X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2FdeSugar%2FDsUtils.lhs;h=d7b55f5ad39b1bbf6718937dd6ad27e6b5011f91;hb=5ac88b392b71f7d9c71584df76b461bda19f91f4;hp=d82217d84f172398e3228fcf4fcd0718d4e9ff43;hpb=569f35b5dc7fb21c65b219ab9d7ffa2b00a14077;p=ghc-hetmet.git diff --git a/ghc/compiler/deSugar/DsUtils.lhs b/ghc/compiler/deSugar/DsUtils.lhs index d82217d..d7b55f5 100644 --- a/ghc/compiler/deSugar/DsUtils.lhs +++ b/ghc/compiler/deSugar/DsUtils.lhs @@ -1,5 +1,5 @@ % -% (c) The GRASP/AQUA Project, Glasgow University, 1992-1996 +% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % \section[DsUtils]{Utilities for desugaring} @@ -10,56 +10,164 @@ module DsUtils ( CanItFail(..), EquationInfo(..), MatchResult(..), EqnNo, EqnSet, - combineGRHSMatchResults, - combineMatchResults, - dsExprToAtomGivenTy, DsCoreArg, - mkCoAlgCaseMatchResult, - mkAppDs, mkConDs, mkPrimDs, mkErrorAppDs, - mkCoLetsMatchResult, - mkCoPrimCaseMatchResult, - mkFailurePair, - mkGuardedMatchResult, - mkSelectorBinds, - mkTupleExpr, - mkTupleSelector, - selectMatchVars, - showForErr + tidyLitPat, tidyNPat, + + mkDsLet, mkDsLets, + + cantFailMatchResult, extractMatchResult, + combineMatchResults, + adjustMatchResult, adjustMatchResultDs, + mkCoLetsMatchResult, mkGuardedMatchResult, + mkCoPrimCaseMatchResult, mkCoAlgCaseMatchResult, + + mkErrorAppDs, mkNilExpr, mkConsExpr, mkListExpr, + mkIntExpr, mkCharExpr, + mkStringLit, mkStringLitFS, mkIntegerExpr, + + mkSelectorBinds, mkTupleExpr, mkTupleSelector, + mkTupleType, mkTupleCase, mkBigCoreTup, + mkCoreTup, mkCoreSel, mkCoreTupTy, + + dsReboundNames, lookupReboundName, + + selectMatchVar ) where #include "HsVersions.h" -import {-# SOURCE #-} Match ( matchSimply ) +import {-# SOURCE #-} Match ( matchSimply ) +import {-# SOURCE #-} DsExpr( dsExpr ) -import HsSyn ( OutPat(..), Stmt, DoOrListComp ) -import TcHsSyn ( TypecheckedPat ) -import DsHsSyn ( outPatType, collectTypedPatBinders ) +import HsSyn +import TcHsSyn ( TypecheckedPat, hsPatType ) import CoreSyn - +import Constants ( mAX_TUPLE_SIZE ) import DsMonad -import CoreUtils ( coreExprType, mkCoreIfThenElse ) -import PrelVals ( iRREFUT_PAT_ERROR_ID, voidId ) -import Id ( idType, dataConArgTys, - DataCon, Id, GenId ) -import Literal ( Literal(..) ) -import PrimOp ( PrimOp ) +import CoreUtils ( exprType, mkIfThenElse, mkCoerce, bindNonRec ) +import MkId ( iRREFUT_PAT_ERROR_ID, mkReboxingAlt, mkNewTypeBody ) +import Id ( idType, Id, mkWildId, mkTemplateLocals, mkSysLocal ) +import Name ( Name ) +import Literal ( Literal(..), inIntRange, tARGET_MAX_INT ) import TyCon ( isNewTyCon, tyConDataCons ) -import Type ( mkRhoTy, mkFunTy, - isUnpointedType, mkTyConApp, splitAlgTyConApp, - Type - ) -import BasicTypes ( Unused ) -import TysPrim ( voidTy ) -import TysWiredIn ( unitDataCon, tupleCon, stringTy ) -import UniqSet ( mkUniqSet, minusUniqSet, uniqSetToList, UniqSet ) -import Unique ( Unique ) +import DataCon ( DataCon, dataConSourceArity ) +import Type ( mkFunTy, isUnLiftedType, Type, splitTyConApp ) +import TcType ( tcTyConAppTyCon, isIntTy, isFloatTy, isDoubleTy ) +import TysPrim ( intPrimTy ) +import TysWiredIn ( nilDataCon, consDataCon, + tupleCon, mkTupleTy, + unitDataConId, unitTy, + charTy, charDataCon, + intTy, intDataCon, smallIntegerDataCon, + floatDataCon, + doubleDataCon, + stringTy, isPArrFakeCon ) +import BasicTypes ( Boxity(..) ) +import UniqSet ( mkUniqSet, minusUniqSet, isEmptyUniqSet, UniqSet ) +import UniqSupply ( splitUniqSupply, uniqFromSupply ) +import PrelNames ( unpackCStringName, unpackCStringUtf8Name, + plusIntegerName, timesIntegerName, + lengthPName, indexPName ) import Outputable +import UnicodeUtil ( intsToUtf8, stringToUtf8 ) +import Util ( isSingleton, notNull, zipEqual ) +import ListSetOps ( assocDefault ) +import FastString \end{code} + %************************************************************************ %* * -%* Selecting match variables + Rebindable syntax +%* * +%************************************************************************ + +\begin{code} +dsReboundNames :: ReboundNames Id + -> DsM ([CoreBind], -- Auxiliary bindings + [(Name,Id)]) -- Maps the standard name to its value + +dsReboundNames rebound_ids + = mapAndUnzipDs mk_bind rebound_ids `thenDs` \ (binds_s, prs) -> + return (concat binds_s, prs) + where + -- The cheapo special case can happen when we + -- make an intermediate HsDo when desugaring a RecStmt + mk_bind (std_name, HsVar id) = return ([], (std_name, id)) + mk_bind (std_name, expr) = dsExpr expr `thenDs` \ rhs -> + newSysLocalDs (exprType rhs) `thenDs` \ id -> + return ([NonRec id rhs], (std_name, id)) + +lookupReboundName :: [(Name,Id)] -> Name -> CoreExpr +lookupReboundName prs std_name + = Var (assocDefault (mk_panic std_name) prs std_name) + where + mk_panic std_name = pprPanic "dsReboundNames" (ptext SLIT("Not found:") <+> ppr std_name) +\end{code} + + +%************************************************************************ +%* * +\subsection{Tidying lit pats} +%* * +%************************************************************************ + +\begin{code} +tidyLitPat :: HsLit -> TypecheckedPat -> TypecheckedPat +tidyLitPat (HsChar c) pat = mkCharLitPat c +tidyLitPat lit pat = pat + +tidyNPat :: HsLit -> Type -> TypecheckedPat -> TypecheckedPat +tidyNPat (HsString s) _ pat + | lengthFS s <= 1 -- Short string literals only + = foldr (\c pat -> mkPrefixConPat consDataCon [mkCharLitPat c,pat] stringTy) + (mkNilPat stringTy) (unpackIntFS s) + -- The stringTy is the type of the whole pattern, not + -- the type to instantiate (:) or [] with! + where + +tidyNPat lit lit_ty default_pat + | isIntTy lit_ty = mkPrefixConPat intDataCon [LitPat (mk_int lit)] lit_ty + | isFloatTy lit_ty = mkPrefixConPat floatDataCon [LitPat (mk_float lit)] lit_ty + | isDoubleTy lit_ty = mkPrefixConPat doubleDataCon [LitPat (mk_double lit)] lit_ty + | otherwise = default_pat + + where + mk_int (HsInteger i) = HsIntPrim i + + mk_float (HsInteger i) = HsFloatPrim (fromInteger i) + mk_float (HsRat f _) = HsFloatPrim f + + mk_double (HsInteger i) = HsDoublePrim (fromInteger i) + mk_double (HsRat f _) = HsDoublePrim f +\end{code} + + +%************************************************************************ +%* * +\subsection{Building lets} +%* * +%************************************************************************ + +Use case, not let for unlifted types. The simplifier will turn some +back again. + +\begin{code} +mkDsLet :: CoreBind -> CoreExpr -> CoreExpr +mkDsLet (NonRec bndr rhs) body + | isUnLiftedType (idType bndr) = Case rhs bndr [(DEFAULT,[],body)] +mkDsLet bind body + = Let bind body + +mkDsLets :: [CoreBind] -> CoreExpr -> CoreExpr +mkDsLets binds body = foldr mkDsLet body binds +\end{code} + + +%************************************************************************ +%* * +\subsection{ Selecting match variables} %* * %************************************************************************ @@ -69,15 +177,11 @@ hand, which should indeed be bound to the pattern as a whole, then use it; otherwise, make one up. \begin{code} -selectMatchVars :: [TypecheckedPat] -> DsM [Id] -selectMatchVars pats - = mapDs var_from_pat_maybe pats - where - var_from_pat_maybe (VarPat var) = returnDs var - var_from_pat_maybe (AsPat var pat) = returnDs var - var_from_pat_maybe (LazyPat pat) = var_from_pat_maybe pat - var_from_pat_maybe other_pat - = newSysLocalDs (outPatType other_pat) -- OK, better make up one... +selectMatchVar :: TypecheckedPat -> DsM Id +selectMatchVar (VarPat var) = returnDs var +selectMatchVar (AsPat var pat) = returnDs var +selectMatchVar (LazyPat pat) = selectMatchVar pat +selectMatchVar other_pat = newSysLocalDs (hsPatType other_pat) -- OK, better make up one... \end{code} @@ -98,22 +202,23 @@ type EqnSet = UniqSet EqnNo data EquationInfo = EqnInfo - EqnNo -- The number of the equation + EqnNo -- The number of the equation + DsMatchContext -- The context info is used when producing warnings -- about shadowed patterns. It's the context -- of the *first* thing matched in this group. -- Should perhaps be a list of them all! - [TypecheckedPat] -- the patterns for an eqn + + [TypecheckedPat] -- The patterns for an eqn + MatchResult -- Encapsulates the guards and bindings \end{code} \begin{code} data MatchResult = MatchResult - CanItFail - Type -- Type of argument expression - - (CoreExpr -> CoreExpr) + CanItFail -- Tells whether the failure expression is used + (CoreExpr -> DsM CoreExpr) -- Takes a expression to plug in at the -- failure point(s). The expression should -- be duplicatable! @@ -122,225 +227,283 @@ data CanItFail = CanFail | CantFail orFail CantFail CantFail = CantFail orFail _ _ = CanFail +\end{code} + +Functions on MatchResults +\begin{code} +cantFailMatchResult :: CoreExpr -> MatchResult +cantFailMatchResult expr = MatchResult CantFail (\ ignore -> returnDs expr) -mkCoLetsMatchResult :: [CoreBinding] -> MatchResult -> MatchResult -mkCoLetsMatchResult binds (MatchResult can_it_fail ty body_fn) - = MatchResult can_it_fail ty (\body -> mkCoLetsAny binds (body_fn body)) +extractMatchResult :: MatchResult -> CoreExpr -> DsM CoreExpr +extractMatchResult (MatchResult CantFail match_fn) fail_expr + = match_fn (error "It can't fail!") -mkGuardedMatchResult :: CoreExpr -> MatchResult -> DsM MatchResult -mkGuardedMatchResult pred_expr (MatchResult can_it_fail ty body_fn) - = returnDs (MatchResult CanFail - ty - (\fail -> mkCoreIfThenElse pred_expr (body_fn fail) fail) - ) +extractMatchResult (MatchResult CanFail match_fn) fail_expr + = mkFailurePair fail_expr `thenDs` \ (fail_bind, if_it_fails) -> + match_fn