +-- that we can exploit the fact that we already know the length of the array +-- here at compile time +-- +dsExpr (ExplicitPArr ty xs) + = dsLookupGlobalId toPName `thenDs` \toP -> + dsExpr (ExplicitList ty xs) `thenDs` \coreList -> + returnDs (mkApps (Var toP) [Type ty, coreList]) + +dsExpr (ExplicitTuple expr_list boxity) + = mappM dsLExpr expr_list `thenDs` \ core_exprs -> + returnDs (mkConApp (tupleCon boxity (length expr_list)) + (map (Type . exprType) core_exprs ++ core_exprs)) dsExpr (ArithSeqOut expr (From from)) - = dsExpr expr `thenDs` \ expr2 -> - dsExpr from `thenDs` \ from2 -> + = dsLExpr expr `thenDs` \ expr2 -> + dsLExpr from `thenDs` \ from2 -> returnDs (App expr2 from2) dsExpr (ArithSeqOut expr (FromTo from two)) - = dsExpr expr `thenDs` \ expr2 -> - dsExpr from `thenDs` \ from2 -> - dsExpr two `thenDs` \ two2 -> + = dsLExpr expr `thenDs` \ expr2 -> + dsLExpr from `thenDs` \ from2 -> + dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, two2]) dsExpr (ArithSeqOut expr (FromThen from thn)) - = dsExpr expr `thenDs` \ expr2 -> - dsExpr from `thenDs` \ from2 -> - dsExpr thn `thenDs` \ thn2 -> + = dsLExpr expr `thenDs` \ expr2 -> + dsLExpr from `thenDs` \ from2 -> + dsLExpr thn `thenDs` \ thn2 -> returnDs (mkApps expr2 [from2, thn2]) dsExpr (ArithSeqOut expr (FromThenTo from thn two)) - = dsExpr expr `thenDs` \ expr2 -> - dsExpr from `thenDs` \ from2 -> - dsExpr thn `thenDs` \ thn2 -> - dsExpr two `thenDs` \ two2 -> + = dsLExpr expr `thenDs` \ expr2 -> + dsLExpr from `thenDs` \ from2 -> + dsLExpr thn `thenDs` \ thn2 -> + dsLExpr two `thenDs` \ two2 -> returnDs (mkApps expr2 [from2, thn2, two2]) + +dsExpr (PArrSeqOut expr (FromTo from two)) + = dsLExpr expr `thenDs` \ expr2 -> + dsLExpr from `thenDs` \ from2 -> + dsLExpr two `thenDs` \ two2 -> + returnDs (mkApps expr2 [from2, two2]) + +dsExpr (PArrSeqOut expr (FromThenTo from thn two)) + = dsLExpr expr `thenDs` \ expr2 -> + dsLExpr from `thenDs` \ from2 -> + dsLExpr thn `thenDs` \ thn2 -> + dsLExpr two `thenDs` \ two2 -> + returnDs (mkApps expr2 [from2, thn2, two2]) + +dsExpr (PArrSeqOut expr _) + = panic "DsExpr.dsExpr: Infinite parallel array!" + -- the parser shouldn't have generated it and the renamer and typechecker + -- shouldn't have let it through \end{code} -Record construction and update -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +\noindent +\underline{\bf Record construction and update} +% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For record construction we do this (assuming T has three arguments) - +\begin{verbatim} T { op2 = e } ==> let err = /\a -> recConErr a T (recConErr t1 "M.lhs/230/op1") e (recConErr t1 "M.lhs/230/op3") - -recConErr then converts its arugment string into a proper message +\end{verbatim} +@recConErr@ then converts its arugment string into a proper message before printing it as - +\begin{verbatim} M.lhs, line 230: missing field op1 was evaluated +\end{verbatim} +We also handle @C{}@ as valid construction syntax for an unlabelled +constructor @C@, setting all of @C@'s fields to bottom. \begin{code} dsExpr (RecordConOut data_con con_expr rbinds) - = dsExpr con_expr `thenDs` \ con_expr' -> + = dsLExpr con_expr `thenDs` \ con_expr' -> let - (arg_tys, _) = splitFunTys (coreExprType