X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2FdeSugar%2FDsUtils.lhs;h=79e757c94348f7fad5fb195a8ec3a3318cfe0acd;hb=3721dd37a707d2aacb5cac814410a78096e28a2c;hp=ac9e85b35cd61b9a44560717e4d901a0a4b03fee;hpb=b085ee40c7f265a5977ea6ec1c415e573be5ff8c;p=ghc-hetmet.git diff --git a/ghc/compiler/deSugar/DsUtils.lhs b/ghc/compiler/deSugar/DsUtils.lhs index ac9e85b..79e757c 100644 --- a/ghc/compiler/deSugar/DsUtils.lhs +++ b/ghc/compiler/deSugar/DsUtils.lhs @@ -12,7 +12,7 @@ module DsUtils ( tidyLitPat, tidyNPat, - mkDsLet, mkDsLets, + mkDsLet, cantFailMatchResult, extractMatchResult, combineMatchResults, @@ -20,50 +20,59 @@ module DsUtils ( mkCoLetsMatchResult, mkGuardedMatchResult, mkCoPrimCaseMatchResult, mkCoAlgCaseMatchResult, - mkErrorAppDs, mkNilExpr, mkConsExpr, - mkStringLit, mkStringLitFS, mkIntegerLit, + mkErrorAppDs, mkNilExpr, mkConsExpr, mkListExpr, + mkIntExpr, mkCharExpr, + mkStringLit, mkStringLitFS, mkIntegerExpr, - mkSelectorBinds, mkTupleExpr, mkTupleSelector, + mkSelectorBinds, mkTupleExpr, mkTupleSelector, + mkTupleType, mkTupleCase, mkBigCoreTup, + mkCoreTup, mkCoreTupTy, + + dsReboundNames, lookupReboundName, - selectMatchVar + selectMatchVarL, selectMatchVar ) where #include "HsVersions.h" -import {-# SOURCE #-} Match ( matchSimply ) +import {-# SOURCE #-} Match ( matchSimply ) +import {-# SOURCE #-} DsExpr( dsLExpr ) import HsSyn -import TcHsSyn ( TypecheckedPat, outPatType, collectTypedPatBinders ) +import TcHsSyn ( hsPatType ) import CoreSyn - +import Constants ( mAX_TUPLE_SIZE ) import DsMonad -import CoreUtils ( exprType, mkIfThenElse, mkCoerce ) -import PrelInfo ( iRREFUT_PAT_ERROR_ID ) -import MkId ( mkReboxingAlt, mkNewTypeBody ) -import Id ( idType, Id, mkWildId ) +import CoreUtils ( exprType, mkIfThenElse, mkCoerce, bindNonRec ) +import MkId ( iRREFUT_PAT_ERROR_ID, mkReboxingAlt, mkNewTypeBody ) +import Id ( idType, Id, mkWildId, mkTemplateLocals, mkSysLocal ) +import Name ( Name ) import Literal ( Literal(..), inIntRange, tARGET_MAX_INT ) -import TyCon ( isNewTyCon, tyConDataCons, isRecursiveTyCon ) +import TyCon ( isNewTyCon, tyConDataCons ) import DataCon ( DataCon, dataConSourceArity ) import Type ( mkFunTy, isUnLiftedType, Type, splitTyConApp ) import TcType ( tcTyConAppTyCon, isIntTy, isFloatTy, isDoubleTy ) -import TysPrim ( intPrimTy, charPrimTy, floatPrimTy, doublePrimTy ) +import TysPrim ( intPrimTy ) import TysWiredIn ( nilDataCon, consDataCon, - tupleCon, + tupleCon, mkTupleTy, unitDataConId, unitTy, charTy, charDataCon, - intTy, intDataCon, smallIntegerDataCon, + intTy, intDataCon, floatDataCon, doubleDataCon, stringTy, isPArrFakeCon ) import BasicTypes ( Boxity(..) ) import UniqSet ( mkUniqSet, minusUniqSet, isEmptyUniqSet, UniqSet ) +import UniqSupply ( splitUniqSupply, uniqFromSupply, uniqsFromSupply ) import PrelNames ( unpackCStringName, unpackCStringUtf8Name, - plusIntegerName, timesIntegerName, + plusIntegerName, timesIntegerName, smallIntegerDataConName, lengthPName, indexPName ) import Outputable import UnicodeUtil ( intsToUtf8, stringToUtf8 ) -import Util ( isSingleton, notNull ) +import SrcLoc ( Located(..), unLoc, noLoc ) +import Util ( isSingleton, notNull, zipEqual ) +import ListSetOps ( assocDefault ) import FastString \end{code} @@ -71,39 +80,69 @@ import FastString %************************************************************************ %* * + Rebindable syntax +%* * +%************************************************************************ + +\begin{code} +dsReboundNames :: ReboundNames Id + -> DsM ([CoreBind], -- Auxiliary bindings + [(Name,Id)]) -- Maps the standard name to its value + +dsReboundNames rebound_ids + = mapAndUnzipDs mk_bind rebound_ids `thenDs` \ (binds_s, prs) -> + return (concat binds_s, prs) + where + -- The cheapo special case can happen when we + -- make an intermediate HsDo when desugaring a RecStmt + mk_bind (std_name, L _ (HsVar id)) = return ([], (std_name, id)) + mk_bind (std_name, expr) + = dsLExpr expr `thenDs` \ rhs -> + newSysLocalDs (exprType rhs) `thenDs` \ id -> + return ([NonRec id rhs], (std_name, id)) + +lookupReboundName :: [(Name,Id)] -> Name -> CoreExpr +lookupReboundName prs std_name + = Var (assocDefault (mk_panic std_name) prs std_name) + where + mk_panic std_name = pprPanic "dsReboundNames" (ptext SLIT("Not found:") <+> ppr std_name) +\end{code} + + +%************************************************************************ +%* * \subsection{Tidying lit pats} %* * %************************************************************************ \begin{code} -tidyLitPat :: HsLit -> TypecheckedPat -> TypecheckedPat -tidyLitPat (HsChar c) pat = ConPat charDataCon charTy [] [] [LitPat (HsCharPrim c) charPrimTy] -tidyLitPat lit pat = pat +tidyLitPat :: HsLit -> LPat Id -> LPat Id +tidyLitPat (HsChar c) pat = mkCharLitPat c +tidyLitPat lit pat = pat -tidyNPat :: HsLit -> Type -> TypecheckedPat -> TypecheckedPat +tidyNPat :: HsLit -> Type -> LPat Id -> LPat Id tidyNPat (HsString s) _ pat | lengthFS s <= 1 -- Short string literals only - = foldr (\c pat -> ConPat consDataCon stringTy [] [] [mk_char_lit c,pat]) - (ConPat nilDataCon stringTy [] [] []) (unpackIntFS s) + = foldr (\c pat -> mkPrefixConPat consDataCon [mkCharLitPat c,pat] stringTy) + (mkNilPat stringTy) (unpackFS s) -- The stringTy is the type of the whole pattern, not -- the type to instantiate (:) or [] with! where - mk_char_lit c = ConPat charDataCon charTy [] [] [LitPat (HsCharPrim c) charPrimTy] tidyNPat lit lit_ty default_pat - | isIntTy lit_ty = ConPat intDataCon lit_ty [] [] [LitPat (mk_int lit) intPrimTy] - | isFloatTy lit_ty = ConPat floatDataCon lit_ty [] [] [LitPat (mk_float lit) floatPrimTy] - | isDoubleTy lit_ty = ConPat doubleDataCon lit_ty [] [] [LitPat (mk_double lit) doublePrimTy] + | isIntTy lit_ty = mkPrefixConPat intDataCon [noLoc $ LitPat (mk_int lit)] lit_ty + | isFloatTy lit_ty = mkPrefixConPat floatDataCon [noLoc $ LitPat (mk_float lit)] lit_ty + | isDoubleTy lit_ty = mkPrefixConPat doubleDataCon [noLoc $ LitPat (mk_double lit)] lit_ty | otherwise = default_pat where - mk_int (HsInteger i) = HsIntPrim i + mk_int (HsInteger i _) = HsIntPrim i - mk_float (HsInteger i) = HsFloatPrim (fromInteger i) - mk_float (HsRat f _) = HsFloatPrim f + mk_float (HsInteger i _) = HsFloatPrim (fromInteger i) + mk_float (HsRat f _) = HsFloatPrim f - mk_double (HsInteger i) = HsDoublePrim (fromInteger i) - mk_double (HsRat f _) = HsDoublePrim f + mk_double (HsInteger i _) = HsDoublePrim (fromInteger i) + mk_double (HsRat f _) = HsDoublePrim f \end{code} @@ -140,11 +179,14 @@ hand, which should indeed be bound to the pattern as a whole, then use it; otherwise, make one up. \begin{code} -selectMatchVar :: TypecheckedPat -> DsM Id +selectMatchVarL :: LPat Id -> DsM Id +selectMatchVarL pat = selectMatchVar (unLoc pat) + selectMatchVar (VarPat var) = returnDs var -selectMatchVar (AsPat var pat) = returnDs var -selectMatchVar (LazyPat pat) = selectMatchVar pat -selectMatchVar other_pat = newSysLocalDs (outPatType other_pat) -- OK, better make up one... +selectMatchVar (AsPat var pat) = returnDs (unLoc var) +selectMatchVar (LazyPat pat) = selectMatchVarL pat +selectMatchVar other_pat = newSysLocalDs (hsPatType (noLoc other_pat)) + -- OK, better make up one... \end{code} @@ -172,7 +214,7 @@ data EquationInfo -- of the *first* thing matched in this group. -- Should perhaps be a list of them all! - [TypecheckedPat] -- The patterns for an eqn + [Pat Id] -- The patterns for an eqn MatchResult -- Encapsulates the guards and bindings \end{code} @@ -250,7 +292,7 @@ mkCoPrimCaseMatchResult var match_alts = MatchResult CanFail mk_case where mk_case fail - = mapDs (mk_alt fail) match_alts `thenDs` \ alts -> + = mappM (mk_alt fail) match_alts `thenDs` \ alts -> returnDs (Case (Var var) var ((DEFAULT, [], fail) : alts)) mk_alt fail (lit, MatchResult _ body_fn) = body_fn fail `thenDs` \ body -> @@ -291,13 +333,13 @@ mkCoAlgCaseMatchResult var match_alts = CanFail wild_var = mkWildId (idType var) - mk_case fail = mapDs (mk_alt fail) match_alts `thenDs` \ alts -> + mk_case fail = mappM (mk_alt fail) match_alts `thenDs` \ alts -> returnDs (Case (Var var) wild_var (mk_default fail ++ alts)) mk_alt fail (con, args, MatchResult _ body_fn) = body_fn fail `thenDs` \ body -> - getUniquesDs `thenDs` \ us -> - returnDs (mkReboxingAlt us con args body) + newUniqueSupply `thenDs` \ us -> + returnDs (mkReboxingAlt (uniqsFromSupply us) con args body) mk_default fail | exhaustive_case = [] | otherwise = [(DEFAULT, [], fail)] @@ -337,7 +379,7 @@ mkCoAlgCaseMatchResult var match_alts panic "DsUtils: You may not mix `[:...:]' with `PArr' patterns" -- mk_parrCase fail = - dsLookupGlobalValue lengthPName `thenDs` \lengthP -> + dsLookupGlobalId lengthPName `thenDs` \lengthP -> unboxAlt `thenDs` \alt -> returnDs (Case (len lengthP) (mkWildId intTy) [alt]) where @@ -349,8 +391,8 @@ mkCoAlgCaseMatchResult var match_alts -- unboxAlt = newSysLocalDs intPrimTy `thenDs` \l -> - dsLookupGlobalValue indexPName `thenDs` \indexP -> - mapDs (mkAlt indexP) match_alts `thenDs` \alts -> + dsLookupGlobalId indexPName `thenDs` \indexP -> + mappM (mkAlt indexP) match_alts `thenDs` \alts -> returnDs (DataAlt intDataCon, [l], (Case (Var l) wild (dft : alts))) where wild = mkWildId intPrimTy @@ -369,8 +411,7 @@ mkCoAlgCaseMatchResult var match_alts lit = MachInt $ toInteger (dataConSourceArity con) binds = [NonRec arg (indexExpr i) | (i, arg) <- zip [1..] args] -- - indexExpr i = mkApps (Var indexP) [Type elemTy, Var var, toInt i] - toInt