if_it_fails `thenDs` \ body -> + returnDs (mkDsLet fail_bind body) -mkCoPrimCaseMatchResult :: Id -- Scrutinee - -> [(Literal, MatchResult)] -- Alternatives - -> DsM MatchResult -mkCoPrimCaseMatchResult var alts - = newSysLocalDs (idType var) `thenDs` \ wild -> - returnDs (MatchResult CanFail - ty1 - (mk_case alts wild)) + +combineMatchResults :: MatchResult -> MatchResult -> MatchResult +combineMatchResults (MatchResult CanFail body_fn1) + (MatchResult can_it_fail2 body_fn2) + = MatchResult can_it_fail2 body_fn where - ((_,MatchResult _ ty1 _) : _) = alts + body_fn fail = body_fn2 fail `thenDs` \ body2 -> + mkFailurePair body2 `thenDs` \ (fail_bind, duplicatable_expr) -> + body_fn1 duplicatable_expr `thenDs` \ body1 -> + returnDs (Let fail_bind body1) - mk_case alts wild fail_expr - = Case (Var var) (PrimAlts final_alts (BindDefault wild fail_expr)) - where - final_alts = [ (lit, body_fn fail_expr) - | (lit, MatchResult _ _ body_fn) <- alts - ] - - -mkCoAlgCaseMatchResult :: Id -- Scrutinee - -> [(DataCon, [Id], MatchResult)] -- Alternatives - -> DsM MatchResult - -mkCoAlgCaseMatchResult var alts - | isNewTyCon tycon -- newtype case; use a let - = ASSERT( newtype_sanity ) - returnDs (mkCoLetsMatchResult [coercion_bind] match_result) - - | otherwise -- datatype case - = -- Find all the constructors in the type which aren't - -- explicitly mentioned in the alternatives: - case un_mentioned_constructors of - [] -> -- All constructors mentioned, so no default needed - returnDs (MatchResult can_any_alt_fail - ty1 - (mk_case alts (\ignore -> NoDefault))) - - [con] -> -- Just one constructor missing, so add a case for it - -- We need to build new locals for the args of the constructor, - -- and figuring out their types is somewhat tiresome. - let - arg_tys = dataConArgTys con tycon_arg_tys - in - newSysLocalsDs arg_tys `thenDs` \ arg_ids -> - - -- Now we are ready to construct the new alternative - let - new_alt = (con, arg_ids, MatchResult CanFail ty1 id) - in - returnDs (MatchResult CanFail - ty1 - (mk_case (new_alt:alts) (\ignore -> NoDefault))) - - other -> -- Many constructors missing, so use a default case - newSysLocalDs scrut_ty `thenDs` \ wild -> - returnDs (MatchResult CanFail - ty1 - (mk_case alts (\fail_expr -> BindDefault wild fail_expr))) +combineMatchResults match_result1@(MatchResult CantFail body_fn1) match_result2 + = match_result1 + + +adjustMatchResult :: (CoreExpr -> CoreExpr) -> MatchResult -> MatchResult +adjustMatchResult encl_fn (MatchResult can_it_fail body_fn) + = MatchResult can_it_fail (\fail -> body_fn fail `thenDs` \ body -> + returnDs (encl_fn body)) + +adjustMatchResultDs :: (CoreExpr -> DsM CoreExpr) -> MatchResult -> MatchResult +adjustMatchResultDs encl_fn (MatchResult can_it_fail body_fn) + = MatchResult can_it_fail (\fail -> body_fn fail `thenDs` \ body -> + encl_fn body) + + +mkCoLetsMatchResult :: [CoreBind] -> MatchResult -> MatchResult +mkCoLetsMatchResult binds match_result + = adjustMatchResult (mkDsLets binds) match_result + + +mkGuardedMatchResult :: CoreExpr -> MatchResult -> MatchResult +mkGuardedMatchResult pred_expr (MatchResult can_it_fail body_fn) + = MatchResult CanFail (\fail -> body_fn fail `thenDs` \ body -> + returnDs (mkIfThenElse pred_expr body fail)) + +mkCoPrimCaseMatchResult :: Id -- Scrutinee + -> [(Literal, MatchResult)] -- Alternatives + -> MatchResult +mkCoPrimCaseMatchResult var match_alts + = MatchResult CanFail mk_case where - -- Common stuff - scrut_ty = idType var - (tycon, tycon_arg_tys, _) = splitAlgTyConApp scrut_ty + mk_case fail + = mapDs (mk_alt fail) match_alts `thenDs` \ alts -> + returnDs (Case (Var var) var ((DEFAULT, [], fail) : alts)) - -- Stuff for newtype - (con_id, arg_ids, match_result) = head alts - arg_id = head arg_ids - coercion_bind = NonRec arg_id (Coerce (CoerceOut con_id) - (idType arg_id) - (Var var)) - newtype_sanity = null (tail alts) && null (tail arg_ids) + mk_alt fail (lit, MatchResult _ body_fn) = body_fn fail `thenDs` \ body -> + returnDs (LitAlt lit, [], body) - -- Stuff for data types - data_cons = tyConDataCons tycon - un_mentioned_constructors - = uniqSetToList (mkUniqSet data_cons `minusUniqSet` mkUniqSet [ con | (con, _, _) <- alts] ) +mkCoAlgCaseMatchResult :: Id -- Scrutinee + -> [(DataCon, [CoreBndr], MatchResult)] -- Alternatives + -> MatchResult - match_results = [match_result | (_,_,match_result) <- alts] - (MatchResult _ ty1 _ : _) = match_results - can_any_alt_fail = foldr1 orFail [can_it_fail | MatchResult can_it_fail _ _ <- match_results] +mkCoAlgCaseMatchResult var match_alts + | isNewTyCon tycon -- Newtype case; use a let + = ASSERT( null (tail match_alts) && null (tail arg_ids) ) + mkCoLetsMatchResult [NonRec arg_id newtype_rhs] match_result - mk_case alts deflt_fn fail_expr - = Case (Var var) (AlgAlts final_alts (deflt_fn fail_expr)) - where - final_alts = [ (con, args, body_fn fail_expr) - | (con, args, MatchResult _ _ body_fn) <- alts - ] + | isPArrFakeAlts match_alts -- Sugared parallel array; use a literal case + = MatchResult CanFail mk_parrCase + + | otherwise -- Datatype case; use a case + = MatchResult fail_flag mk_case + where + -- Common stuff + scrut_ty = idType var + tycon = tcTyConAppTyCon scrut_ty -- Newtypes must be opaque here + -- Stuff for newtype + (_, arg_ids, match_result) = head match_alts + arg_id = head arg_ids + newtype_rhs = mkNewTypeBody tycon (idType arg_id) (Var var) + + -- Stuff for data types + data_cons = tyConDataCons tycon + match_results = [match_result | (_,_,match_result) <- match_alts] -combineMatchResults :: MatchResult -> MatchResult -> DsM MatchResult -combineMatchResults (MatchResult CanFail ty1 body_fn1) - (MatchResult can_it_fail2 ty2 body_fn2) - = mkFailurePair ty1 `thenDs` \ (bind_fn, duplicatable_expr) -> - let - new_body_fn1 = \body1 -> Let (bind_fn body1) (body_fn1 duplicatable_expr) - new_body_fn2 = \body2 -> new_body_fn1 (body_fn2 body2) - in - returnDs (MatchResult can_it_fail2 ty1 new_body_fn2) + fail_flag | exhaustive_case + = foldr1 orFail [can_it_fail | MatchResult can_it_fail _ <- match_results] + | otherwise + = CanFail -combineMatchResults match_result1@(MatchResult CantFail ty body_fn1) - match_result2 - = returnDs match_result1 + wild_var = mkWildId (idType var) + mk_case fail = mapDs (mk_alt fail) match_alts `thenDs` \ alts -> + returnDs (Case (Var var) wild_var (mk_default fail ++ alts)) + mk_alt fail (con, args, MatchResult _ body_fn) + = body_fn fail `thenDs` \ body -> + getUniquesDs `thenDs` \ us -> + returnDs (mkReboxingAlt us con args body) --- The difference in combineGRHSMatchResults is that there is no --- need to let-bind to avoid code duplication -combineGRHSMatchResults :: MatchResult -> MatchResult -> DsM MatchResult -combineGRHSMatchResults (MatchResult CanFail ty1 body_fn1) - (MatchResult can_it_fail ty2 body_fn2) - = returnDs (MatchResult can_it_fail ty1 (\ body -> body_fn1 (body_fn2 body))) + mk_default fail | exhaustive_case = [] + | otherwise = [(DEFAULT, [], fail)] -combineGRHSMatchResults match_result1 match_result2 - = -- Delegate to avoid duplication of code - combineMatchResults match_result1 match_result2 + un_mentioned_constructors + = mkUniqSet data_cons `minusUniqSet` mkUniqSet [ con | (con, _, _) <- match_alts] + exhaustive_case = isEmptyUniqSet un_mentioned_constructors + + -- Stuff for parallel arrays + -- + -- * the following is to desugar cases over fake constructors for + -- parallel arrays, which are introduced by `tidy1' in the `PArrPat' + -- case + -- + -- Concerning `isPArrFakeAlts': + -- + -- * it is *not* sufficient to just check the type of the type + -- constructor, as we have to be careful not to confuse the real + -- representation of parallel arrays with the fake constructors; + -- moreover, a list of alternatives must not mix fake and real + -- constructors (this is checked earlier on) + -- + -- FIXME: We actually go through the whole list and make sure that + -- either all or none of the constructors are fake parallel + -- array constructors. This is to spot equations that mix fake + -- constructors with the real representation defined in + -- `PrelPArr'. It would be nicer to spot this situation + -- earlier and raise a proper error message, but it can really + -- only happen in `PrelPArr' anyway. + -- + isPArrFakeAlts [(dcon, _, _)] = isPArrFakeCon dcon + isPArrFakeAlts ((dcon, _, _):alts) = + case (isPArrFakeCon dcon, isPArrFakeAlts alts) of + (True , True ) -> True + (False, False) -> False + _ -> + panic "DsUtils: You may not mix `[:...:]' with `PArr' patterns" + -- + mk_parrCase fail = + dsLookupGlobalId lengthPName `thenDs` \lengthP -> + unboxAlt `thenDs` \alt -> + returnDs (Case (len lengthP) (mkWildId intTy) [alt]) + where + elemTy = case splitTyConApp (idType var) of + (_, [elemTy]) -> elemTy + _ -> panic panicMsg + panicMsg = "DsUtils.mkCoAlgCaseMatchResult: not a parallel array?" + len lengthP = mkApps (Var lengthP) [Type elemTy, Var var] + -- + unboxAlt = + newSysLocalDs intPrimTy `thenDs` \l -> + dsLookupGlobalId indexPName `thenDs` \indexP -> + mapDs (mkAlt indexP) match_alts `thenDs` \alts -> + returnDs (DataAlt intDataCon, [l], (Case (Var l) wild (dft : alts))) + where + wild = mkWildId intPrimTy + dft = (DEFAULT, [], fail) + -- + -- each alternative matches one array length (corresponding to one + -- fake array constructor), so the match is on a literal; each + -- alternative's body is extended by a local binding for each + -- constructor argument, which are bound to array elements starting + -- with the first + -- + mkAlt indexP (con, args, MatchResult _ bodyFun) = + bodyFun fail `thenDs` \body -> + returnDs (LitAlt lit, [], mkDsLets binds body) + where + lit = MachInt $ toInteger (dataConSourceArity con) + binds = [NonRec arg (indexExpr i) | (i, arg) <- zip [1..] args] + -- + indexExpr i = mkApps (Var indexP) [Type elemTy, Var var, mkIntExpr i] \end{code} + %************************************************************************ %* * -\subsection[dsExprToAtom]{Take an expression and produce an atom} +\subsection{Desugarer's versions of some Core functions} %* * %************************************************************************ \begin{code} -dsArgToAtom :: DsCoreArg -- The argument expression - -> (CoreArg -> DsM CoreExpr) -- Something taking the argument *atom*, - -- and delivering an expression E - -> DsM CoreExpr -- Either E or let x=arg-expr in E - -dsArgToAtom (TyArg t) continue_with = continue_with (TyArg t) -dsArgToAtom (LitArg l) continue_with = continue_with (LitArg l) -dsArgToAtom (VarArg arg) continue_with = dsExprToAtomGivenTy arg (coreExprType arg) continue_with - -dsExprToAtomGivenTy - :: CoreExpr -- The argument expression - -> Type -- Type of the argument - -> (CoreArg -> DsM CoreExpr) -- Something taking the argument *atom*, - -- and delivering an expression E - -> DsM CoreExpr -- Either E or let x=arg-expr in E - -dsExprToAtomGivenTy (Var v) arg_ty continue_with = continue_with (VarArg v) -dsExprToAtomGivenTy (Lit v) arg_ty continue_with = continue_with (LitArg v) -dsExprToAtomGivenTy arg_expr arg_ty continue_with - = newSysLocalDs arg_ty `thenDs` \ arg_id -> - continue_with (VarArg arg_id) `thenDs` \ body -> - returnDs ( - if isUnpointedType arg_ty - then Case arg_expr (PrimAlts [] (BindDefault arg_id body)) - else Let (NonRec arg_id arg_expr) body - ) - -dsArgsToAtoms :: [DsCoreArg] - -> ([CoreArg] -> DsM CoreExpr) - -> DsM CoreExpr - -dsArgsToAtoms [] continue_with = continue_with [] - -dsArgsToAtoms (arg:args) continue_with - = dsArgToAtom arg $ \ arg_atom -> - dsArgsToAtoms args $ \ arg_atoms -> - continue_with (arg_atom:arg_atoms) +mkErrorAppDs :: Id -- The error function + -> Type -- Type to which it should be applied + -> String -- The error message string to pass + -> DsM CoreExpr + +mkErrorAppDs err_id ty msg + = getSrcLocDs `thenDs` \ src_loc -> + let + full_msg = showSDoc (hcat [ppr src_loc, text "|", text msg]) + core_msg = Lit (MachStr (mkFastString (stringToUtf8 full_msg))) + in + returnDs (mkApps (Var err_id) [Type ty, core_msg]) \end{code} -%************************************************************************ + +************************************************************* %* * -\subsection{Desugarer's versions of some Core functions} +\subsection{Making literals} %* * %************************************************************************ \begin{code} -type DsCoreArg = GenCoreArg CoreExpr{-NB!-} Unused +mkCharExpr :: Int -> CoreExpr -- Returns C# c :: Int +mkIntExpr :: Integer -> CoreExpr -- Returns I# i :: Int +mkIntegerExpr :: Integer -> DsM CoreExpr -- Result :: Integer +mkStringLit :: String -> DsM CoreExpr -- Result :: String +mkStringLitFS :: FastString -> DsM CoreExpr -- Result :: String + +mkIntExpr i = mkConApp intDataCon [mkIntLit i] +mkCharExpr c = mkConApp charDataCon [mkLit (MachChar c)] + +mkIntegerExpr i + | inIntRange i -- Small enough, so start from an Int + = returnDs (mkSmallIntegerLit i) + +-- Special case for integral literals with a large magnitude: +-- They are transformed into an expression involving only smaller +-- integral literals. This improves constant folding. + + | otherwise -- Big, so start from a string + = dsLookupGlobalId plusIntegerName `thenDs` \ plus_id -> + dsLookupGlobalId timesIntegerName `thenDs` \ times_id -> + let + plus a b = Var plus_id `App` a `App` b + times a b = Var times_id `App` a `App` b + + -- Transform i into (x1 + (x2 + (x3 + (...) * b) * b) * b) with abs xi <= b + horner :: Integer -> Integer -> CoreExpr + horner b i | abs q <= 1 = if r == 0 || r == i + then mkSmallIntegerLit i + else mkSmallIntegerLit r `plus` mkSmallIntegerLit (i-r) + | r == 0 = horner b q `times` mkSmallIntegerLit b + | otherwise = mkSmallIntegerLit r `plus` (horner b q `times` mkSmallIntegerLit b) + where + (q,r) = i `quotRem` b -mkAppDs :: CoreExpr -> [DsCoreArg] -> DsM CoreExpr -mkConDs :: Id -> [DsCoreArg] -> DsM CoreExpr -mkPrimDs :: PrimOp -> [DsCoreArg] -> DsM CoreExpr + in + returnDs (horner tARGET_MAX_INT i) -mkAppDs fun args - = dsArgsToAtoms args $ \ atoms -> - returnDs (mkGenApp fun atoms) +mkSmallIntegerLit i = mkConApp smallIntegerDataCon [mkIntLit i] -mkConDs con args - = dsArgsToAtoms args $ \ atoms -> - returnDs (Con con atoms) +mkStringLit str = mkStringLitFS (mkFastString str) -mkPrimDs op args - = dsArgsToAtoms args $ \ atoms -> - returnDs (Prim op