con_expr') + (arg_tys, _) = tcSplitFunTys (exprType con_expr') + -- A newtype in the corner should be opaque; + -- hence TcType.tcSplitFunTys - mk_arg (arg_ty, lbl) - = case [rhs | (sel_id,rhs,_) <- rbinds, - lbl == recordSelectorFieldLabel sel_id] of + mk_arg (arg_ty, lbl) -- Selector id has the field label as its name + = case [rhs | (L _ sel_id, rhs) <- rbinds, lbl == idName sel_id] of (rhs:rhss) -> ASSERT( null rhss ) - dsExpr rhs + dsLExpr rhs [] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (showSDoc (ppr lbl)) + unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty "" + + labels = dataConFieldLabels data_con in - mapDs mk_arg (zipEqual "dsExpr:RecordCon" arg_tys (dataConFieldLabels data_con)) `thenDs` \ con_args -> + + (if null labels + then mappM unlabelled_bottom arg_tys + else mappM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels)) + `thenDs` \ con_args -> + returnDs (mkApps con_expr' con_args) \end{code} Record update is a little harder. Suppose we have the decl: - +\begin{verbatim} data T = T1 {op1, op2, op3 :: Int} | T2 {op4, op2 :: Int} | T3 - +\end{verbatim} Then we translate as follows: - +\begin{verbatim} r { op2 = e } ===> let op2 = e in @@ -478,186 +439,233 @@ Then we translate as follows: T1 op1 _ op3 -> T1 op1 op2 op3 T2 op4 _ -> T2 op4 op2 other -> recUpdError "M.lhs/230" - -It's important that we use the constructor Ids for T1, T2 etc on the -RHSs, and do not generate a Core Con directly, because the constructor +\end{verbatim} +It's important that we use the constructor Ids for @T1@, @T2@ etc on the +RHSs, and do not generate a Core constructor application directly, because the constructor might do some argument-evaluation first; and may have to throw away some dictionaries. \begin{code} -dsExpr (RecordUpdOut record_expr record_out_ty dicts rbinds) - = dsExpr record_expr `thenDs` \ record_expr' -> +dsExpr (RecordUpdOut record_expr record_in_ty record_out_ty []) + = dsLExpr record_expr + +dsExpr expr@(RecordUpdOut record_expr record_in_ty record_out_ty rbinds) + = dsLExpr record_expr `thenDs` \ record_expr' -> -- Desugar the rbinds, and generate let-bindings if -- necessary so that we don't lose sharing let - ds_rbind (sel_id, rhs, pun_flag) - = dsExpr rhs `thenDs` \ rhs' -> - returnDs (recordSelectorFieldLabel sel_id, rhs') - in - mapDs ds_rbind rbinds `thenDs` \ rbinds' -> - let - record_in_ty = coreExprType record_expr' - (tycon, in_inst_tys, cons) = splitAlgTyConApp record_in_ty - (_, out_inst_tys, _) = splitAlgTyConApp record_out_ty - cons_to_upd = filter has_all_fields cons - - -- initial_args are passed to every constructor - initial_args = map Type out_inst_tys ++ map Var dicts - + in_inst_tys = tcTyConAppArgs record_in_ty -- Newtype opaque + out_inst_tys = tcTyConAppArgs record_out_ty -- Newtype opaque + in_out_ty = mkFunTy record_in_ty record_out_ty + mk_val_arg field old_arg_id - = case [rhs | (f, rhs) <- rbinds', field == f] of + = case [rhs | (L _ sel_id, rhs) <- rbinds, field == idName sel_id] of (rhs:rest) -> ASSERT(null rest) rhs - [] -> Var old_arg_id + [] -> nlHsVar old_arg_id mk_alt con - = newSysLocalsDs (dataConArgTys con in_inst_tys) `thenDs` \ arg_ids -> + = newSysLocalsDs (dataConInstOrigArgTys con in_inst_tys) `thenDs` \ arg_ids -> + -- This call to