X-Git-Url: http://git.megacz.com/?a=blobdiff_plain;f=ghc%2Fcompiler%2FhsSyn%2FConvert.lhs;h=ddc11adb135eae8e2e7a89229c36c9fbe4d93f22;hb=662cb69b4a361a22862a0c7acd0150cad0a830c0;hp=e6e3a2a3cd38fa17edf021ced4ef3b59156f7faa;hpb=cdb01ba27de9a4aeb7cff6a3682a38c482ca6ae2;p=ghc-hetmet.git diff --git a/ghc/compiler/hsSyn/Convert.lhs b/ghc/compiler/hsSyn/Convert.lhs index e6e3a2a..ddc11ad 100644 --- a/ghc/compiler/hsSyn/Convert.lhs +++ b/ghc/compiler/hsSyn/Convert.lhs @@ -33,8 +33,10 @@ import TyCon ( DataConDetails(..) ) import Type ( Type ) import BasicTypes( Boxity(..), RecFlag(Recursive), NewOrData(..), StrictnessMark(..) ) -import ForeignCall ( Safety(..), CCallConv(..), CCallTarget(..) ) -import HsDecls ( CImportSpec(..), ForeignImport(..), ForeignDecl(..) ) +import ForeignCall ( Safety(..), CCallConv(..), CCallTarget(..), + CExportSpec(..)) +import HsDecls ( CImportSpec(..), ForeignImport(..), ForeignExport(..), + ForeignDecl(..) ) import FastString( FastString, mkFastString, nilFS ) import Char ( ord, isAscii, isAlphaNum, isAlpha ) import List ( partition ) @@ -46,49 +48,55 @@ import Outputable convertToHsDecls :: [Meta.Dec] -> [Either (HsDecl RdrName) Message] convertToHsDecls ds = map cvt_top ds +mk_con con = case con of + NormalC c strtys + -> ConDecl (cName c) noExistentials noContext + (PrefixCon (map mk_arg strtys)) loc0 + RecC c varstrtys + -> ConDecl (cName c) noExistentials noContext + (RecCon (map mk_id_arg varstrtys)) loc0 + InfixC st1 c st2 + -> ConDecl (cName c) noExistentials noContext + (InfixCon (mk_arg st1) (mk_arg st2)) loc0 + where + mk_arg (IsStrict, ty) = BangType MarkedUserStrict (cvtType ty) + mk_arg (NotStrict, ty) = BangType NotMarkedStrict (cvtType ty) + + mk_id_arg (i, IsStrict, ty) + = (vName i, BangType MarkedUserStrict (cvtType ty)) + mk_id_arg (i, NotStrict, ty) + = (vName i, BangType NotMarkedStrict (cvtType ty)) + +mk_derivs [] = Nothing +mk_derivs cs = Just [HsClassP (tconName c) [] | c <- cs] cvt_top :: Meta.Dec -> Either (HsDecl RdrName) Message -cvt_top d@(Val _ _ _) = Left $ ValD (cvtd d) -cvt_top d@(Fun _ _) = Left $ ValD (cvtd d) +cvt_top d@(Meta.ValD _ _ _) = Left $ Hs.ValD (cvtd d) +cvt_top d@(Meta.FunD _ _) = Left $ Hs.ValD (cvtd d) -cvt_top (TySyn tc tvs rhs) +cvt_top (TySynD tc tvs rhs) = Left $ TyClD (TySynonym (tconName tc) (cvt_tvs tvs) (cvtType rhs) loc0) -cvt_top (Data tc tvs constrs derivs) +cvt_top (DataD ctxt tc tvs constrs derivs) = Left $ TyClD (mkTyData DataType - (noContext, tconName tc, cvt_tvs tvs) + (cvt_context ctxt, tconName tc, cvt_tvs tvs) (DataCons (map mk_con constrs)) (mk_derivs derivs) loc0) - where - mk_con (Constr c strtys) - = ConDecl (cName c) noExistentials noContext - (PrefixCon (map mk_arg strtys)) loc0 - mk_con (RecConstr c varstrtys) - = ConDecl (cName c) noExistentials noContext - (RecCon (map mk_id_arg varstrtys)) loc0 - mk_con (InfixConstr st1 c st2) - = ConDecl (cName c) noExistentials noContext - (InfixCon (mk_arg st1) (mk_arg st2)) loc0 - mk_arg (Strict, ty) = BangType MarkedUserStrict (cvtType