atoms) -\end{code} +mkStringLitFS str + | nullFastString str + = returnDs (mkNilExpr charTy) -\begin{code} -showForErr :: Outputable a => a -> String -- Boring but useful -showForErr thing = showSDoc (ppr thing) + | lengthFS str == 1 + = let + the_char = mkCharExpr (headIntFS str) + in + returnDs (mkConsExpr charTy the_char (mkNilExpr charTy)) -mkErrorAppDs :: Id -- The error function - -> Type -- Type to which it should be applied - -> String -- The error message string to pass - -> DsM CoreExpr + | all safeChar int_chars + = dsLookupGlobalId unpackCStringName `thenDs` \ unpack_id -> + returnDs (App (Var unpack_id) (Lit (MachStr str))) -mkErrorAppDs err_id ty msg - = getSrcLocDs `thenDs` \ src_loc -> - let - full_msg = showSDoc (hcat [ppr src_loc, text "|", text msg]) - msg_lit = NoRepStr (_PK_ full_msg) - in - returnDs (mkApp (Var err_id) [ty] [LitArg msg_lit]) + | otherwise + = dsLookupGlobalId unpackCStringUtf8Name `thenDs` \ unpack_id -> + returnDs (App (Var unpack_id) (Lit (MachStr (mkFastString (intsToUtf8 int_chars))))) + + where + int_chars = unpackIntFS str + safeChar c = c >= 1 && c <= 0xFF \end{code} + %************************************************************************ %* * \subsection[mkSelectorBind]{Make a selector bind} @@ -349,10 +512,10 @@ mkErrorAppDs err_id ty msg This is used in various places to do with lazy patterns. For each binder $b$ in the pattern, we create a binding: - +\begin{verbatim} b = case v of pat' -> b' - -where pat' is pat with each binder b cloned into b'. +\end{verbatim} +where @pat'@ is @pat@ with each binder @b@ cloned into @b'@. ToDo: making these bindings should really depend on whether there's much work to be done per binding. If the pattern is complex, it @@ -372,71 +535,120 @@ mkSelectorBinds (VarPat v) val_expr = returnDs [(v, val_expr)] mkSelectorBinds pat val_expr - | length binders == 1 || is_simple_pat pat - = newSysLocalDs (coreExprType val_expr) `thenDs` \ val_var -> - - -- For the error message we don't use mkErrorAppDs to avoid - -- duplicating the string literal each time - newSysLocalDs stringTy `thenDs` \ msg_var -> - getSrcLocDs `thenDs` \ src_loc -> - let - full_msg = showSDoc (hcat [ppr src_loc, text "|", ppr pat]) - msg_lit = NoRepStr (_PK_ full_msg) - in - mapDs (mk_bind val_var msg_var) binders `thenDs` \ binds -> + | isSingleton binders || is_simple_pat pat + = -- Given p = e, where p binds x,y + -- we are going to make + -- v = p (where v is fresh) + -- x = case v of p -> x + -- y = case v of p -> x + + -- Make up 'v' + -- NB: give it the type of *pattern* p, not the type of the *rhs* e. + -- This does not matter after desugaring, but there's a subtle + -- issue with implicit parameters. Consider + -- (x,y) = ?i + -- Then, ?i is given type {?i :: Int}, a SourceType, which is opaque + -- to the desugarer. (Why opaque? Because newtypes have to be. Why + -- does it get that type? So that when we abstract over it we get the + -- right top-level type (?i::Int) => ...) + -- + -- So to get the type of 'v', use the pattern not the rhs. Often more + -- efficient too. + newSysLocalDs (hsPatType pat) `thenDs` \ val_var -> + + -- For the error message we make one error-app, to avoid duplication. + -- But we need it at different types... so we use coerce for that + mkErrorAppDs iRREFUT_PAT_ERROR_ID + unitTy (showSDoc (ppr pat)) `thenDs` \ err_expr -> + newSysLocalDs unitTy `thenDs` \ err_var -> + mapDs (mk_bind val_var err_var) binders `thenDs` \ binds -> returnDs ( (val_var, val_expr) : - (msg_var, Lit msg_lit) : + (err_var, err_expr) : binds ) | otherwise - = mkErrorAppDs iRREFUT_PAT_ERROR_ID tuple_ty (showSDoc (ppr pat)) `thenDs` \ error_expr -> - matchSimply val_expr LetMatch pat tuple_ty local_tuple error_expr `thenDs` \ tuple_expr -> - newSysLocalDs tuple_ty `thenDs` \ tuple_var -> + = mkErrorAppDs iRREFUT_PAT_ERROR_ID + tuple_ty (showSDoc (ppr pat)) `thenDs` \ error_expr -> + matchSimply val_expr PatBindRhs pat local_tuple error_expr `thenDs` \ tuple_expr -> + newSysLocalDs tuple_ty `thenDs` \ tuple_var -> let - mk_tup_bind binder = (binder, mkTupleSelector binders binder (Var tuple_var)) + mk_tup_bind binder + = (binder, mkTupleSelector binders binder tuple_var (Var tuple_var)) in returnDs ( (tuple_var, tuple_expr) : map mk_tup_bind binders ) where - binders = collectTypedPatBinders pat + binders = collectPatBinders pat local_tuple = mkTupleExpr binders - tuple_ty = coreExprType local_tuple + tuple_ty = exprType local_tuple - mk_bind scrut_var msg_var bndr_var - -- (mk_bind sv bv) generates - -- bv = case sv of { pat -> bv; other -> error-msg } + mk_bind scrut_var err_var bndr_var + -- (mk_bind sv err_var) generates + -- bv = case sv of { pat -> bv; other -> coerce (type-of-bv) err_var } -- Remember, pat binds bv - = matchSimply (Var scrut_var) LetMatch