dataConArgTys won't work for existentials + -- but existentials don't have record types anyway let val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg (dataConFieldLabels con) arg_ids - rhs = mkApps (mkApps (Var (dataConId con)) initial_args) val_args + rhs = foldl (\a b -> nlHsApp a b) + (noLoc $ TyApp (nlHsVar (dataConWrapId con)) + out_inst_tys) + val_args in - returnDs (DataCon con, arg_ids, rhs) - - mk_default - | length cons_to_upd == length cons - = returnDs [] - | otherwise - = mkErrorAppDs rEC_UPD_ERROR_ID record_out_ty "" `thenDs` \ err -> - returnDs [(DEFAULT, [], err)] + returnDs (mkSimpleMatch [noLoc $ ConPatOut (noLoc con) [] [] emptyLHsBinds + (PrefixCon (map nlVarPat arg_ids)) record_in_ty] + rhs) in -- Record stuff doesn't work for existentials - ASSERT( all (not . isExistentialDataCon) cons ) + -- The type checker checks for this, but we need + -- worry only about the constructors that are to be updated + ASSERT2( all isVanillaDataCon cons_to_upd, ppr expr ) + + -- It's important to generate the match with matchWrapper, + -- and the right hand sides with applications of the wrapper Id + -- so that everything works when we are doing fancy unboxing on the + -- constructor aguments. + mappM mk_alt cons_to_upd `thenDs` \ alts -> + matchWrapper RecUpd (MatchGroup alts in_out_ty) `thenDs` \ ([discrim_var], matching_code) -> - newSysLocalDs record_in_ty `thenDs` \ case_bndr -> - mapDs mk_alt cons_to_upd `thenDs` \ alts -> - mk_default `thenDs` \ deflt -> + returnDs (bindNonRec discrim_var record_expr' matching_code) - returnDs (Case record_expr' case_bndr (alts ++ deflt)) where + updated_fields :: [FieldLabel] + updated_fields = [ idName sel_id | (L _ sel_id,_) <- rbinds] + + -- Get the type constructor from the record_in_ty + -- so that we are sure it'll have all its DataCons + -- (In GHCI, it's possible that some TyCons may not have all + -- their constructors, in a module-loop situation.) + tycon = tcTyConAppTyCon record_in_ty + data_cons = tyConDataCons tycon + cons_to_upd = filter has_all_fields data_cons + has_all_fields :: DataCon -> Bool has_all_fields con_id - = all ok rbinds + = all (`elem` con_fields) updated_fields where - con_fields = dataConFieldLabels con_id - ok (sel_id, _, _) = recordSelectorFieldLabel sel_id `elem` con_fields + con_fields = dataConFieldLabels con_id \end{code} -Dictionary lambda and application -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +\noindent +\underline{\bf Dictionary lambda and application} +% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @DictLam@ and @DictApp@ turn into the regular old things. (OLD:) @DictFunApp@ also becomes a curried application, albeit slightly more complicated; reminiscent of fully-applied constructors. \begin{code} dsExpr (DictLam dictvars expr) - = dsExpr expr `thenDs` \ core_expr -> + = dsLExpr expr `thenDs` \ core_expr -> returnDs (mkLams dictvars core_expr) ------------------ dsExpr (DictApp expr dicts) -- becomes a curried application - = dsExpr expr `thenDs` \ core_expr -> + = dsLExpr expr `thenDs` \ core_expr -> returnDs (foldl (\f d -> f `App` (Var d)) core_expr dicts) \end{code} +Here is where we desugar the Template Haskell brackets and escapes + +\begin{code} +-- Template Haskell stuff + +#ifdef GHCI /* Only if bootstrapping */ +dsExpr (HsBracketOut x ps) = dsBracket x ps +dsExpr (HsSpliceE s) = pprPanic "dsExpr:splice" (ppr s) +#endif + +-- Arrow notation extension +dsExpr (HsProc pat cmd) = dsProcExpr pat cmd +\end{code} + + \begin{code} #ifdef DEBUG -- HsSyn constructs that just shouldn't be here: -dsExpr (HsDo _ _ _) = panic "dsExpr:HsDo" -dsExpr (ExplicitList _) = panic "dsExpr:ExplicitList" dsExpr (ExprWithTySig _ _) = panic "dsExpr:ExprWithTySig" dsExpr (ArithSeqIn _) = panic "dsExpr:ArithSeqIn" +dsExpr (PArrSeqIn _) = panic "dsExpr:PArrSeqIn" #endif -out_of_range_msg -- ditto - = " out of range: [" ++ show minInt ++ ", " ++ show maxInt ++ "]\n" \end{code} %-------------------------------------------------------------------- -Basically does the translation given in the Haskell~1.3 report: +Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're +handled in DsListComp). Basically does the translation given in the +Haskell 98 report: \begin{code} -dsDo :: StmtCtxt - -> [TypecheckedStmt] - -> Id -- id for: return m - -> Id -- id for: (>>=) m - -> Id -- id for: fail m - -> Type -- Element type; the whole expression has type (m t) +dsDo :: HsStmtContext Name + -> [LStmt Id] + -> ReboundNames Id -- id for: [return,fail,>>=,>>] and possibly mfixName + -> Type -- Element type; the whole expression has type (m t) -> DsM CoreExpr -dsDo do_or_lc stmts return_id then_id fail_id result_ty - = let - (_, b_ty) = splitAppTy result_ty -- result_ty must be of the form (m b) +dsDo do_or_lc stmts ids result_ty + = dsReboundNames ids `thenDs` \ (meth_binds, ds_meths) -> + let + fail_id = lookupReboundName ds_meths failMName + bind_id = lookupReboundName ds_meths bindMName + then_id = lookupReboundName ds_meths thenMName + + (m_ty, b_ty) = tcSplitAppTy result_ty -- result_ty must be of the form (m b) - go [ReturnStmt expr] - = dsExpr expr `thenDs` \ expr2 -> - returnDs (mkApps (Var return_id) [Type b_ty, expr2]) - - go (GuardStmt expr locn : stmts) - = do_expr expr locn `thenDs` \ expr2 -> - go stmts `thenDs` \ rest -> - let msg = "Pattern match failure in do expression, " ++ showSDoc (ppr locn) in - returnDs (mkIfThenElse expr2 - rest - (App (App (Var fail_id) - (Type b_ty)) - (mkLit (mkStrLit msg stringTy)))) - - go (ExprStmt expr locn : stmts) - = do_expr expr locn `thenDs` \ expr2 -> - let - (_, a_ty) = splitAppTy (coreExprType expr2) -- Must be of form (m a) - in - if null stmts then - returnDs expr2 - else - go stmts `thenDs` \ rest -> - newSysLocalDs a_ty `thenDs` \ ignored_result_id -> - returnDs (mkApps (Var then_id) [Type a_ty, Type b_ty, expr2, - Lam ignored_result_id rest]) + -- For ExprStmt, see the comments near HsExpr.Stmt about + -- exactly what ExprStmts mean! + -- + -- In dsDo we can only see DoStmt and ListComp (no guards) + + go [ResultStmt expr] = dsLExpr expr + + + go (ExprStmt expr a_ty : stmts) + = dsLExpr expr `thenDs` \ expr2 -> + go stmts `thenDs` \ rest -> + returnDs (mkApps then_id [Type a_ty, Type b_ty, expr2, rest]) - go (LetStmt binds : stmts ) + go (LetStmt binds : stmts) = go stmts `thenDs` \ rest -> dsLet binds rest - go (BindStmt pat expr locn : stmts) - = putSrcLocDs locn $ - dsExpr expr `thenDs` \ expr2 -> + go (BindStmt pat expr : stmts) + = go stmts `thenDs` \ body -> + dsLExpr