i = mkConApp intDataCon [Lit $ MachInt i] + indexExpr i = mkApps (Var indexP) [Type elemTy, Var var, mkIntExpr i] \end{code} @@ -387,7 +428,7 @@ mkErrorAppDs :: Id -- The error function -> DsM CoreExpr mkErrorAppDs err_id ty msg - = getSrcLocDs `thenDs` \ src_loc -> + = getSrcSpanDs `thenDs` \ src_loc -> let full_msg = showSDoc (hcat [ppr src_loc, text "|", text msg]) core_msg = Lit (MachStr (mkFastString (stringToUtf8 full_msg))) @@ -403,57 +444,66 @@ mkErrorAppDs err_id ty msg %************************************************************************ \begin{code} -mkIntegerLit :: Integer -> DsM CoreExpr -mkIntegerLit i +mkCharExpr :: Char -> CoreExpr -- Returns C# c :: Int +mkIntExpr :: Integer -> CoreExpr -- Returns I# i :: Int +mkIntegerExpr :: Integer -> DsM CoreExpr -- Result :: Integer +mkStringLit :: String -> DsM CoreExpr -- Result :: String +mkStringLitFS :: FastString -> DsM CoreExpr -- Result :: String + +mkIntExpr i = mkConApp intDataCon [mkIntLit i] +mkCharExpr c = mkConApp charDataCon [mkLit (MachChar c)] + +mkIntegerExpr i | inIntRange i -- Small enough, so start from an Int - = returnDs (mkSmallIntegerLit i) + = dsLookupDataCon smallIntegerDataConName `thenDs` \ integer_dc -> + returnDs (mkSmallIntegerLit integer_dc i) -- Special case for integral literals with a large magnitude: -- They are transformed into an expression involving only smaller -- integral literals. This improves constant folding. | otherwise -- Big, so start from a string - = dsLookupGlobalValue plusIntegerName `thenDs` \ plus_id -> - dsLookupGlobalValue timesIntegerName `thenDs` \ times_id -> + = dsLookupGlobalId plusIntegerName `thenDs` \ plus_id -> + dsLookupGlobalId timesIntegerName `thenDs` \ times_id -> + dsLookupDataCon smallIntegerDataConName `thenDs` \ integer_dc -> let + lit i = mkSmallIntegerLit integer_dc i plus a b = Var plus_id `App` a `App` b times a b = Var times_id `App` a `App` b -- Transform i into (x1 + (x2 + (x3 + (...) * b) * b) * b) with abs xi <= b horner :: Integer -> Integer -> CoreExpr horner b i | abs q <= 1 = if r == 0 || r == i - then mkSmallIntegerLit i - else mkSmallIntegerLit r `plus` mkSmallIntegerLit (i-r) - | r == 0 = horner b q `times` mkSmallIntegerLit b - | otherwise = mkSmallIntegerLit r `plus` (horner b q `times` mkSmallIntegerLit b) + then lit i + else lit r `plus` lit (i-r) + | r == 0 = horner b q `times` lit b + | otherwise = lit r `plus` (horner b q `times` lit b) where (q,r) = i `quotRem` b in returnDs (horner tARGET_MAX_INT i) -mkSmallIntegerLit i = mkConApp smallIntegerDataCon [mkIntLit i] +mkSmallIntegerLit small_integer_data_con i = mkConApp small_integer_data_con [mkIntLit i] -mkStringLit :: String -> DsM CoreExpr mkStringLit str = mkStringLitFS (mkFastString str) -mkStringLitFS :: FastString -> DsM CoreExpr mkStringLitFS str | nullFastString str = returnDs (mkNilExpr charTy) | lengthFS str == 1 = let - the_char = mkConApp charDataCon [mkLit (MachChar (headIntFS str))] + the_char = mkCharExpr (headFS str) in returnDs (mkConsExpr charTy the_char (mkNilExpr charTy)) | all safeChar int_chars - = dsLookupGlobalValue unpackCStringName `thenDs` \ unpack_id -> + = dsLookupGlobalId