pat binder_ty + = matchSimply (Var scrut_var) PatBindRhs pat (Var bndr_var) error_expr `thenDs` \ rhs_expr -> returnDs (bndr_var, rhs_expr) where - binder_ty = idType bndr_var - error_expr = mkApp (Var iRREFUT_PAT_ERROR_ID) [binder_ty] [VarArg msg_var] + error_expr = mkCoerce (idType bndr_var) (Var err_var) - is_simple_pat (TuplePat ps) = all is_triv_pat ps - is_simple_pat (ConPat _ _ ps) = all is_triv_pat ps - is_simple_pat (VarPat _) = True - is_simple_pat (ConOpPat p1 _ p2 _) = is_triv_pat p1 && is_triv_pat p2 - is_simple_pat (RecPat _ _ ps) = and [is_triv_pat p | (_,p,_) <- ps] - is_simple_pat other = False + is_simple_pat (TuplePat ps Boxed) = all is_triv_pat ps + is_simple_pat (ConPatOut _ ps _ _ _) = all is_triv_pat (hsConArgs ps) + is_simple_pat (VarPat _) = True + is_simple_pat (ParPat p) = is_simple_pat p + is_simple_pat other = False is_triv_pat (VarPat v) = True is_triv_pat (WildPat _) = True + is_triv_pat (ParPat p) = is_triv_pat p is_triv_pat other = False \end{code} -@mkTupleExpr@ builds a tuple; the inverse to @mkTupleSelector@. If it -has only one element, it is the identity function. +%************************************************************************ +%* * + Tuples +%* * +%************************************************************************ + +@mkTupleExpr@ builds a tuple; the inverse to @mkTupleSelector@. + +* If it has only one element, it is the identity function. + +* If there are more elements than a big tuple can have, it nests + the tuples. + +Nesting policy. Better a 2-tuple of 10-tuples (3 objects) than +a 10-tuple of 2-tuples (11 objects). So we want the leaves to be big. \begin{code} mkTupleExpr :: [Id] -> CoreExpr +mkTupleExpr ids = mkBigCoreTup (map Var ids) + +-- corresponding type +mkTupleType :: [Id] -> Type +mkTupleType ids = mkBigTuple mkCoreTupTy (map idType ids) + +mkBigCoreTup :: [CoreExpr] -> CoreExpr +mkBigCoreTup = mkBigTuple mkCoreTup -mkTupleExpr [] = Con unitDataCon [] -mkTupleExpr [id] = Var id -mkTupleExpr ids = mkCon (tupleCon (length ids)) - (map idType ids) - [ VarArg i | i <- ids ] +mkBigTuple :: ([a] -> a) -> [a] -> a +mkBigTuple small_tuple as = mk_big_tuple (chunkify as) + where + -- Each sub-list is short enough to fit in a tuple + mk_big_tuple [as] = small_tuple as + mk_big_tuple as_s = mk_big_tuple (chunkify (map small_tuple as_s)) + +chunkify :: [a] -> [[a]] +-- The sub-lists of the result all have length <= mAX_TUPLE_SIZE +-- But there may be more than mAX_TUPLE_SIZE sub-lists +chunkify xs + | n_xs <= mAX_TUPLE_SIZE = {- pprTrace "Small" (ppr n_xs) -} [xs] + | otherwise = {- pprTrace "Big" (ppr n_xs) -} (split xs) + where + n_xs = length xs + split [] = [] + split xs = take mAX_TUPLE_SIZE xs : split (drop mAX_TUPLE_SIZE xs) \end{code} @@ -449,19 +661,147 @@ are in scope. If there is just one id in the ``tuple'', then the selector is just the identity. +If it's big, it does nesting + mkTupleSelector [a,b,c,d] b v e + = case e of v { + (p,q) -> case p of p { + (a,b) -> b }} +We use 'tpl' vars for the p,q, since shadowing does not matter. + +In fact, it's more convenient to generate it innermost first, getting + + case (case e of v + (p,q) -> p) of p + (a,b) -> b + \begin{code} -mkTupleSelector :: [Id] -- The tuple args - -> Id -- The selected one - -> CoreExpr -- Scrutinee +mkTupleSelector :: [Id] -- The tuple args + -> Id -- The selected one + -> Id -- A variable of the same type as the scrutinee + -> CoreExpr -- Scrutinee -> CoreExpr -mkTupleSelector [var] should_be_the_same_var scrut +mkTupleSelector vars the_var scrut_var scrut + = mk_tup_sel (chunkify vars) the_var + where + mk_tup_sel [vars] the_var = mkCoreSel vars the_var scrut_var scrut + mk_tup_sel vars_s the_var = mkCoreSel group the_var tpl_v $ + mk_tup_sel (chunkify tpl_vs) tpl_v + where + tpl_tys = [mkCoreTupTy (map idType gp) | gp <- vars_s] + tpl_vs = mkTemplateLocals tpl_tys + [(tpl_v, group)] = [(tpl,gp) | (tpl,gp) <- zipEqual "mkTupleSelector" tpl_vs vars_s, + the_var `elem` gp ] +\end{code} + +A generalization of @mkTupleSelector@, allowing the body +of the case to be an arbitrary expression. + +If the tuple is big, it is nested: + + mkTupleCase uniqs [a,b,c,d] body v e + = case e of v { (p,q) -> + case p of p { (a,b) -> + case q of q { (c,d) -> + body }}} + +To avoid shadowing, we use uniqs to invent new variables p,q. + +ToDo: eliminate cases where none of the variables are needed. + +\begin{code} +mkTupleCase + :: UniqSupply -- for inventing names of intermediate variables + -> [Id] -- the tuple args + -> CoreExpr -- body of the case + -> Id -- a variable of the same type as the scrutinee + -> CoreExpr -- scrutinee + -> CoreExpr + +mkTupleCase uniqs vars body scrut_var scrut + = mk_tuple_case uniqs (chunkify vars) body + where + mk_tuple_case us [vars] body + = mkSmallTupleCase vars body scrut_var scrut + mk_tuple_case us vars_s body + = let + (us', vars', body') = foldr one_tuple_case (us, [], body) vars_s + in + mk_tuple_case us' (chunkify vars') body' + one_tuple_case chunk_vars (us, vs, body) + = let + (us1, us2) = splitUniqSupply us + scrut_var = mkSysLocal FSLIT("ds") (uniqFromSupply us1) + (mkCoreTupTy (map idType chunk_vars)) + body' = mkSmallTupleCase chunk_vars body scrut_var (Var scrut_var) + in (us2, scrut_var:vs, body') +\end{code} + +The same, but with a tuple small enough not to need nesting. + +\begin{code} +mkSmallTupleCase + :: [Id] -- the tuple args + -> CoreExpr -- body of the case + -> Id -- a variable of the same type as the scrutinee + -> CoreExpr -- scrutinee + -> CoreExpr + +mkSmallTupleCase [var] body _scrut_var scrut + = bindNonRec var scrut body +mkSmallTupleCase vars body scrut_var scrut + = Case scrut scrut_var [(DataAlt (tupleCon Boxed (length vars)), vars, body)] +\end{code} + +%************************************************************************ +%* * +\subsection[mkFailurePair]{Code for pattern-matching and other failures} +%* * +%************************************************************************ + +Call the constructor Ids when building explicit lists, so that they +interact well with rules. + +\begin{code} +mkNilExpr :: Type -> CoreExpr +mkNilExpr ty = mkConApp nilDataCon [Type ty] + +mkConsExpr :: Type -> CoreExpr -> CoreExpr -> CoreExpr +mkConsExpr ty hd tl = mkConApp consDataCon [Type ty, hd, tl] + +mkListExpr :: Type -> [CoreExpr] -> CoreExpr +mkListExpr ty xs = foldr (mkConsExpr ty) (mkNilExpr ty) xs + + +-- The next three functions make tuple types, constructors and selectors, +-- with the rule that a 1-tuple is represented by the thing itselg +mkCoreTupTy :: [Type] -> Type +mkCoreTupTy [ty] = ty +mkCoreTupTy tys = mkTupleTy Boxed (length tys) tys + +mkCoreTup :: [CoreExpr] -> CoreExpr +-- Builds exactly the specified tuple. +-- No fancy business for big tuples +mkCoreTup [] = Var unitDataConId +mkCoreTup [c] = c +mkCoreTup cs = mkConApp (tupleCon Boxed (length cs)) + (map (Type . exprType) cs ++ cs) + +mkCoreSel :: [Id] -- The tuple args + -> Id -- The selected one + -> Id -- A variable of the same type as the scrutinee + -> CoreExpr -- Scrutinee + -> CoreExpr +-- mkCoreSel [x,y,z] x v e +-- ===> case e of v { (x,y,z) -> x +mkCoreSel [var] should_be_the_same_var scrut_var scrut = ASSERT(var == should_be_the_same_var) scrut -mkTupleSelector vars the_var scrut - = ASSERT( not (null vars) ) - Case scrut (AlgAlts [(tupleCon (length vars), vars, Var the_var)] NoDefault) +mkCoreSel vars the_var scrut_var scrut + = ASSERT( notNull vars ) + Case scrut scrut_var + [(DataAlt (tupleCon Boxed (length vars)), vars, Var the_var)] \end{code} @@ -485,7 +825,7 @@ fail-variable, and use that variable if the thing fails: Then \begin{itemize} \item -If the case can't fail, then there'll be no mention of fail.33, and the +If the case can't fail, then there'll be no mention of @fail.33@, and the simplifier will later discard it. \item @@ -496,7 +836,7 @@ Only if it is used more than once will the let-binding remain. \end{itemize} There's a problem when the result of the case expression is of -unboxed type. Then the type of fail.33 is unboxed too, and +unboxed type. Then the type of @fail.33@ is unboxed too, and there is every chance that someone will change the let into a case: \begin{verbatim} case error "Help" of @@ -517,27 +857,26 @@ for the primitive case: p4 -> ... \end{verbatim} -Now fail.33 is a function, so it can be let-bound. +Now @fail.33@ is a function, so it can be let-bound. \begin{code} -mkFailurePair :: Type -- Result type of the whole case expression - -> DsM (CoreExpr -> CoreBinding, - -- Binds the newly-created fail variable +mkFailurePair :: CoreExpr -- Result type of the whole case expression + -> DsM (CoreBind, -- Binds the newly-created fail variable -- to either the expression or \ _ -> expression CoreExpr) -- Either the fail variable, or fail variable -- applied to unit tuple -mkFailurePair ty - | isUnpointedType ty - = newFailLocalDs (voidTy `mkFunTy` ty) `thenDs` \ fail_fun_var -> - newSysLocalDs voidTy `thenDs` \ fail_fun_arg -> - returnDs (\ body -> - NonRec fail_fun_var (Lam (ValBinder fail_fun_arg) body), - App (Var fail_fun_var) (VarArg voidId)) +mkFailurePair expr + | isUnLiftedType ty + = newFailLocalDs (unitTy `mkFunTy` ty) `thenDs` \ fail_fun_var -> + newSysLocalDs unitTy `thenDs` \ fail_fun_arg -> + returnDs (NonRec fail_fun_var (Lam fail_fun_arg expr), + App (Var fail_fun_var) (Var unitDataConId)) | otherwise = newFailLocalDs ty `thenDs` \ fail_var -> - returnDs (\ body -> NonRec fail_var body, Var fail_var) + returnDs (NonRec fail_var expr, Var fail_var) + where + ty = exprType expr \end{code} -