ty) - mk_arg (NonStrict, ty) = BangType NotMarkedStrict (cvtType ty) - - mk_id_arg (i, Strict, ty) - = (vName i, BangType MarkedUserStrict (cvtType ty)) - mk_id_arg (i, NonStrict, ty) - = (vName i, BangType NotMarkedStrict (cvtType ty)) - - mk_derivs [] = Nothing - mk_derivs cs = Just [HsClassP (tconName c) [] | c <- cs] +cvt_top (NewtypeD ctxt tc tvs constr derivs) + = Left $ TyClD (mkTyData NewType + (cvt_context ctxt, tconName tc, cvt_tvs tvs) + (DataCons [mk_con constr]) + (mk_derivs derivs) loc0) -cvt_top (Class ctxt cl tvs decs) +cvt_top (ClassD ctxt cl tvs decs) = Left $ TyClD (mkClassDecl (cvt_context ctxt, tconName cl, cvt_tvs tvs) - noFunDeps - sigs (Just binds) loc0) + noFunDeps sigs + (Just binds) loc0) where (binds,sigs) = cvtBindsAndSigs decs -cvt_top (Instance tys ty decs) +cvt_top (InstanceD tys ty decs) = Left $ InstD (InstDecl inst_ty binds sigs Nothing loc0) where (binds, sigs) = cvtBindsAndSigs decs @@ -96,9 +104,9 @@ cvt_top (Instance tys ty decs) (cvt_context tys) (HsPredTy (cvt_pred ty)) -cvt_top (Proto nm typ) = Left $ SigD (Sig (vName nm) (cvtType typ) loc0) +cvt_top (Meta.SigD nm typ) = Left $ Hs.SigD (Sig (vName nm) (cvtType typ) loc0) -cvt_top (Foreign (Import callconv safety from nm typ)) +cvt_top (ForeignD (ImportF callconv safety from nm typ)) = case parsed of Just (c_header, cis) -> let i = CImport callconv' safety' c_header nilFS cis @@ -114,6 +122,13 @@ cvt_top (Foreign (Import callconv safety from nm typ)) Threadsafe -> PlaySafe True parsed = parse_ccall_impent nm from +cvt_top (ForeignD (ExportF callconv as nm typ)) + = let e = CExport (CExportStatic (mkFastString as) callconv') + in Left $ ForD (ForeignExport (vName nm) (cvtType typ) e False loc0) + where callconv' = case callconv of + CCall -> CCallConv + StdCall -> StdCallConv + parse_ccall_impent :: String -> String -> Maybe (FastString, CImportSpec) parse_ccall_impent nm s = case lex_ccall_impent s of @@ -162,29 +177,31 @@ noFunDeps = [] convertToHsExpr :: Meta.Exp -> HsExpr RdrName convertToHsExpr = cvt -cvt (Var s) = HsVar (vName s) -cvt (Con s) = HsVar (cName s) -cvt (Lit l) +cvt (VarE s) = HsVar (vName s) +cvt (ConE s) = HsVar (cName s) +cvt (LitE l) | overloadedLit l = HsOverLit (cvtOverLit l) | otherwise = HsLit (cvtLit l) -cvt (App x y) = HsApp (cvt x) (cvt y) -cvt (Lam ps e) = HsLam (mkSimpleMatch (map cvtp ps) (cvt e) void loc0) -cvt (Tup [e]) = cvt e -cvt (Tup es) = ExplicitTuple(map cvt es) Boxed -cvt (Cond x y z) = HsIf (cvt x) (cvt y) (cvt z) loc0 -cvt (Let ds e) = HsLet (cvtdecs ds) (cvt e) -cvt (Case e ms) = HsCase (cvt e) (map cvtm ms) loc0 -cvt (Do ss) = HsDo DoExpr (cvtstmts ss) [] void loc0 -cvt (Comp ss) = HsDo ListComp (cvtstmts ss) [] void loc0 -cvt (ArithSeq dd) = ArithSeqIn (cvtdd dd) -cvt (ListExp xs) = ExplicitList void (map cvt xs) -cvt (Infix (Just x) s (Just y)) +cvt (AppE x y) = HsApp (cvt x) (cvt y) +cvt (LamE ps e) = HsLam (mkSimpleMatch (map cvtp ps) (cvt e) void loc0) +cvt (TupE [e]) = cvt e +cvt (TupE es) = ExplicitTuple(map cvt es) Boxed +cvt (CondE x y