unpackCStringName `thenDs` \ unpack_id -> returnDs (App (Var unpack_id) (Lit (MachStr str))) | otherwise - = dsLookupGlobalValue unpackCStringUtf8Name `thenDs` \ unpack_id -> + = dsLookupGlobalId unpackCStringUtf8Name `thenDs` \ unpack_id -> returnDs (App (Var unpack_id) (Lit (MachStr (mkFastString (intsToUtf8 int_chars))))) where @@ -485,23 +535,41 @@ even more helpful. Something very similar happens for pattern-bound expressions. \begin{code} -mkSelectorBinds :: TypecheckedPat -- The pattern - -> CoreExpr -- Expression to which the pattern is bound +mkSelectorBinds :: LPat Id -- The pattern + -> CoreExpr -- Expression to which the pattern is bound -> DsM [(Id,CoreExpr)] -mkSelectorBinds (VarPat v) val_expr +mkSelectorBinds (L _ (VarPat v)) val_expr = returnDs [(v, val_expr)] mkSelectorBinds pat val_expr - | isSingleton binders || is_simple_pat pat - = newSysLocalDs (exprType val_expr) `thenDs` \ val_var -> + | isSingleton binders || is_simple_lpat pat + = -- Given p = e, where p binds x,y + -- we are going to make + -- v = p (where v is fresh) + -- x = case v of p -> x + -- y = case v of p -> x + + -- Make up 'v' + -- NB: give it the type of *pattern* p, not the type of the *rhs* e. + -- This does not matter after desugaring, but there's a subtle + -- issue with implicit parameters. Consider + -- (x,y) = ?i + -- Then, ?i is given type {?i :: Int}, a PredType, which is opaque + -- to the desugarer. (Why opaque? Because newtypes have to be. Why + -- does it get that type? So that when we abstract over it we get the + -- right top-level type (?i::Int) => ...) + -- + -- So to get the type of 'v', use the pattern not the rhs. Often more + -- efficient too. + newSysLocalDs (hsPatType pat) `thenDs` \ val_var -> -- For the error message we make one error-app, to avoid duplication. -- But we need it at different types... so we use coerce for that mkErrorAppDs iRREFUT_PAT_ERROR_ID unitTy (showSDoc (ppr pat)) `thenDs` \ err_expr -> newSysLocalDs unitTy `thenDs` \ err_var -> - mapDs (mk_bind val_var err_var) binders `thenDs` \ binds -> + mappM (mk_bind val_var err_var) binders `thenDs` \ binds -> returnDs ( (val_var, val_expr) : (err_var, err_expr) : binds ) @@ -518,7 +586,7 @@ mkSelectorBinds pat val_expr in returnDs ( (tuple_var, tuple_expr) : map mk_tup_bind binders ) where - binders = collectTypedPatBinders pat + binders = collectPatBinders pat local_tuple = mkTupleExpr binders tuple_ty = exprType local_tuple @@ -532,28 +600,67 @@ mkSelectorBinds pat val_expr where error_expr = mkCoerce (idType bndr_var) (Var err_var) - is_simple_pat (TuplePat ps Boxed) = all is_triv_pat ps - is_simple_pat (ConPat _ _ _ _ ps) = all is_triv_pat ps - is_simple_pat (VarPat _) = True - is_simple_pat (RecPat _ _ _ _ ps) = and [is_triv_pat p | (_,p,_) <- ps] - is_simple_pat other = False + is_simple_lpat p = is_simple_pat (unLoc p) + + is_simple_pat (TuplePat ps Boxed) = all is_triv_lpat ps + is_simple_pat (ConPatOut _ ps _ _ _) = all is_triv_lpat (hsConArgs ps) + is_simple_pat (VarPat _) = True + is_simple_pat (ParPat p) = is_simple_lpat p + is_simple_pat other = False + + is_triv_lpat p = is_triv_pat (unLoc p) is_triv_pat (VarPat v) = True