expr `thenDs` \ rhs -> + mkStringExpr (mk_msg (getLoc pat)) `thenDs` \ core_msg -> let - (_, a_ty) = splitAppTy (coreExprType expr2) -- Must be of form (m a) - fail_expr = HsApp (TyApp (HsVar fail_id) [b_ty]) (HsLitOut (HsString (_PK_ msg)) stringTy) - msg = "Pattern match failure in do expression, " ++ showSDoc (ppr locn) - main_match = mkSimpleMatch [pat] - (HsDoOut do_or_lc stmts return_id then_id fail_id result_ty locn) - (Just result_ty) locn - the_matches - | failureFreePat pat = [main_match] - | otherwise = - [ main_match - , mkSimpleMatch [WildPat a_ty] fail_expr (Just result_ty) locn - ] + -- In a do expression, pattern-match failure just calls + -- the monadic 'fail' rather than throwing an exception + fail_expr = mkApps fail_id [Type b_ty, core_msg] + a_ty = hsPatType pat in - matchWrapper DoBindMatch the_matches match_msg - `thenDs` \ (binders, matching_code) -> - returnDs (mkApps (Var then_id) [Type a_ty, Type b_ty, expr2, - mkLams binders matching_code]) + selectSimpleMatchVarL pat `thenDs` \ var -> + matchSimply (Var var) (StmtCtxt do_or_lc) pat + body fail_expr `thenDs` \ match_code -> + returnDs (mkApps bind_id [Type a_ty, Type b_ty, rhs, Lam var match_code]) + + go (RecStmt rec_stmts later_vars rec_vars rec_rets : stmts) + = go (bind_stmt : stmts) + where + bind_stmt = dsRecStmt m_ty ds_meths rec_stmts later_vars rec_vars rec_rets + in - go stmts + go (map unLoc stmts) `thenDs` \ stmts_code -> + returnDs (foldr Let stmts_code meth_binds) where - do_expr expr locn = putSrcLocDs locn (dsExpr expr) - - match_msg = case do_or_lc of - DoStmt -> "`do' statement" - ListComp -> "comprehension" + mk_msg locn = "Pattern match failure in do expression at " ++ showSDoc (ppr locn) \end{code} +Translation for RecStmt's: +----------------------------- +We turn (RecStmt [v1,..vn] stmts) into: + + (v1,..,vn) <- mfix (\~(v1,..vn). do stmts + return (v1,..vn)) + \begin{code} -var_pat (WildPat _) = True -var_pat (VarPat _) = True -var_pat _ = False +dsRecStmt :: Type -- Monad type constructor :: * -> * + -> [(Name,Id)] -- Rebound Ids + -> [LStmt Id] + -> [Id] -> [Id] -> [LHsExpr Id] + -> Stmt Id +dsRecStmt m_ty ds_meths stmts later_vars rec_vars rec_rets + = ASSERT( length vars == length rets ) + BindStmt tup_pat mfix_app + where + vars@(var1:rest) = later_vars ++ rec_vars -- Always at least one + rets@(ret1:_) = map nlHsVar later_vars ++ rec_rets + one_var = null rest + + mfix_app = nlHsApp (noLoc $ TyApp (nlHsVar mfix_id) [tup_ty]) mfix_arg + mfix_arg = noLoc $ HsLam (MatchGroup [mkSimpleMatch [tup_pat] body] + (mkFunTy tup_ty body_ty)) + + tup_expr | one_var = ret1 + | otherwise = noLoc $ ExplicitTuple rets Boxed + var_tys = map idType vars + tup_ty = mkCoreTupTy var_tys -- Deals with singleton case + tup_pat | one_var = nlVarPat var1 + | otherwise = noLoc $ LazyPat (noLoc $ TuplePat (map nlVarPat vars) Boxed) + + body = noLoc $ HsDo DoExpr (stmts ++ [return_stmt]) + [(n, HsVar id) | (n,id) <- ds_meths] -- A bit of a hack + body_ty + body_ty = mkAppTy m_ty tup_ty + + Var return_id = lookupReboundName ds_meths returnMName + Var mfix_id = lookupReboundName ds_meths mfixName + + return_stmt = noLoc $ ResultStmt return_app + return_app = nlHsApp (noLoc $ TyApp (nlHsVar return_id) [tup_ty]) tup_expr \end{code} -