z) = HsIf (cvt x) (cvt y) (cvt z) loc0 +cvt (LetE ds e) = HsLet (cvtdecs ds) (cvt e) +cvt (CaseE e ms) = HsCase (cvt e) (map cvtm ms) loc0 +cvt (DoE ss) = HsDo DoExpr (cvtstmts ss) [] void loc0 +cvt (CompE ss) = HsDo ListComp (cvtstmts ss) [] void loc0 +cvt (ArithSeqE dd) = ArithSeqIn (cvtdd dd) +cvt (ListE xs) = ExplicitList void (map cvt xs) +cvt (InfixE (Just x) s (Just y)) = HsPar (OpApp (cvt x) (cvt s) undefined (cvt y)) -cvt (Infix Nothing s (Just y)) = SectionR (cvt s) (cvt y) -cvt (Infix (Just x) s Nothing ) = SectionL (cvt x) (cvt s) -cvt (Infix Nothing s Nothing ) = cvt s -- Can I indicate this is an infix thing? -cvt (SigExp e t) = ExprWithTySig (cvt e) (cvtType t) +cvt (InfixE Nothing s (Just y)) = SectionR (cvt s) (cvt y) +cvt (InfixE (Just x) s Nothing ) = SectionL (cvt x) (cvt s) +cvt (InfixE Nothing s Nothing ) = cvt s -- Can I indicate this is an infix thing? +cvt (SigE e t) = ExprWithTySig (cvt e) (cvtType t) +cvt (RecConE c flds) = RecordCon (cName c) (map (\(x,y) -> (vName x, cvt y)) flds) +cvt (RecUpdE e flds) = RecordUpd (cvt e) (map (\(x,y) -> (vName x, cvt y)) flds) cvtdecs :: [Meta.Dec] -> HsBinds RdrName cvtdecs [] = EmptyBinds @@ -197,7 +214,7 @@ cvtBindsAndSigs ds where (sigs, non_sigs) = partition sigP ds -cvtSig (Proto nm typ) = Sig (vName nm) (cvtType typ) loc0 +cvtSig (Meta.SigD nm typ) = Hs.Sig (vName nm) (cvtType typ) loc0 cvtds :: [Meta.Dec] -> MonoBinds RdrName cvtds [] = EmptyMonoBinds @@ -206,72 +223,76 @@ cvtds (d:ds) = AndMonoBinds (cvtd d) (cvtds ds) cvtd :: Meta.Dec -> MonoBinds RdrName -- Used only for declarations in a 'let/where' clause, -- not for top level decls -cvtd (Val (Pvar s) body ds) = FunMonoBind (vName s) False +cvtd (Meta.ValD (Meta.VarP s) body ds) = FunMonoBind (vName s) False [cvtclause (Clause [] body ds)] loc0 -cvtd (Fun nm cls) = FunMonoBind (vName nm) False (map cvtclause cls) loc0 -cvtd (Val p body ds) = PatMonoBind (cvtp p) (GRHSs (cvtguard body) +cvtd (FunD nm cls) = FunMonoBind (vName nm) False (map cvtclause cls) loc0 +cvtd (Meta.ValD p body ds) = PatMonoBind (cvtp p) (GRHSs (cvtguard body) (cvtdecs ds) void) loc0 cvtd x = panic "Illegal kind of declaration in where clause" -cvtclause :: Meta.Clause (Meta.Pat) (Meta.Exp) (Meta.Dec) -> Hs.Match RdrName +cvtclause :: Meta.Clause -> Hs.Match RdrName cvtclause (Clause ps body wheres) - = Match (map cvtp ps) Nothing (GRHSs (cvtguard body) (cvtdecs wheres) void) + = Hs.Match (map cvtp ps) Nothing (GRHSs (cvtguard body) (cvtdecs wheres) void) -cvtdd :: Meta.DDt -> ArithSeqInfo RdrName -cvtdd (Meta.From x) = (Hs.From (cvt x)) -cvtdd (Meta.FromThen x y) = (Hs.FromThen (cvt x) (cvt y)) -cvtdd (Meta.FromTo x y) = (Hs.FromTo (cvt x) (cvt y)) -cvtdd (Meta.FromThenTo x y z) = (Hs.FromThenTo (cvt x) (cvt y) (cvt z)) +cvtdd :: Range -> ArithSeqInfo RdrName +cvtdd (FromR x) = (From (cvt x)) +cvtdd (FromThenR x y) = (FromThen (cvt x) (cvt y)) +cvtdd (FromToR x y) = (FromTo (cvt x) (cvt y)) +cvtdd (FromThenToR x y z) = (FromThenTo (cvt x) (cvt y) (cvt z)) -cvtstmts :: [Meta.Stm] -> [Hs.Stmt