is_triv_pat (WildPat _) = True + is_triv_pat (ParPat p) = is_triv_lpat p is_triv_pat other = False \end{code} -@mkTupleExpr@ builds a tuple; the inverse to @mkTupleSelector@. If it -has only one element, it is the identity function. +%************************************************************************ +%* * + Tuples +%* * +%************************************************************************ + +@mkTupleExpr@ builds a tuple; the inverse to @mkTupleSelector@. + +* If it has only one element, it is the identity function. + +* If there are more elements than a big tuple can have, it nests + the tuples. + +Nesting policy. Better a 2-tuple of 10-tuples (3 objects) than +a 10-tuple of 2-tuples (11 objects). So we want the leaves to be big. \begin{code} mkTupleExpr :: [Id] -> CoreExpr +mkTupleExpr ids = mkBigCoreTup (map Var ids) + +-- corresponding type +mkTupleType :: [Id] -> Type +mkTupleType ids = mkBigTuple mkCoreTupTy (map idType ids) + +mkBigCoreTup :: [CoreExpr] -> CoreExpr +mkBigCoreTup = mkBigTuple mkCoreTup -mkTupleExpr [] = Var unitDataConId -mkTupleExpr [id] = Var id -mkTupleExpr ids = mkConApp (tupleCon Boxed (length ids)) - (map (Type . idType) ids ++ [ Var i | i <- ids ]) +mkBigTuple :: ([a] -> a) -> [a] -> a +mkBigTuple small_tuple as = mk_big_tuple (chunkify as) + where + -- Each sub-list is short enough to fit in a tuple + mk_big_tuple [as] = small_tuple as + mk_big_tuple as_s = mk_big_tuple (chunkify (map small_tuple as_s)) + +chunkify :: [a] -> [[a]] +-- The sub-lists of the result all have length <= mAX_TUPLE_SIZE +-- But there may be more than mAX_TUPLE_SIZE sub-lists +chunkify xs + | n_xs <= mAX_TUPLE_SIZE = {- pprTrace "Small" (ppr n_xs) -} [xs] + | otherwise = {- pprTrace "Big" (ppr n_xs) -} (split xs) + where + n_xs = length xs + split [] = [] + split xs = take mAX_TUPLE_SIZE xs : split (drop mAX_TUPLE_SIZE xs) \end{code} @@ -566,6 +673,19 @@ are in scope. If there is just one id in the ``tuple'', then the selector is just the identity. +If it's big, it does nesting + mkTupleSelector [a,b,c,d] b v e + = case e of v { + (p,q) -> case p of p { + (a,b) -> b }} +We use 'tpl' vars for the p,q, since shadowing does not matter. + +In fact, it's more convenient to generate it innermost first, getting + + case (case e of v + (p,q) -> p) of p + (a,b) -> b + \begin{code} mkTupleSelector :: [Id] -- The tuple args -> Id -- The selected one @@ -573,15 +693,77 @@ mkTupleSelector :: [Id] -- The tuple args -> CoreExpr -- Scrutinee -> CoreExpr -mkTupleSelector [var] should_be_the_same_var scrut_var scrut - = ASSERT(var == should_be_the_same_var) - scrut - mkTupleSelector vars the_var scrut_var scrut - = ASSERT( notNull vars ) - Case scrut scrut_var [(DataAlt (tupleCon Boxed (length vars)), vars, Var the_var)] + = mk_tup_sel (chunkify vars) the_var + where + mk_tup_sel [vars] the_var = mkCoreSel vars the_var scrut_var scrut + mk_tup_sel vars_s the_var = mkCoreSel group the_var tpl_v $ + mk_tup_sel (chunkify tpl_vs) tpl_v + where + tpl_tys = [mkCoreTupTy (map idType gp) | gp <- vars_s] + tpl_vs = mkTemplateLocals tpl_tys + [(tpl_v, group)] = [(tpl,gp) | (tpl,gp) <- zipEqual "mkTupleSelector" tpl_vs