RdrName] -cvtstmts [] = [] -- this is probably an error as every [stmt] should end with ResultStmt -cvtstmts [NoBindSt e] = [ResultStmt (cvt e) loc0] -- when its the last element use ResultStmt -cvtstmts (NoBindSt e : ss) = ExprStmt (cvt e) void loc0 : cvtstmts ss -cvtstmts (BindSt p e : ss) = BindStmt (cvtp p) (cvt e) loc0 : cvtstmts ss -cvtstmts (LetSt ds : ss) = LetStmt (cvtdecs ds) : cvtstmts ss -cvtstmts (ParSt dss : ss) = ParStmt(map cvtstmts dss) : cvtstmts ss +cvtstmts :: [Meta.Stmt] -> [Hs.Stmt RdrName] +cvtstmts [] = [] -- this is probably an error as every [stmt] should end with ResultStmt +cvtstmts [NoBindS e] = [ResultStmt (cvt e) loc0] -- when its the last element use ResultStmt +cvtstmts (NoBindS e : ss) = ExprStmt (cvt e) void loc0 : cvtstmts ss +cvtstmts (Meta.BindS p e : ss) = BindStmt (cvtp p) (cvt e) loc0 : cvtstmts ss +cvtstmts (Meta.LetS ds : ss) = LetStmt (cvtdecs ds) : cvtstmts ss +cvtstmts (Meta.ParS dss : ss) = ParStmt [(cvtstmts ds, undefined) | ds <- dss] : cvtstmts ss - -cvtm :: Meta.Mat -> Hs.Match RdrName -cvtm (Mat p body wheres) - = Match [cvtp p] Nothing (GRHSs (cvtguard body) (cvtdecs wheres) void) +cvtm :: Meta.Match -> Hs.Match RdrName +cvtm (Meta.Match p body wheres) + = Hs.Match [cvtp p] Nothing (GRHSs (cvtguard body) (cvtdecs wheres) void) -cvtguard :: Meta.Rhs -> [GRHS RdrName] -cvtguard (Guarded pairs) = map cvtpair pairs -cvtguard (Normal e) = [GRHS [ ResultStmt (cvt e) loc0 ] loc0] +cvtguard :: Meta.Body -> [GRHS RdrName] +cvtguard (GuardedB pairs) = map cvtpair pairs +cvtguard (NormalB e) = [GRHS [ ResultStmt (cvt e) loc0 ] loc0] cvtpair :: (Meta.Exp,Meta.Exp) -> GRHS RdrName -cvtpair (x,y) = GRHS [BindStmt truePat (cvt x) loc0, +cvtpair (x,y) = GRHS [Hs.BindStmt truePat (cvt x) loc0, ResultStmt (cvt y) loc0] loc0 cvtOverLit :: Lit -> HsOverLit -cvtOverLit (Integer i) = mkHsIntegral i -cvtOverLit (Rational r) = mkHsFractional r +cvtOverLit (IntegerL i) = mkHsIntegral i +cvtOverLit (RationalL r) = mkHsFractional r -- An Integer is like an an (overloaded) '3' in a Haskell source program -- Similarly 3.5 for fractionals cvtLit :: Lit -> HsLit -cvtLit (Char c) = HsChar (ord c) -cvtLit (String s) = HsString (mkFastString s) +cvtLit (IntPrimL i) = HsIntPrim i +cvtLit (FloatPrimL f) = HsFloatPrim f +cvtLit (DoublePrimL f) = HsDoublePrim f +cvtLit (CharL c) = HsChar (ord c) +cvtLit (StringL s) = HsString (mkFastString s) cvtp :: Meta.Pat -> Hs.Pat RdrName -cvtp (Plit l) +cvtp (Meta.LitP l) | overloadedLit l = NPatIn (cvtOverLit l) Nothing -- Not right for negative -- patterns; need to think -- about that! - | otherwise = LitPat (cvtLit l) -cvtp (Pvar s) = VarPat(vName s) -cvtp (Ptup [p]) = cvtp p -cvtp (Ptup ps) = TuplePat (map cvtp ps) Boxed -cvtp (Pcon s ps) = ConPatIn (cName s) (PrefixCon (map cvtp ps)) -cvtp (Ptilde p) = LazyPat (cvtp p) -cvtp (Paspat s p) = AsPat (vName s) (cvtp p) -cvtp Pwild = WildPat void + | otherwise = Hs.LitPat (cvtLit l) +cvtp (Meta.VarP s) = Hs.VarPat(vName s) +cvtp (TupP [p]) = cvtp p +cvtp (TupP ps) = TuplePat (map cvtp ps) Boxed +cvtp (ConP s ps) = ConPatIn (cName s) (PrefixCon (map cvtp ps)) +cvtp (TildeP p) = LazyPat (cvtp p) +cvtp (Meta.AsP s p) = AsPat (vName s) (cvtp p) +cvtp Meta.WildP = WildPat void +cvtp (RecP c fs) = ConPatIn (cName c) $ Hs.RecCon (map (\(s,p) -> (vName s,cvtp p)) fs) +cvtp (ListP ps) = ListPat (map cvtp ps) void ----------------------------------------------------------- -- Types and type variables @@ -282,43 +303,39 @@ cvt_tvs tvs = map (UserTyVar . tName) tvs cvt_context :: Cxt -> HsContext RdrName cvt_context tys = map cvt_pred tys -cvt_pred :: Typ -> HsPred RdrName +cvt_pred :: Meta.Type -> HsPred RdrName cvt_pred ty = case split_ty_app ty of - (Tcon (TconName tc), tys) -> HsClassP (tconName tc) (map cvtType tys) + (ConT tc, tys) -> HsClassP (tconName tc) (map cvtType tys) other -> panic "Malformed predicate" -cvtType :: Meta.Typ -> HsType RdrName +cvtType :: Meta.Type -> HsType RdrName cvtType ty = trans (root ty []) - where root (Tapp a b) zs = root a (cvtType b : zs) + where root (AppT a b) zs = root a (cvtType b : zs) root t zs = (t,zs) - trans (Tcon (Tuple n),args) | length args == n - = HsTupleTy (HsTupCon Boxed n) args - trans (Tcon Arrow, [x,y]) = HsFunTy x y - trans (Tcon List, [x]) = HsListTy x + trans (TupleT n,args) + | length args == n = HsTupleTy (HsTupCon Boxed n) args + | n == 0 = foldl HsAppTy (HsTyVar (tconName "()")) args + | otherwise = foldl HsAppTy (HsTyVar (tconName ("(" ++ replicate (n-1) ',' ++ ")"))) args + trans (ArrowT, [x,y]) = HsFunTy x y + trans (ListT, [x]) = HsListTy x - trans (Tvar nm, args) = foldl HsAppTy (HsTyVar (tName nm)) args - trans (Tcon tc, args) = foldl HsAppTy (HsTyVar (tc_name tc)) args + trans (VarT nm, args) = foldl HsAppTy (HsTyVar (tName nm)) args + trans (ConT tc, args) = foldl HsAppTy (HsTyVar (tconName tc)) args - trans (TForall tvs cxt ty, []) = mkHsForAllTy (Just (cvt_tvs tvs)) + trans (ForallT tvs cxt ty, []) = mkHsForAllTy (Just (cvt_tvs tvs)) (cvt_context cxt) (cvtType ty) - tc_name (TconName nm) = tconName nm - tc_name Arrow = tconName "->" - tc_name List = tconName "[]" - tc_name (Tuple 0) = tconName "()" - tc_name (Tuple n) = tconName ("(" ++ replicate (n-1) ',' ++ ")") - -split_ty_app :: Typ -> (Typ, [Typ]) +split_ty_app :: Meta.Type -> (Meta.Type, [Meta.Type]) split_ty_app ty = go ty [] where - go (Tapp f a) as = go f (a:as) + go (AppT f a) as = go f (a:as) go f as = (f,as) ----------------------------------------------------------- sigP :: Dec -> Bool -sigP (Proto _ _) = True +sigP (Meta.SigD _ _) = True sigP other = False @@ -330,9 +347,9 @@ falsePat = ConPatIn (cName "False") (PrefixCon []) overloadedLit :: Lit -> Bool -- True for literals that Haskell treats as overloaded -overloadedLit (Integer l) = True -overloadedLit (Rational l) = True -overloadedLit l = False +overloadedLit (IntegerL l) = True +overloadedLit (RationalL l) = True +overloadedLit l = False void :: Type.Type void = placeHolderType @@ -382,3 +399,4 @@ mkName ns str is_sep ':' = True is_sep other = False \end{code} +