vars_s, + the_var `elem` gp ] +\end{code} + +A generalization of @mkTupleSelector@, allowing the body +of the case to be an arbitrary expression. + +If the tuple is big, it is nested: + + mkTupleCase uniqs [a,b,c,d] body v e + = case e of v { (p,q) -> + case p of p { (a,b) -> + case q of q { (c,d) -> + body }}} + +To avoid shadowing, we use uniqs to invent new variables p,q. + +ToDo: eliminate cases where none of the variables are needed. + +\begin{code} +mkTupleCase + :: UniqSupply -- for inventing names of intermediate variables + -> [Id] -- the tuple args + -> CoreExpr -- body of the case + -> Id -- a variable of the same type as the scrutinee + -> CoreExpr -- scrutinee + -> CoreExpr + +mkTupleCase uniqs vars body scrut_var scrut + = mk_tuple_case uniqs (chunkify vars) body + where + mk_tuple_case us [vars] body + = mkSmallTupleCase vars body scrut_var scrut + mk_tuple_case us vars_s body + = let + (us', vars', body') = foldr one_tuple_case (us, [], body) vars_s + in + mk_tuple_case us' (chunkify vars') body' + one_tuple_case chunk_vars (us, vs, body) + = let + (us1, us2) = splitUniqSupply us + scrut_var = mkSysLocal FSLIT("ds") (uniqFromSupply us1) + (mkCoreTupTy (map idType chunk_vars)) + body' = mkSmallTupleCase chunk_vars body scrut_var (Var scrut_var) + in (us2, scrut_var:vs, body') \end{code} +The same, but with a tuple small enough not to need nesting. + +\begin{code} +mkSmallTupleCase + :: [Id] -- the tuple args + -> CoreExpr -- body of the case + -> Id -- a variable of the same type as the scrutinee + -> CoreExpr -- scrutinee + -> CoreExpr + +mkSmallTupleCase [var] body _scrut_var scrut + = bindNonRec var scrut body +mkSmallTupleCase vars body scrut_var scrut + = Case scrut scrut_var [(DataAlt (tupleCon Boxed (length vars)), vars, body)] +\end{code} %************************************************************************ %* * @@ -598,6 +780,40 @@ mkNilExpr ty = mkConApp nilDataCon [Type ty] mkConsExpr :: Type -> CoreExpr -> CoreExpr -> CoreExpr mkConsExpr ty hd tl = mkConApp consDataCon [Type ty, hd, tl] + +mkListExpr :: Type -> [CoreExpr] -> CoreExpr +mkListExpr ty xs = foldr (mkConsExpr ty) (mkNilExpr ty) xs + + +-- The next three functions make tuple types, constructors and selectors, +-- with the rule that a 1-tuple is represented by the thing itselg +mkCoreTupTy :: [Type] -> Type +mkCoreTupTy [ty] = ty +mkCoreTupTy tys = mkTupleTy Boxed (length tys) tys + +mkCoreTup :: [CoreExpr] -> CoreExpr +-- Builds exactly the specified tuple. +-- No fancy business for big tuples +mkCoreTup [] = Var unitDataConId +mkCoreTup [c] = c +mkCoreTup cs = mkConApp (tupleCon Boxed (length cs)) + (map (Type . exprType) cs ++ cs) + +mkCoreSel :: [Id] -- The tuple args + -> Id -- The selected one + -> Id -- A variable of the same type as the scrutinee + -> CoreExpr -- Scrutinee + -> CoreExpr +-- mkCoreSel [x,y,z] x v e +-- ===> case e of v { (x,y,z) -> x +mkCoreSel [var] should_be_the_same_var scrut_var scrut + = ASSERT(var == should_be_the_same_var) + scrut + +mkCoreSel vars the_var scrut_var scrut + = ASSERT( notNull vars ) + Case scrut scrut_var + [(DataAlt (tupleCon Boxed (length vars)), vars, Var the_var)] \end{code}